

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering Department of Cybernetics

Neural Networks.

Petr Pošík

Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics

P. Pošík © 2017

Introduction and Rehearsal

P. Pošík © 2017 Artificial Intelligence – 2 / 33

- Notation
- Multiple regression
- Logistic regression
- Gradient descent
- Ex: Grad. for MR
- Ex: Grad. for LR
- Relations to NN

Multilayer FFN

Gradient Descent

Regularization

RBF Networks

Summary

Notation

In supervised learning, we work with

- **an** observation described by a vector $\mathbf{x} = (x_1, \dots, x_D)$,
- \blacksquare the corresponding true value of the dependent variable y, and
- the prediction of a model $\hat{y} = f_w(x)$, where the model parameters are in vector w.

P. Pošík © 2017 Artificial Intelligence – 3 / 33

- Notation
- Multiple regression
- Logistic regression
- Gradient descent
- Ex: Grad. for MR
- Ex: Grad. for LR
- Relations to NN

Multilayer FFN

Gradient Descent

Regularization

RBF Networks

Summary

Notation

In supervised learning, we work with

- **an** observation described by a vector $\mathbf{x} = (x_1, \dots, x_D)$,
- \blacksquare the corresponding true value of the dependent variable y, and
- the prediction of a model $\hat{y} = f_w(x)$, where the model parameters are in vector w.
- Very often, we use *homogeneous coordinates* and matrix notation, and represent the whole training data set as T = (X, y), where

$$m{X} = \left(egin{array}{ccc} 1 & m{x}^{(1)} \ dots & dots \ 1 & m{x}^{(|T|)} \end{array}
ight)$$
 , and $m{y} = \left(egin{array}{c} y^{(1)} \ dots \ y^{(|T|)} \end{array}
ight)$.

- Notation
- Multiple regression
- Logistic regression
- Gradient descent
- Ex: Grad. for MR
- Ex: Grad. for LR
- Relations to NN

Multilayer FFN

Gradient Descent

Regularization

RBF Networks

Summary

Notation

In supervised learning, we work with

- **an** observation described by a vector $x = (x_1, \dots, x_D)$,
- \blacksquare the corresponding true value of the dependent variable y, and
- the prediction of a model $\hat{y} = f_w(x)$, where the model parameters are in vector w.
- Very often, we use *homogeneous coordinates* and matrix notation, and represent the whole training data set as T = (X, y), where

$$egin{aligned} m{X} = \left(egin{array}{ccc} 1 & m{x}^{(1)} \ dots & dots \ 1 & m{x}^{(|T|)} \end{array}
ight), & ext{and} & m{y} = \left(egin{array}{c} y^{(1)} \ dots \ y^{(|T|)} \end{array}
ight). \end{aligned}$$

Learning then amounts to finding such model parameters w^* which minimize certain loss (or energy) function:

$$w^* = \arg\min_{w} J(w, T)$$

Multiple linear regression

Multiple linear regression model:

Intro

- Notation
- Multiple regression
- Logistic regression
- Gradient descent
- Ex: Grad. for MR
- Ex: Grad. for LR
- Relations to NN

Multilayer FFN

Gradient Descent

Regularization

RBF Networks

Summary

$$\hat{y} = f_{w}(x) = w_1 x_1 + w_2 x_2 + \ldots + w_D x_D = x w^T$$

The minimum of

$$J_{MSE}(w) = \frac{1}{|T|} \sum_{i=1}^{|T|} \left(y^{(i)} - \widehat{y}^{(i)} \right)^2,$$

is given by

$$\boldsymbol{w}^* = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y},$$

or found by numerical optimization.

Multiple linear regression

Multiple linear regression model:

Intro

- Notation
- Multiple regression
- Logistic regression
- Gradient descent
- Ex: Grad. for MR
- Ex: Grad. for LR
- Relations to NN

Multilayer FFN

Gradient Descent

Regularization

RBF Networks

Summary

The minimum of

$$J_{MSE}(w) = \frac{1}{|T|} \sum_{i=1}^{|T|} \left(y^{(i)} - \widehat{y}^{(i)} \right)^2,$$

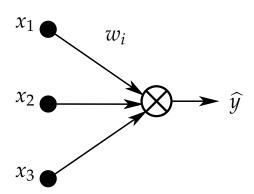
 $\hat{y} = f_{w}(x) = w_1 x_1 + w_2 x_2 + \ldots + w_D x_D = x w^T$

is given by

$$\boldsymbol{w}^* = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y},$$

or found by numerical optimization.

