
B(E)3M33UI—Exercise PM03:
Hidden Markov Models II.

Petr Pošík

May 4, 2018

In this exercise we shall continue with the development of the HMM inference algorithms from
the previous exercise. The goal of this exercise is

• to implement smoothing via forward-backward algorithm, and

• to find most likely sequence of states via Viterbi algorithm.

Forward, forward-backward and Viterbi algorithms constitute the foundation for the second
semestral project.

1 Inference for HMM

In the previous exercise, you implemented the forward algorithm which computed

P(Xt|et
1),

i.e. the filtered belief distribution over the states at time t given the evidence from time 0 to
time t.

1.1 Smoothing

In smoothing, we want to compute the smoothed belief distribution

P(Xk|et
1) for some k ∈ (0, t),

i.e. for the case, when we have not only some past evidence, ek
1, up to the current time (as in

filtering), but also some future evidence, et
k+1. In the lecture, we have shown that

P(Xk|et
1) = α fk × bk,

where fk and bk are the forward and backward messages, respectively. Forward messages fk are
computed during a forward pass in the forward algorithm; they are just the filtered beliefs.

The meaning of the backward messages bk is

bk = P(et
k+1|Xk).

Note that on contrary to forward messages ft, backward messages are not probability distributions,
i.e. they don’t have to sum up to 1. They are just a collection of probabilities, one for each state,
but coming from several different distributions.

The backward messages are computed recursively in a backward pass:

bk = ∑
xk+1

P(ek+1|xk+1)P(xk+1|Xk)bk+1.

1

Task 1: In hmm_inference.py, fill in function backward1() which shall implement the above
update equation for the backward message.

Hints:

• You should return a new Counter object, not just the modified input argument.

• Similarly to function forward1(), it realizes matrix-vector multiplication, i.e. you will
probably use 2 nested for-loops.

• For the default WeatherHMM and b(+rain) = 0.6, b(−rain) = 0.7, a correct implementation
shall work like this:

>>> from weather import WeatherHMM
>>> from hmm_inference import backward1
>>> from collections import Counter
>>> wtr = WeatherHMM()
>>> b = Counter({'+rain': 0.6, '-rain': 0.7})
>>> e = '+umb'
>>> backward1(b, e, wtr)
Counter({'+rain': 0.42, '-rain': 0.26})

Now, we are ready to implement the following forward-backward algorithm:

Algorithm 1: FORWARD-BACKWARD(et
1, P0) returns a vector of prob. distributions

Input : et
1 – a vector of evidence values for steps 1, . . . , t

P0 – the prior distribution on the initial state
Local : f t

0 – a vector of forward messages for steps 0, . . . , t
b – the backward message, initially all 1s
st

1 – a vector of smoothed estimates P(Xk|et
1) for steps k = 1, . . . , t

Output: a vector of prob. distributions, i.e. the smoothed estimates st
1

begin
f0 ← P0
for i = 1 to t do

fi ← FORWARD1(fi−1, ei)

b← 1 // Vector of all 1s, for each state one.
for i = t downto 1 do

si ← NORMALIZED(fi × b)
b← BACKWARD1(b, ei)

return st
1

Note that the whole first loop is just the forward algorithm, so you can just call function
forward() to get f0, . . . , ft. Also note that the above algorithm does not store the individual bts;
it just updates a single collection of probabilities b. If you need all the bts, store them in a list
and return them together with the smoothed beliefs.

Task 2: In hmm_inference.py, fill in function forwardbackward() such that it implements the
above algorithm.

Task 3: In PM03.py, execute function run_fb(). Observe the results and try to explain them.
Try longer observation sequences, e.g. by repeating the default sequence (+u,+u,−u,+u,+u)
several times. How do the estimates for observation −u differ in individual repetitions?

