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The goals of this exercise:

• get acquainted with the HMM interface we will use

• implement belief updates by time step and by observation

• implement filtering by the forward algorithm

1 Representation of probabilities

In HMM exercises and project, we need to represent discrete probability distributions
(and other collections of probabilities), i.e. we need to store a probability for each state
or observation, such that we can easily query any of them.

We chose to represent the probabilities by collections.Counter objects. Counter is
a subclass of dictionary, specialized such that

• the values must be numbers, and

• the query for a non-existent key returns 0 (and not KeyError as in case of dictio-
nary).

Sampling from a distribution represented by a Counter can be done using a helper
function utils.weighted_random_choice.

>>> from collections import Counter
>>> pX = Counter()
>>> pX['rain']
0
>>> pX['rain'] = 0.4
>>> pX['sun'] = 0.6
>>> pX
Counter({'rain': 0.4, 'sun': 0.6})
>>> from utils import weighted_random_choice
>>> for i in range(5):
... print(weighted_random_choice(pX), end=', ')
sun, rain, rain, sun, rain,
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2 Hidden Markov model

2.1 General interface

We have specified for you a general interface of an HMM. It is implemented as an
abstract class (partially implemented class) HMM.

Task 1: In hmm.py, study and try to understand the code of class HMM, i.e. which func-
tions each HMM subclass will provide and what their purpose is.

Hints:

• Make sure you know what the inputs and outputs of individual methods are.

• Concentrate on methods pt(), pe(), and simulate().

2.2 Weather-Umbrella domain

Now we know what the general interface of an HMM shall be. To make a practically
usable implementation of a particular domain, we will derive a new class from HMM. Do
not change anything in hmm.py!

The Weather-Umbrella domain known from the lectures is implemented in weather.py

as a class WeatherHMM derived from class HMM.

Task 2: In weather.py, study the code of class WeatherHMM. Concentrate on what partic-
ular changes/additions were made to the base HMM.

2.3 HMM as a data generator

Having a fully specified HMM, e.g. WeatherHMM, we can use it to generate data (states
and observations) from the modeled domain.

Task 3: In PM02.py, understand and execute function run_simulation() repeatedly, ob-
serve the outputs. Consider the variety of possible outputs although the underlying
model is the same!

Task 4: In PM02.py, modify function run_simulation() such that you initialize the
WeatherHMM object with a different transition and/or emission models. Run repeatedly
and observe the outputs.

Hints:

• You can copy and modify default_T and default_E data structures from weather.py

and provide one or both of them to the WeatherHMM() “constuctor”.

3 Inference for HMM

In this part, you shall implement some inference algorithms for HMM.

2



3.1 Update beliefs by time step

You shall implement the following update equation:

B(X)←∑
x′

P(X|x′) · x′,

where B(X) is a probability distribution over states (a Counter object), X represents the
set of possible current states, and x′ are the previous states.

Task 5: In hmm_inference.py, fill in the function update_belief_by_time_step() such
that it implements the above update equation.

Hints:

• You should return a new Counter object, not just the modified input argument.

• The function de facto realizes a matrix-vector multiplication (transition matrix ×
beliefs). There are more ways how to implement this, but most likely, you should
use 2 nested for-loops.

• For the default WeatherHMM and B(+rain) = 0.1, B(−rain) = 0.9, a correct imple-
mentation shall work like this:

>>> from weather import WeatherHMM
>>> from hmm_inference import update_belief_by_time_step
>>> from collections import Counter
>>> wtr = WeatherHMM()
>>> B = Counter({'+rain': 0.1, '-rain': 0.9})
>>> update_belief_by_time_step(B, wtr)
Counter({'+rain': 0.34, '-rain': 0.66})

3.2 Prediction

We will use function update_belief_by_time_step() repeatedly to predict the belief
state in more distant future. This is just the prediction in Markov Chain, i.e. the beliefs
shall converge to the stationary distribution if it exists.

Task 6: In hmm_inference.py, fill in the function predict() such that it updates the
belief state by the given number of time steps.

Task 7: In PM02.py, execute function run_prediction(). In the unmodified form, the
function runs prediction for the default WeatherHMM with the uniform prior distribution
over the states. What is the output? Can you explain it?

Task 8: Experiment with function run_prediction(). Try to provide different prior
beliefs and/or different transition matrix. Does the sequence converge to the same dis-
tribution even if you change the prior beliefs? Observe for which priors and transition
matrices the beliefs become less/more uncertain.

Hints:

• For the initial belief and transition matrix set like this:
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prior = Counter({'+rain': 1})
T = {

'-rain':
{'-rain': 0.9,
'+rain': 0.1},

'+rain':
{'-rain': 0.2,
'+rain': 0.8}

}
wtr = WeatherHMM(trans_model=T)

the output of a correct implementation shall be:

Prediction from initial state Counter({'+rain': 1})
Counter({'+rain': 0.8, '-rain': 0.2})
Counter({'+rain': 0.6600000000000001, '-rain': 0.3400000000000001})
Counter({'+rain': 0.5620000000000002, '-rain': 0.43800000000000017})
Counter({'-rain': 0.5066000000000002, '+rain': 0.49340000000000017})
Counter({'-rain': 0.5546200000000002, '+rain': 0.4453800000000002})
Counter({'-rain': 0.5882340000000003, '+rain': 0.4117660000000002})
Counter({'-rain': 0.6117638000000003, '+rain': 0.3882362000000002})
Counter({'-rain': 0.6282346600000003, '+rain': 0.3717653400000002})
Counter({'-rain': 0.6397642620000004, '+rain': 0.36023573800000025})
Counter({'-rain': 0.6478349834000005, '+rain': 0.35216501660000027})

3.3 Update beliefs by evidence

Now we shall implement the following update equation:

B(X)← αP(e|X) · B(X),

where B(X) is a belief distribution over the states, as before, X is the set of possible
current states, e is the single observation we use for the update, and α is a normalization
constant.