Multiple regression as a linear neuron:



- Notation
- Multiple regression
- Logistic regression
- Gradient descent
- Ex: Grad. for MR
- Ex: Grad. for LR
- Relations to NN

Multilayer FFN

Gradient Descent

Regularization

RBF Networks

Summary

Logistic regression

Logistic regression model:

$$\widehat{y} = f(\boldsymbol{w}, \boldsymbol{x}) = g(\boldsymbol{x}\boldsymbol{w}^T),$$

where

$$g(z) = \frac{1}{1 + e^{-z}}$$

is the **sigmoid** (a.k.a **logistic**) function.

- No explicit equation for the optimal weights.
- The only option is to find the optimum numerically, usually by some form of gradient descent.

- Notation
- Multiple regression
- Logistic regression
- Gradient descent
- Ex: Grad. for MR
- Ex: Grad. for LR
- Relations to NN

Multilayer FFN

Gradient Descent

Regularization

RBF Networks

Summary

Logistic regression

Logistic regression model:

$$\widehat{y} = f(\boldsymbol{w}, \boldsymbol{x}) = g(\boldsymbol{x}\boldsymbol{w}^T),$$

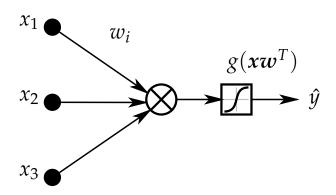
where

$$g(z) = \frac{1}{1 + e^{-z}}$$

is the **sigmoid** (a.k.a **logistic**) function.

- No explicit equation for the optimal weights.
- The only option is to find the optimum numerically, usually by some form of gradient descent.

Logistic regression as a **non-linear neuron**:



- Notation
- Multiple regression
- Logistic regression
- Gradient descent
- Ex: Grad. for MR
- Ex: Grad. for LR
- Relations to NN

Multilayer FFN

Gradient Descent

Regularization

RBF Networks

Summary

Gradient descent algorithm

- \blacksquare Given a function I(w) that should be minimized,
- start with a guess of w, and change it so that J(w) decreases, i.e.
- update our current guess of w by taking a step in the direction opposite to the gradient:

$$w \leftarrow w - \alpha \nabla J(w)$$
, i.e.

$$w_d \leftarrow w_d - \alpha \frac{\partial}{\partial w_d} J(w),$$

where all w_d s are updated simultaneously and α is a **learning rate** (step size).

For cost functions given as the sum across the training examples

$$J(w) = \sum_{i=1}^{|T|} E(w, x^{(i)}, y^{(i)}),$$

we can concentrate on a single training example because

$$\frac{\partial}{\partial w_d} J(w) = \sum_{i=1}^{|T|} \frac{\partial}{\partial w_d} E(w, x^{(i)}, y^{(i)}),$$

and we can drop the indices over training data set:

$$E = E(w, x, y).$$

Example: Gradient for multiple regression and squared loss

Intro

- Notation
- Multiple regression
- Logistic regression
- Gradient descent
- Ex: Grad. for MR
- Ex: Grad. for LR
- Relations to NN

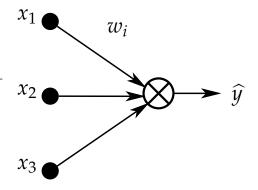
Multilayer FFN

Gradient Descent

Regularization

RBF Networks

Summary



Assuming the squared error loss

$$E(w, x, y) = \frac{1}{2}(y - \widehat{y})^2 = \frac{1}{2}(y - xw^T)^2,$$

we can compute the derivatives using the chain rule as

$$\frac{\partial E}{\partial w_d} = \frac{\partial E}{\partial \widehat{y}} \frac{\partial \widehat{y}}{\partial w_d}, \text{ where}$$

$$\frac{\partial E}{\partial \widehat{y}} = \frac{\partial}{\partial \widehat{y}} \frac{1}{2} (y - \widehat{y})^2 = -(y - \widehat{y}), \text{ and}$$

$$\frac{\partial \widehat{y}}{\partial w_d} = \frac{\partial}{\partial w_d} x w^T = x_d,$$

and thus

$$\frac{\partial E}{\partial w_d} = \frac{\partial E}{\partial \widehat{y}} \frac{\partial \widehat{y}}{\partial w_d} = -(y - \widehat{y}) x_d.$$

