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About This Course

main topics of the course:

dig deeper into game theory

analyze the algorithmic and computational aspect of the
problems in game theory

equilibrium computation algorithms (exact and approximate)
computational complexity (PLS, PPAD, FIXP, NP,
∆P

2 = PNP )

extended foundations of game theory

main theorems, their impact, generalization

you

Grading: homework assignments (at least 2 correct out of 4) and
presentation on a selected topic (1/3 of a research paper).

https://cw.fel.cvut.cz/wiki/courses/xep36agt/lectures/start



Outline of the Course

1 Introduction, Definitions

2 Nash’s Theorem, Main Complexity Classes (PLS, PPAD, FIXP)

3 Computing a Nash Equilibrium (Lemke Howson, MILP)

4 Approximating Nash Equilibria

5 Computing Stackelberg Equilibria

6 Computing and Approximating Correlated Equilibria

7 Succinct Representation of Games, Correlated Equilibrium in
Succinct Games

8 Repeated Games

9 Multiarmed Bandit Problems

10 Learning in Normal-Form Games, Fictitious Play

11 Regret Matching, Counterfactual Regret Minimization

12 Continual Resolving in Extensive-Form Games (DeepStack)



Standard Representation of Games

standard normal-form representation – a game is a tuple (N ,S, u)

N is a set of players i ∈ N = {1, . . . , n}, −i denotes all other
players except i.

S is a set of actions (pure strategies) S = ×iSi
(we often use |Si| = mi)

ui is a utility function ui : S → R (sometimes there is a cost
function ci : S → R, ui(s) = −ci(s))

also-known-as: strategic form, matrix form

we will refer to them as NFGs

in case of only two players: bimatrix games



Strategies

standard normal-form representation – a game is a tuple (N ,S, u)

pure strategies – si ∈ Si (can be infinite)

mixed strategies – probability distributions over pure strategies

∆(Si) =
{
pi ∈ R|Si||

∑|Si|
j=1 p

i
j = 1 ∧ pij ≥ 0

}
, denoted σ

behavioral strategies – vector of probability distributions over
actions to play in each decision step

convex strategies – arbitrary convex set X ⊆ R|S|

counting strategies, strategies with states, memory strategies,
turing machine strategies



Beyond Standard Representation of Games

There are other representations that capture specific types of
games more compactly compared to NFGs:

extensive-form games – finite sequential games (but there are
also Bayesian games, multi-agent influence diagrams
(MAIDs), LIMIDs, . . . )

stochastic games – infinite sequential games (but we also have
repeated games)

congestion games – abstract the network congestion games

We have n players, set of edges E, strategies for each player
are paths in the network (S), and there is a congestion
function ce : {0, 1, . . . , n} → Z+. When all players choose
their strategy path si ∈ Si we have the load of edge e,
`(e) = |{si|e ∈ si}| and ui =

∑
e∈si ce(`(e))



Beyond Standard Representation of Games (2)

graphical games – n-player games where the utility of one
player typically depends only on few other players. They are
represented as a graph, where agents are vertices and edge
corresponds to the dependance between the two players. If
the maximum degree of the graph is small (d� n), this
representation offers exponentially smaller input nsd+1 � nsn

action graph games – even finer dependance than in graphical
games based on actions

polymatrix games – specific graphical games, where we
consider a bimatrix game for each edge (i.e., only pairwise
interactions); quadratic size in ns

anonymous games, symmetric games, ...



Continuous/Infinite Games

games over the unit square

X,Y are set of “pure strategies” equal to interval [0, 1]

MX ,MY are probability distributions over X,Y

we can reason about them similarly (although using calculus)
to discrete games

very useful in auctions, adversarial machine learning, any time
you have a naturally infinite strategy space

Example: zero-sum game, X = [0, 1];Y = [0, 1], the payoff
function is

u(x, y) = 4xy − 2x− y + 3, ∀x ∈ X, y ∈ Y



Why do we care?

One representation does not rule them all.

Depending on the representation we can get an exponential
speed-up for specific types of problems.

Even if not, algorithms that work with compact representations
can be a starting point if you are looking for an approximate
solution to the original problem.