Hints:

• The expected output from run_fb() is as follows:

2

Comparison of filtering and smoothing
Initial distribution: Counter({'+rain': 0.5, '-rain': 0.5})
Observation at time 1 : +umb
Filtered: Counter({'+rain': 0.8181818181818181, '-rain': 0.18181818181818182})
Smoothed: Counter({'+rain': 0.8673388895754847, '-rain': 0.13266111042451528})
Observation at time 2 : +umb
Filtered: Counter({'+rain': 0.883357041251778, '-rain': 0.1166429587482219})
Smoothed: Counter({'+rain': 0.8204190536236754, '-rain': 0.17958094637632463})
Observation at time 3 : -umb
Filtered: Counter({'-rain': 0.8093320602764746, '+rain': 0.19066793972352525})
Smoothed: Counter({'-rain': 0.6925164239933823, '+rain': 0.30748357600661774})
Observation at time 4 : +umb
Filtered: Counter({'+rain': 0.7307940045849821, '-rain': 0.2692059954150179})
Smoothed: Counter({'+rain': 0.8204190536236753, '-rain': 0.17958094637632457})
Observation at time 5 : +umb
Filtered: Counter({'+rain': 0.8673388895754848, '-rain': 0.13266111042451526})
Smoothed: Counter({'+rain': 0.8673388895754848, '-rain': 0.13266111042451526})

1.2 Most likely sequence of states

In this section, our goal is to find

arg max
xt

1

P(xt
1|et

1) = arg max
xt

1

P(xt
1, et

1).

Similarly to other HMM inference algorithms, we shall use a recursive algorithm. We shall first
propagate forward the so-called max message defined as

mt = max
xt−1

1

P(xt−1
1 , Xt, et

1),

which can be recursively computed from a previous message as

mt = P(et|Xt)max
xt−1

P(Xt|xt−1)mt−1.

This is the same as in the forward update (implemented in forward1()), only the summation
over xt−1 is replaced by maximization over xt−1. We shall also keep track about the best prede-
cessors of each state xt, i.e. for which xt−1 gave the computation of mt(xt) the maximal value.

Task 4: In hmm_inference.py, fill in the function viterbi1() such that it implements the max
message update as above.

Hints:

• You should return a new Counter object, not just the modified input argument.

• The algorithm needs to iterate over the current and previous states, i.e. you will probably
use 2 nested for-loops.

• For the default WeatherHMM and m(+rain) = 0.45, m(−rain) = 0.1, a correct implementa-
tion shall work like this:

>>> from weather import WeatherHMM
>>> from hmm_inference import backward1
>>> from collections import Counter
>>> wtr = WeatherHMM()
>>> m = Counter({'+rain': 0.45, '-rain': 0.1})
>>> e = '+umb'
>>> m, pred = viterbi1(m, e, wtr)

3

>>> m
Counter({'+rain': 0.28350000000000003, '-rain': 0.027000000000000003})
>>> pred
{'-rain': '+rain', '+rain': '+rain'}

Now, we are ready to implement the Viterbi algorithm.

Task 5: In hmm_inference.py, fill in function viterbi() which propagates the max message
through all the time slices and constructs the maximum likelihood sequence of states by fol-
lowing the best state predecessors from the final state back to the start.

Hints:

• Decompose the function to further functions, as you see fit. E.g., there could be a function
for constructing the ML sequence after you propagate the max message forward.

• The recursion should be started with m1 = FORWARD1(P(X0), e1).

Task 6: In PM03.py, understand and execute function run_viterbi(), and observe the outputs.

Hints:

• It uses uniform initial distribution over states, the default WeatherHMM, and observation
sequence with umbrella on days 1, 2, 4, 5 and no umbrella on day 3.

• If implemented properly, you shall observe the following output:

Viterbi
Initial distribution: Counter({'+rain': 0.5, '-rain': 0.5})
+umb Max msg: Counter({'+rain': 0.45, '-rain': 0.1})
+umb Max msg: Counter({'+rain': 0.28350000000000003, '-rain': 0.027000000000000003})
-umb Max msg: Counter({'-rain': 0.06804, '+rain': 0.019845})
+umb Max msg: Counter({'+rain': 0.0183708, '-rain': 0.0095256})
+umb Max msg: Counter({'+rain': 0.011573604, '-rain': 0.001333584})
ML seq of states: ['+rain', '+rain', '-rain', '+rain', '+rain']

2 Homework

As usual, finish the exercise as a homework, ask questions on the forum, and upload the solu-
tion via BRUTE!

As another part of homework, you shall work on the HMM semestral project where you
will use the implemented algorithms to estimate the location of a robot in a maze.

3 Have fun!

4

	Inference for HMM
	Smoothing
	Most likely sequence of states

	Homework
	Have fun!