Example: Gradient for logistic regression and crossentropy loss

Intro

- Notation
- Multiple regression
- Logistic regression
- Gradient descent
- Ex: Grad. for MR
- Ex: Grad. for LR
- Relations to NN

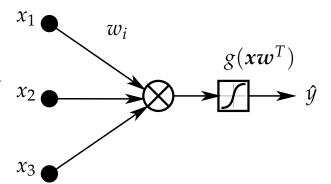
Multilayer FFN

Gradient Descent

Regularization

RBF Networks

Summary



Nonlinear *activation* function:

$$g(a) = \frac{1}{1 + e^{-a}}$$

Note that

$$g'(a) = g(a) (1 - g(a)).$$

Example: Gradient for logistic regression and crossentropy loss

Intro

- Notation
- Multiple regression
- Logistic regression
- Gradient descent
- Ex: Grad. for MR
- Ex: Grad. for LR
- Relations to NN

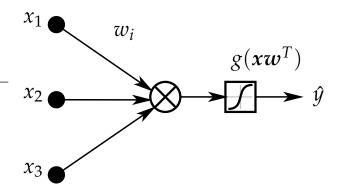
Multilayer FFN

Gradient Descent

Regularization

RBF Networks

Summary



Nonlinear *activation* function:

$$g(a) = \frac{1}{1 + e^{-a}}$$

Note that

$$g'(a) = g(a) (1 - g(a)).$$

Assuming the crossentropy loss

$$E(\boldsymbol{w}, \boldsymbol{x}, \boldsymbol{y}) = -y \log \widehat{y} - (1 - y) \log(1 - \widehat{y}),$$

we can compute the derivatives using the chain rule as

$$\frac{\partial E}{\partial w_d} = \frac{\partial E}{\partial \widehat{y}} \frac{\partial \widehat{y}}{\partial a} \frac{\partial a}{\partial w_d}, \text{ where}$$

$$\frac{\partial E}{\partial \widehat{y}} = -\frac{y}{\widehat{y}} + \frac{1 - y}{1 - \widehat{y}} = -\frac{y - \widehat{y}}{\widehat{y}(1 - \widehat{y})},$$

$$\frac{\partial \widehat{y}}{\partial a} = \widehat{y}(1 - \widehat{y}), \text{ and } \frac{\partial a}{\partial w_d} = \frac{\partial}{\partial w_d} x w^T = x_d,$$

and thus

$$\frac{\partial E}{\partial w_d} = \frac{\partial E}{\partial \widehat{y}} \frac{\partial \widehat{y}}{\partial a} \frac{\partial a}{\partial w_d} = -(y - \widehat{y}) x_d.$$

- Notation
- Multiple regression
- Logistic regression
- Gradient descent
- Ex: Grad. for MR
- Ex: Grad. for LR
- Relations to NN

Multilayer FFN

Gradient Descent

Regularization

RBF Networks

Summary

Relations to neural networks

- Above, we derived training algorithms (based on gradient descent) for linear regression model and linear classification model.
- Note the similarity with the *perceptron algorithm* ("just add certain part of a misclassified training example to the weight vector").
- Units like those above are used as building blocks for more complex/flexible models!

P. Pošík © 2017 Artificial Intelligence – 9 / 33

- Notation
- Multiple regression
- Logistic regression
- Gradient descent
- Ex: Grad. for MR
- Ex: Grad. for LR
- Relations to NN

Multilayer FFN

Gradient Descent

Regularization

RBF Networks

Summary

Relations to neural networks

- Above, we derived training algorithms (based on gradient descent) for linear regression model and linear classification model.
- Note the similarity with the *perceptron algorithm* ("just add certain part of a misclassified training example to the weight vector").
- Units like those above are used as building blocks for more complex/flexible models!

A more complex/flexible model:

$$\widehat{y} = g^{OUT} \left(\sum_{k=1}^{K} w_k^{HID} g_k^{HID} \left(\sum_{d=1}^{D} w_{kd}^{IN} x_d \right) \right),$$

which is

- a nonlinear function of
 - a linear combination of
 - nonlinear functions of
 - linear combinations of inputs.