Task 9: In hmm_inference.py, fill in the function update_belief_by_evidence() such
that it implements the above update equation.

Hints:

• You should return a new Counter object, not just the modified input argument.

• We shall use this function in different contexts, and sometimes we want the out-
put to be normalized, sometimes not. If the parameter normalize=True is given,
you shall normalize the updated beliefs by using function utils.normalized().

• The function de facto realizes a vector-scalar multiplication (beliefs × likelihood
of the evidence). You should probably use a single for-loop.

• If implemented correctly, you should be able to run the following code and ob-
serve the results:
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>>> from hmm_inference import update_belief_by_evidence
>>> from weather import WeatherHMM
>>> from collections import Counter
>>> wtr = WeatherHMM()
>>> B = Counter({'+rain': 0.5, '-rain': 0.5})
>>> update_belief_by_evidence(B, '-umb', wtr, normalize=True)
Counter({'+rain': 0.11111111111111112, '-rain': 0.888888888888889})

3.4 Repetitive updates by evidence

When using HMM, we usually assume that we have only a single piece of evidence for
each time slice. But we may actually update the beliefs by several pieces of evidence
in a single time slice. In the Weather-Umbrella domain, this would mean that we can
observe not only our boss bringing an umbrella or not, but several such bosses, each
of which is independent, but follows the same probabilistic rules (i.e. they bring an
umbrella according to the same emission model).

Task 10: In PM02.py, understand and execute function run_evidence_upates(), and
observe outputs. Does the order of observations matter? Is it the expected result?

3.5 Filtering: Forward algorithm

We shell implement an algorithm which solves the filtering task, i.e. the estimation of

P(Xt|et
1).

We know from the lectures that it can be solved by using forward algorithm, which
propagates the beliefs estimates through the model:

ft = αP(et|Xt) ∑
xt−1

P(Xt|xt−1) ft−1,

where ft = P(Xt|et
1) is the belief distribution (Counter) in time t, ft−1 is the previous

belief distribution over states, Xt is the set of states in time t, xt−1 represents previous
states, and et is the observation at time t.

We shall implement the whole algorithm in 2 steps:

• forward1() which shall perform a single update step (note the '1' character at
the end of the function name), and

• forward() which will propagate the beliefs through the whole HMM and will
return the belief states for individual steps.

Task 11: In hmm_inference.py, fill in function forward1(), such that it will implement
the update equation for ft above.

Hints:

• The function directly combines the update for time step (which gives 1-step pre-
diction of beliefs) and update by evidence.
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• Again, the function can be used in several contexts, sometimes with the normal-
ization of each ft, sometimes without it. Pass the normalize parameter to the
update_beliefs_by_evidence().

• If implemented correctly, you should be able to run and observe:

>>> from collections import Counter
>>> from weather import WeatherHMM
>>> from hmm_inference import forward1
>>> wtr = WeatherHMM()
>>> f = Counter({'+rain': 0.5, '-rain': 0.5})
>>> forward1(f, '+umb', wtr, normalize=True)
Counter({'+rain': 0.8181818181818181, '-rain': 0.18181818181818182})

Task 12: In hmm_inference.py, fill in the function forward() which shall implement the
whole forward pass along the HMM given an evidence sequence.

Hints:

• Here we want proper probability distributions over individual states, so normal-
ization shall be turned on.

Task 13: In PM02.py, understand and execute function run_filtering(), and observe
outputs.

Hints:

• It uses uniform ínitial distribution over states, the default WeatherHMM, and obser-
vation sequence with umbrella on days 1, 2, 4, 5 and no umbrella on day 3.

• If implemented properly, you shall observe the following output:

Filtering
Initial distribution: Counter({'+rain': 0.5, '-rain': 0.5})
+umb Counter({'+rain': 0.8181818181818181, '-rain': 0.18181818181818182})
+umb Counter({'+rain': 0.883357041251778, '-rain': 0.1166429587482219})
-umb Counter({'-rain': 0.8093320602764746, '+rain': 0.19066793972352525})
+umb Counter({'+rain': 0.7307940045849821, '-rain': 0.2692059954150179})
+umb Counter({'+rain': 0.8673388895754848, '-rain': 0.13266111042451526})

As can be seen from the filtered beliefs above, the single different observation on
day 3 is sufficient to make the algorithm think that it did not rain on day 3. With
different HMM parameters, it may actually happen that the algorithm would estimate
R3 = +rain as more probable than R3 = −rain.

Task 14: Think about the possibilities how you could force the filtering algorithm to
estimate R3 = +rain as more probable than R3 = −rain by changing either the transi-
tion model, or the emission model. After you will have your guess, evaluate it using
PM02.py by modifying function run_filtering() accordingly and observing the results.
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4 Homework

If you would like to do a bit more, you can try to implement function hmm_inference.likelihood()

which would compute the likelihood that the sequence of observations came from a
particular HMM.

The function is very similar to forward() function, it will have the same parame-
ters, but it will return only a single number. See the lecture slides for a short descrip-
tion. If implemented properly, and you execute run_likelihood() which compares a
WeatherHMM with default and modified emission models, you shall observe:

Likelihood of HMM1: 0.0343037005
Likelihood of HMM2: 0.03832461249999999

As usual, finish the exercise as a homework, ask questions on the forum, and up-
load the solution via BRUTE!

5 Have fun!
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