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In this exercise we shall continue with the development of the HMM inference algorithms from
the previous exercise. The goal of this exercise is

• to implement smoothing via forward-backward algorithm, and

• to find most likely sequence of states via Viterbi algorithm.

Forward, forward-backward and Viterbi algorithms constitute the foundation for the second
semestral project.

1 Inference for HMM

In the previous exercise, you implemented the forward algorithm which computed

P(Xt|et
1),

i.e. the filtered belief distribution over the states at time t given the evidence from time 0 to
time t.

1.1 Smoothing

In smoothing, we want to compute the smoothed belief distribution

P(Xk|et
1) for some k ∈ (0, t),

i.e. for the case, when we have not only some past evidence, ek
1, up to the current time (as in

filtering), but also some future evidence, et
k+1. In the lecture, we have shown that

P(Xk|et
1) = α fk × bk,

where fk and bk are the forward and backward messages, respectively. Forward messages fk are
computed during a forward pass in the forward algorithm; they are just the filtered beliefs.

The meaning of the backward messages bk is

bk = P(et
k+1|Xk).

Note that on contrary to forward messages ft, backward messages are not probability distributions,
i.e. they don’t have to sum up to 1. They are just a collection of probabilities, one for each state,
but coming from several different distributions.

The backward messages are computed recursively in a backward pass:

bk = ∑
xk+1

P(ek+1|xk+1)P(xk+1|Xk)bk+1.
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Task 1: In hmm_inference.py, fill in function backward1() which shall implement the above
update equation for the backward message.

Hints:

• You should return a new Counter object, not just the modified input argument.

• Similarly to function forward1(), it realizes matrix-vector multiplication, i.e. you will
probably use 2 nested for-loops.

• For the default WeatherHMM and b(+rain) = 0.6, b(−rain) = 0.7, a correct implementation
shall work like this:

>>> from weather import WeatherHMM
>>> from hmm_inference import backward1
>>> from collections import Counter
>>> wtr = WeatherHMM()
>>> b = Counter({'+rain': 0.6, '-rain': 0.7})
>>> e = '+umb'
>>> backward1(b, e, wtr)
Counter({'+rain': 0.42, '-rain': 0.26})

Now, we are ready to implement the following forward-backward algorithm:

Algorithm 1: FORWARD-BACKWARD(et
1, P0) returns a vector of prob. distributions

Input : et
1 – a vector of evidence values for steps 1, . . . , t

P0 – the prior distribution on the initial state
Local : f t

0 – a vector of forward messages for steps 0, . . . , t
b – the backward message, initially all 1s
st

1 – a vector of smoothed estimates P(Xk|et
1) for steps k = 1, . . . , t

Output: a vector of prob. distributions, i.e. the smoothed estimates st
1

begin
f0 ← P0
for i = 1 to t do

fi ← FORWARD1( fi−1, ei)

b← 1 // Vector of all 1s, for each state one.
for i = t downto 1 do

si ← NORMALIZED( fi × b)
b← BACKWARD1(b, ei)

return st
1

Note that the whole first loop is just the forward algorithm, so you can just call function
forward() to get f0, . . . , ft. Also note that the above algorithm does not store the individual bts;
it just updates a single collection of probabilities b. If you need all the bts, store them in a list
and return them together with the smoothed beliefs.

Task 2: In hmm_inference.py, fill in function forwardbackward() such that it implements the
above algorithm.

Task 3: In PM03.py, execute function run_fb(). Observe the results and try to explain them.
Try longer observation sequences, e.g. by repeating the default sequence (+u,+u,−u,+u,+u)
several times. How do the estimates for observation −u differ in individual repetitions?