Multilayer Feedforward Networks

P. Pošík © 2017 Artificial Intelligence – 10 / 33

MLP

Intro

Multilayer FFN

- MLP
- MLP: A look inside
- Activation functions
- MLP: Learning
- BP
- BP algorithm
- BP: Example
- BP Efficiency
- Loss functions

Gradient Descent

Regularization

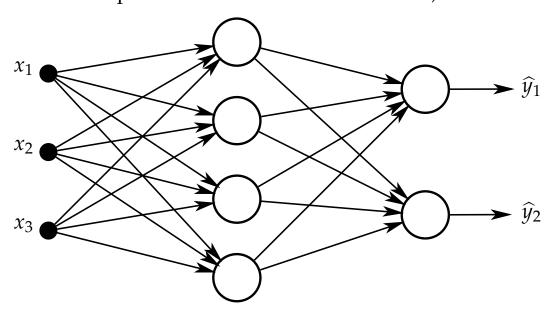
RBF Networks

Summary

Multilerrou foodfourroud motorcoule

Multilayer perceptron (MLP)

- Multilayer feedforward network:
 - the "signal" is propagated from inputs towards outputs; no feedback connections exist.
- It realizes mapping from $\mathcal{R}^D \longrightarrow \mathcal{R}^C$, where D is the number of object features, and C is the number of output variables.
 - For binary classification and regression, a single output is sufficient.
 - For classification into multiple classes, 1-of-N encoding is usually used.
- Universal approximation theorem: A MLP with a single hidden layer with sufficient (but finite) number of neurons can approximate any continuous function arbitrarily well (under mild assumptions on the activation functions).



MLP: A look inside

Intro

Multilayer FFN

 \bullet MLP

• MLP: A look inside

Activation functions

MLP: Learning

• BP

• BP algorithm

• BP: Example

• BP Efficiency

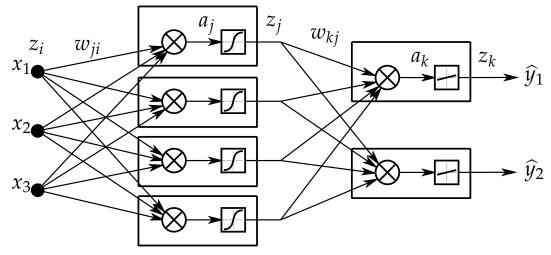
• Loss functions

Gradient Descent

Regularization

RBF Networks

Summary



Forward propagation:

Given all the weights w and activation functions g, we can for a single input vector x easily compute the estimate of the output vector \hat{y} by iteratively evaluating in individual layers:

$$a_j = \sum_{i \in Src(j)} w_{ji} z_i \tag{1}$$

$$z_j = g(a_j) (2)$$

- Note that
 - z_i in (1) may be the *outputs of hidden layers neurons* or the *inputs* x_i , and
 - z_i in (2) may be the the *outputs of hidden layers neurons* or the *outputs* \hat{y}_k .

Multilayer FFN

- MLP
- MLP: A look inside
- Activation functions
- MLP: Learning
- BP
- BP algorithm
- BP: Example
- BP Efficiency
- Loss functions

Gradient Descent

Regularization

RBF Networks

Summary

Activation functions

- Identity: g(a) = a
- Binary step: $g(a) = \begin{cases} 0 & \text{for } a < 0, \\ 1 & \text{for } a \ge 0 \end{cases}$
- Logistic (sigmoid): $g(a) = \sigma(a) = \frac{1}{1+e^{-a}}$
- Hyperbolic tangent: $g(a) = \tanh(a) = 2\sigma(a) 1$
- Rectified Linear unit (ReLU): $g(a) = \max(0, a) = \begin{cases} 0 & \text{for } a < 0, \\ a & \text{for } a \ge 0 \end{cases}$
- Leaky ReLU: $g(a) = \begin{cases} 0.01a & \text{for } a < 0, \\ a & \text{for } a \ge 0 \end{cases}$
- ...



MLP: Learning

How to train a NN (i.e. find suitable w) given the training data set (X, y)?

Intro

Multilayer FFN

- MLP
- MLP: A look inside
- Activation functions
- MLP: Learning
- BP
- BP algorithm
- BP: Example
- BP Efficiency
- Loss functions

Gradient Descent

Regularization

RBF Networks

Summary

P. Pošík © 2017 Artificial Intelligence – 14 / 33

Multilayer FFN

- MLP
- MLP: A look inside
- Activation functions
- MLP: Learning
- BP
- BP algorithm
- BP: Example
- BP Efficiency
- Loss functions

Gradient Descent

Regularization

RBF Networks

Summary

MLP: Learning

How to train a NN (i.e. find suitable w) given the training data set (X, y)?

