
B(E)3M33UI — Exercise ML 1:
Bayesian and non-Bayesian decision task

formulations.

Petr Pošík

February 26, 2018

1 Problem description

We will show the basics of Python programming and at the same time demonstrate the
principles of Bayesian and non-Bayesian decision making on a simple example: we
want to help our physicians diagnose our common diseases.

A person that comes to the general practitioner (GP) may be healthy, or may have a
cold or a flu. GP has only one type of observation, the measurement of body tempera-
ture divided intro discrete intervals: it can be below 37, 37-38, 38-39, or over 39 degrees
Celsius. GP must decide whether the person needs no cure at all, or just needs tea and
sweat, or some kind of medicine drugs, or GP can send the person to a specialist. Can
we help the physician design optimal strategy?

Task 1: Define the sets X, K, and D, and represent them as lists X, K, and D in Python.

2 Bayesian formulation

Task 2: Formulate the task in the Bayesian framework. What other information do we
need?

Task 3: Make sure you understand the given joint probability, pXK.

Based on enough historical data, let’s assume that the joint probability distribution,
pXK, of X and K for people coming to the doctor’s office is as follows:

state K
temperature X healthy cold flu

below 37 0.05 0.03 0.01
37-38 0.05 0.15 0.03
38-39 0.02 0.25 0.10
over 39 0.01 0.10 0.20

1



The above probability distribution is stored in a bit different way (as a DB table) in
the file ML1_pXK.csv.

Task 4: Implement a helper function load_data(filename) to load the data (the joint
distribution and later the penalty matrix).

The function shall return a dictionary, where the first 2 columns in the CSV file
represent the keys, and the third column represents the values.

Task 5: Find in the documentation what the zip() function does and how it can be
used when constructing a dictionary. Try out the following code. It may come handy
in the next task.

>>> keys = ['k1','k2','k3']
>>> values = ['v1','v2','v3']
>>> list(zip(keys,values))

>>> d = dict(zip(keys, values))
>>> d

Task 6: Implement a set of functions allowing you to easily compute the marginal and
conditional distributions based on pXK.

Implement functions

• get_pX() to compute pX,

• get_pK() to compute pK,

• get_pXgK() to compute pX|K, and

• get_pKgX() to compute pK|X.

Each function shall return a dictionary with properly formed keys and adequately
computed values.

In the following, we will have to iteratively add several values to individual dictio-
nary items. In such situation an error often occurs, that when adding the first value,
the dictionary item does not exist yet. Python offers several solutions to this:

• you can pre-initialize the dictionary with correct starting values (0.0 in our case),

• you can use the dict.get(key,default_value) method, which returns the value
for the key, if the key exists in the dictionary, otherwise it returns the default_value,
or

• you can use the collections.DefaultDict class which allows you to specify how
it should initialize the nonexisting items.

Task 7: Design your own penalty matrix W : K × D → R and store it in ML1_W.csv.
Load the data into variable W using the function load_data().

Fill in the table below. Keep the following in mind:

2



• Use penalties between 0 and 1000. If the decision for a particular state does not
imply any costs, assign 0; if the decision is maximally unsuitable for a particular
state, assign 1000.

• Try to incorporate various kinds of costs:

– the cost of insufficient cure, when a strong cure is needed,

– the cost of too strong cure, when not needed,

– the loss of the physician’s reputation if the patient is sent to the specialist
with a trivial illness, etc.

There is no correct penalty assignment; the goal is to show what strategy will be opti-
mal for your penalty matrix.

decision D
state K no tea drugs spec

healthy
cold
flu

Fill in the values into the prepared file skeleton in ML1_W.csv and load the contents
using function load_data().

Task 8: Make sure you understand what a strategy is in the Bayesian formulation.
Create function make_strategy() which takes a list of possible observations and a list
of corresponding decisions, and returns a strategy, i.e. a dictionary.

For us a strategy shall be represented by a dictionary, so that we can ask q[x] (What
is the decision for observation x?).

Task 9: How many different strategies q : X → D are there?

Task 10: Given all the strategies will have the same keys, we can represent them (at
first) just as a tuple of decisions. All the possible strategies can be generated using the
itertools.product() function. Generate a list of all possible 4-tuples of decisions.

Task 11: Create function make_list_of_strategies(), which takes the list of possible
observations X, and the list of possible decisions D, and produces a list of all possible
strategies, i.e. list of dictionaries.

Task 12: Create function print_strategy() which takes a strategy (dictionary) q and a
list of observations (keys) X, and pretty-prints the strategy so that the order of keys is
such as specified in X.

2.1 Bayesian strategy via complete search

Task 13: Create function risk() which returns the risk for a particular strategy q. What
inputs does the function need?

3



R(q) = ∑
x∈X

∑
k∈K

pXK(x, k) ·W(k, q(x))

Task 14: Create function find_bayesian_strategy(). What inputs does the function
need?

Go through all possible strategies, compute their risks, find the strategy with the
minimal risk. Return a 2-tuple: the Bayesian strategy and its risk.

You may find numpy.argmin() and numpy.argmax() useful.

2.2 Bayesian strategy via partial risks

Task 15: Create function partial_risk(), which returns the partial risk for a particular
decision d and observation x. What other inputs are needed?

R(d, x) = ∑
k∈K

pK|X(k|x) ·W(k, d)

Task 16: Create function find_bayesian_strategy_via_partial_risks().

For each observation, compute the partial risk of all decisions, and assign the de-
cision with the minimal partial risk. Return a 2-tuple: the optimal strategy and its
risk.

3 Estimating the hidden state

Let’s move to a different task - estimating the hidden state K, i.e. D = K.

Task 17: Can the physician say anything about the hidden state of a patient before she
actually sees the patient?

Task 18: If the physician learns a new information about the patient – the body temper-
ature X, she should update her beliefs and maybe change her estimate. Make sure you
understand what a strategy is in this case. How many different strategies q : X → K are
there? Can you create their list?

3.1 MAP estimation

Task 19: Implement function find_MAP_strategy() which returns the hidden state k∗

with the minimal probability of error.

3.2 Minimax formulation

We still want to estimate the object state K based on the observation X. The strategy
should assign a state to each observation with the aim to minimize the maximal prob-
abilities of wrong decision across all true states. We will need only the conditional
probabilities pX|K; priors pK and penalties W are not required.

4



Task 20: Implement function find_minimax_strategy() which returns such a strategy
that minimizes the maximal probability of wrong decisions across all possible states.

A Fallback penalty matrix

If your Bayesian strategy does not show anything interesting, you can try the following
cost matrix:

decision D
state K no tea anti spec

healthy 0 10 300 300
cold 30 0 200 200
flu 1000 800 10 100

This penalty matrix is saved in the file fallback_W.txt. You can just copy it to
ML1_W.csv.

5


	Problem description
	Bayesian formulation
	Bayesian strategy via complete search
	Bayesian strategy via partial risks

	Estimating the hidden state
	MAP estimation
	Minimax formulation

	Fallback penalty matrix