Solution Concepts

we want to find optimal strategies according to different notions of
optimality:

maxmin strategies – maxsi∈Si mins−i∈S−i ui(si, s−i)

minmax strategies – mins−i∈S−i maxsi∈Si ui(si, s−i)

can be defined for any type of strategies

if we seek minmax strategies over infinite sets, maximum or
minimum over function ui(si, s−i) might not exist

supsi∈Si infs−i∈S−i ui(si, s−i)

max
si∈Si

min
s−i∈S−i

ui(si, s−i) ≤ min
s−i∈S−i

max
si∈Si

ui(si, s−i)



Solution Concepts (2)

stable solution concepts

best response – let σ−i be a strategy of players −i,
maxsi∈Si ui(si, σ−i)

we can define pure, mixed, behavioral best response
it is not always true that pure best responses are sufficient
BRi(σ−i) is a set of all best responses

Nash Equilibrium – a strategy profile σ where every player is
playing the best response to the strategies of other players;
σi ∈ BRi(σ−i)
(Strong) Stackelberg Equilibrium – a strategy profile σ that
maximizes the expected utility of player 1 (leader) where all
other players (followers) are playing Nash Equilibrium;

arg max
σ;∀i∈N\{1},σi∈BRi(σ−i)

u1(σ)



Solution Concepts (3)

Correlated Equilibrium – a probability distribution over pure strategy
profiles p = ∆(S) that recommends each player i to play the best
response; ∀si, s′i ∈ Si:∑

s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s
′
i, s−i)

Coarse Correlated Equilibrium – a probability distribution over pure
strategy profiles p = ∆(S) that in expectation recommends each
player i to play the best response; ∀si ∈ Si:∑

s′∈S′
p(s′)ui(s

′) ≥
∑
s′∈S′

p(s′)ui(si, s
′
−i)

Quantal Response Equilibrium – modeling bounded rationality

pij =
exp(ui(sj , σ−i))∑

s′j∈Si
exp(ui(s′j , σ−i))



Assumptions on Utilities

we can restrict to games with a specific utility function

zero-sum games – meaningful for two-player games, where
u1(s1, s2) = −u2(s1, s2)
almost zero-sum games – games where there is an additional
cost for one player u1(s1, s2) = −u2(s1, s2)− c′(s1)
strategically zero-sum games – let A,B ∈ Rm1×m2 be the
matrices of a bimatrix game. A game is SZS iff there exist
α, β > 0 and D ∈ Rm1×m2 such that

αA = D + [bT ,bT , . . . ,bT ]T

βB = −D + [a,a, . . . ,a]

for some a ∈ Rm1 ,b ∈ Rm2 .

security games, ...



Let the game begin



Complexity Classes



Main Complexity Classes in Algorithmic Game Theory

P
polynomial problems (linear programming of polynomial size,
etc.)

computing a Nash Equilibrium in zero-sum games
(normal-form, extensive-form)

computing a Correlated Equilibrium in general-sum games
(normal-form1)

computing a Stackelberg Equilibrium in general-sum games
(normal-form, simple security games)

computing equilibria in many of the instances from succinctly
represented games (we shall see)

1open for extensive-form games



Main Complexity Classes in Algorithmic Game Theory

NP
NP-hard problems, (mixed-integer linear programs, etc.)

computing some specific Nash Equilibrium in general-sum
games (normal-form, extensive-form)

computing some specific Correlated-based Equilibrium in
general-sum games (extensive-form games)

computing a Stackelberg Equilibrium in general-sum games
(extensive-form games)



Main Complexity Classes in Algorithmic Game Theory

the search problem problem that asks for any Nash Equilibrium is a
different, potentially ‘easier’ problem

there is a finer description of the complexity classes



Main Complexity Classes in Algorithmic Game Theory

1 equilibria are guaranteed to exist (i.e., total problems TFNP
⊆ FNP (“a function extension of a decision problem in NP”)

2 we can search for them

pure strategy profiles
support enumeration

2

2Figure from M. Yannakakis ”Equilibria, fixed points, and complexity
classes” Computer Science Review (3) 71–85, 2009



Polynomial Local Search (PLS)

consider an instance I of an optimization problem, S(I) is a
set of candidate solutions, pI(s) is a cost (or utility)
associated with candidate s ∈ S(I) that has to be minimized
(or maximized, respectively)

each candidate s ∈ S(I) has a neighborhood NI(s) ⊆ S(I)

a candidate s is locally optimal (cost-wise) if

pI(s) ≤ pI(s′) ∀s′ ∈ NI(s)

Sol(I) is a set of locally optimal solutions

every step of the algorithm (generating starting solution,
computing the cost, getting a better neighbor) is polynomial,
but there can be an exponential number of steps



Polynomial Local Search (PLS) (2)

several well-known problems of this kind

finding a local optimum in Traveling Salesman Problem, Max
Cut, Max Sat, ...

we define a neighborhood function (e.g., 2-Opt) and perform a
greedy search

finding a stable configuration of a neural network

finding a pure equilibrium when it is guaranteed to exist

computing an optimal strategy in simple stochastic games,
where pure stationary strategy is known to be optimal (the
problem is in PLS, but it is open whether it is in P, or not)
some other variants of stochastic games (mean payoff/parity
games with no chance)



From PLS to PPAD

Searching for pure Nash equilibria is not sufficient.

Pure equilibria do not have to exist.

What can we search for in mixed strategies?

Is this problem in PLS? Can we redefine the problem of finding a
mixed NE as a PLS?
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