In principle, MLP can be trained in the same way as a single-layer NN using a gradient descent algorithm:

Define the loss function to be minimized, e.g. squared error loss:

$$J(w) = \sum_{i=1}^{|T|} E(w, x^{(i)}, y^{(i)}) = \frac{1}{2} \sum_{i=1}^{|T|} \sum_{k=1}^{C} (y_{ik} - \widehat{y}_{ik})^2$$
, where

$$E(w, x, y) = \frac{1}{2} \sum_{k=1}^{C} (y_k - \hat{y}_k)^2.$$

|T| is the size of the training set, and C is the number of outputs of NN.

■ Compute the gradient of the loss function w.r.t. individual weights:

$$\nabla E(\boldsymbol{w}) = \left(\frac{\partial E}{\partial w_1}, \frac{\partial E}{\partial w_2}, \dots, \frac{\partial E}{\partial w_W}\right).$$

Make a step in the direction opposite to the gradient to update the weights:

$$w_d \longleftarrow w_d - \eta \frac{\partial E}{\partial w_d}$$
 for $d = 1, \dots, W$.

How to compute the individual derivatives?

Error backpropagation

Error backpropagation (BP) is the algorithm for computing $\frac{\partial E}{\partial w_d}$.

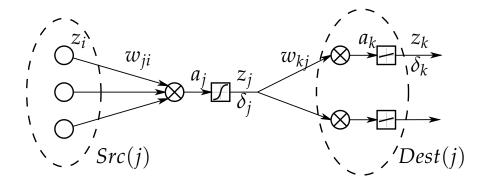
P. Pošík © 2017 Artificial Intelligence – 15 / 33

Error backpropagation

Error backpropagation (BP) is the algorithm for computing $\frac{\partial E}{\partial w_d}$.

Consider only $\frac{\partial E}{\partial w_d}$ because

$$\frac{\partial J}{\partial w_d} = \sum_n \frac{\partial}{\partial w_d} E(\boldsymbol{w}, \boldsymbol{x}^{(n)}, \boldsymbol{y}^{(n)}).$$



E depends on w_{ji} only via a_j :

$$\frac{\partial E}{\partial w_{ji}} = \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}} \tag{3}$$

Let's introduce the so called *error* δ_i :

$$\delta_j = \frac{\partial E}{\partial a_j} \tag{4}$$

From (1) we can derive:

$$\frac{\partial a_j}{\partial w_{ii}} = z_i \tag{5}$$

Substituting (4) and (5) into (3):

$$\frac{\partial E}{\partial w_{ii}} = \delta_j z_i,\tag{6}$$

where

 δ_j is the error of the neuron on the output of the z_i is the input of the edge $i \rightarrow j$.

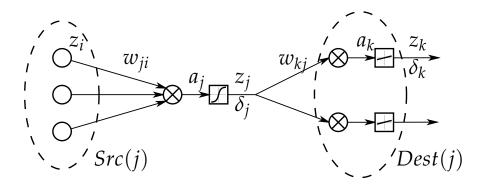
"The more we excite edge $i \to j$ (big z_i) and the larger is the error of the neuron on its output (large δ_j), the more sensitive is the loss function E to the change of w_{ji} ."

- All values z_i are known from forward pass,
- to compute the gradient, we need to compute all δ_i .

P. Pošík © 2017 Artificial Intelligence – 15 / 33

Error backpropagation (cont.)

We need to compute the *errors* δ_i .



For the output layer:

$$\delta_k = \frac{\partial E}{\partial a_k}$$

E depends on a_k only via $\widehat{y}_k = g(a_k)$:

$$\delta_k = \frac{\partial E}{\partial a_k} = \frac{\partial E}{\partial \widehat{y}_k} \frac{\partial \widehat{y}_k}{\partial a_k} = g'(a_k) \frac{\partial E}{\partial \widehat{y}_k} \tag{7}$$