Hints:

• The expected output from run_fb() is as follows:
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Comparison of filtering and smoothing
Initial distribution: Counter({'+rain': 0.5, '-rain': 0.5})
Observation at time 1 : +umb
Filtered: Counter({'+rain': 0.8181818181818181, '-rain': 0.18181818181818182})
Smoothed: Counter({'+rain': 0.8673388895754847, '-rain': 0.13266111042451528})
Observation at time 2 : +umb
Filtered: Counter({'+rain': 0.883357041251778, '-rain': 0.1166429587482219})
Smoothed: Counter({'+rain': 0.8204190536236754, '-rain': 0.17958094637632463})
Observation at time 3 : -umb
Filtered: Counter({'-rain': 0.8093320602764746, '+rain': 0.19066793972352525})
Smoothed: Counter({'-rain': 0.6925164239933823, '+rain': 0.30748357600661774})
Observation at time 4 : +umb
Filtered: Counter({'+rain': 0.7307940045849821, '-rain': 0.2692059954150179})
Smoothed: Counter({'+rain': 0.8204190536236753, '-rain': 0.17958094637632457})
Observation at time 5 : +umb
Filtered: Counter({'+rain': 0.8673388895754848, '-rain': 0.13266111042451526})
Smoothed: Counter({'+rain': 0.8673388895754848, '-rain': 0.13266111042451526})

1.2 Most likely sequence of states

In this section, our goal is to find

arg max
xt

1

P(xt
1|et

1) = arg max
xt

1

P(xt
1, et

1).

Similarly to other HMM inference algorithms, we shall use a recursive algorithm. We shall first
propagate forward the so-called max message defined as

mt = max
xt−1

1

P(xt−1
1 , Xt, et

1),

which can be recursively computed from a previous message as

mt = P(et|Xt)max
xt−1

P(Xt|xt−1)mt−1.

This is the same as in the forward update (implemented in forward1()), only the summation
over xt−1 is replaced by maximization over xt−1. We shall also keep track about the best prede-
cessors of each state xt, i.e. for which xt−1 gave the computation of mt(xt) the maximal value.

Task 4: In hmm_inference.py, fill in the function viterbi1() such that it implements the max
message update as above.

Hints:

• You should return a new Counter object, not just the modified input argument.

• The algorithm needs to iterate over the current and previous states, i.e. you will probably
use 2 nested for-loops.

• For the default WeatherHMM and m(+rain) = 0.45, m(−rain) = 0.1, a correct implementa-
tion shall work like this:

>>> from weather import WeatherHMM
>>> from hmm_inference import backward1
>>> from collections import Counter
>>> wtr = WeatherHMM()
>>> m = Counter({'+rain': 0.45, '-rain': 0.1})
>>> e = '+umb'
>>> m, pred = viterbi1(m, e, wtr)
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>>> m
Counter({'+rain': 0.28350000000000003, '-rain': 0.027000000000000003})
>>> pred
{'-rain': '+rain', '+rain': '+rain'}

Now, we are ready to implement the Viterbi algorithm.

Task 5: In hmm_inference.py, fill in function viterbi() which propagates the max message
through all the time slices and constructs the maximum likelihood sequence of states by fol-
lowing the best state predecessors from the final state back to the start.

Hints:

• Decompose the function to further functions, as you see fit. E.g., there could be a function
for constructing the ML sequence after you propagate the max message forward.

• The recursion should be started with m1 = FORWARD1(P(X0), e1).

Task 6: In PM03.py, understand and execute function run_viterbi(), and observe the outputs.

Hints:

• It uses uniform initial distribution over states, the default WeatherHMM, and observation
sequence with umbrella on days 1, 2, 4, 5 and no umbrella on day 3.

• If implemented properly, you shall observe the following output:

Viterbi
Initial distribution: Counter({'+rain': 0.5, '-rain': 0.5})
+umb Max msg: Counter({'+rain': 0.45, '-rain': 0.1})
+umb Max msg: Counter({'+rain': 0.28350000000000003, '-rain': 0.027000000000000003})
-umb Max msg: Counter({'-rain': 0.06804, '+rain': 0.019845})
+umb Max msg: Counter({'+rain': 0.0183708, '-rain': 0.0095256})
+umb Max msg: Counter({'+rain': 0.011573604, '-rain': 0.001333584})
ML seq of states: ['+rain', '+rain', '-rain', '+rain', '+rain']

2 Homework

As usual, finish the exercise as a homework, ask questions on the forum, and upload the solu-
tion via BRUTE!

As another part of homework, you shall work on the HMM semestral project where you
will use the implemented algorithms to estimate the location of a robot in a maze.

3 Have fun!
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