For the hidden layers:

$$\delta_j = \frac{\partial E}{\partial a_j}$$

E depends on a_j via all a_k , $k \in Dest(j)$:

$$\delta_{j} = \frac{\partial E}{\partial a_{j}} = \sum_{k \in Dest(j)} \frac{\partial E}{\partial a_{k}} \frac{\partial a_{k}}{\partial a_{j}} =$$

$$= \sum_{k \in Dest(j)} \delta_{k} \frac{\partial a_{k}}{\partial a_{j}} =$$

$$= g'(a_{j}) \sum_{k \in Dest(j)} w_{kj} \delta_{k}, \qquad (8)$$

because

$$a_k = \sum_{j \in Src(k)} w_{kj} z_j = \sum_{j \in Src(k)} w_{kj} g(a_j),$$
 and thus $rac{\partial a_k}{\partial a_j} = w_{kj} g'(a_j)$

"The error δ_k is distributed to δ_j in the lower layer according to the weight w_{kj} (which is the speed of growth of the linear combination a_k) and according to the size of $g'(a_j)$ (which is the speed of growth of the activation function)."

P. Pošík © 2017 Artificial Intelligence – 16 / 33

Error backpropagation algorithm

Algorithm 1: Error Backpropagation: the computation of derivatives $\frac{\partial E}{\partial w_d}$.

Intro

Multilayer FFN

- MLP
- MLP: A look inside
- Activation functions

3

5

- MLP: Learning
- BP
- BP algorithm
- BP: Example
- BP Efficiency
- Loss functions

Gradient Descent

Regularization

RBF Networks

Summary

begin
Perform a forward pass for observation x. This will result in values of all a_j and z_j for the vector x.

Evaluate the error δ_k for the output layer (using Eq. 7):

$$\delta_k = g'(a_k) \frac{\partial E}{\partial \widehat{y}_k}$$

Using Eq. 8, propagate the errors δ_k back to get all the remaining δ_i :

$$\delta_j = g'(a_j) \sum_{k \in Dest(j)} w_{kj} \delta_k$$

Using Eq. 6, evaluate all the derivatives to get the whole gradient:

$$\frac{\partial E}{\partial w_{ji}} = \delta_j z_i$$

Error backpropagation: Example

NN with a single hidden layer:

Intro

Multilayer FFN

- MLP
- MLP: A look inside
- Activation functions
- MLP: Learning
- BP
- BP algorithm
- BP: Example
- BP Efficiency
- Loss functions

Gradient Descent

Regularization

RBF Networks

Summary

Squared error loss: $E = \frac{1}{2} \sum_{k=1}^{C} (y_k - \hat{y}_k)^2$

- Activation func. in the output layer: identity $g_k(a_k) = a_k$, $g'_k(a_k) = 1$
- Activation func. in the hidden layer: sigmoidal $g_j(a_j) = \frac{1}{1 + e^{-a_j}}, \ g_j'(a_j) = z_j(1 z_j)$

Multilayer FFN

- MLP
- MLP: A look inside
- Activation functions
- MLP: Learning
- BP
- BP algorithm
- BP: Example
- BP Efficiency
- Loss functions

Gradient Descent

Regularization

RBF Networks

Summary

Error backpropagation: Example

NN with a single hidden layer:

- Squared error loss: $E = \frac{1}{2} \sum_{k=1}^{C} (y_k \widehat{y}_k)^2$
- Activation func. in the output layer: identity $g_k(a_k) = a_k$, $g'_k(a_k) = 1$
- Activation func. in the hidden layer: sigmoidal $g_j(a_j) = \frac{1}{1 + e^{-a_j}}$, $g_j'(a_j) = z_j(1 z_j)$

Computing the errors δ :

Output layer: $\delta_k = g_k'(a_k) \frac{\partial E}{\partial \widehat{y}_k} = -(y_k - \widehat{y}_k)$

Multilayer FFN

- MLP
- MLP: A look inside
- Activation functions
- MLP: Learning
- BP
- BP algorithm
- BP: Example
- BP Efficiency
- Loss functions

Gradient Descent

Regularization

RBF Networks

Summary

Error backpropagation: Example

NN with a single hidden layer:

- Squared error loss: $E = \frac{1}{2} \sum_{k=1}^{C} (y_k \widehat{y}_k)^2$
- Activation func. in the output layer: identity $g_k(a_k) = a_k$, $g'_k(a_k) = 1$
- Activation func. in the hidden layer: sigmoidal $g_j(a_j) = \frac{1}{1 + e^{-a_j}}, \ g_j'(a_j) = z_j(1 z_j)$

Computing the errors δ :

- Output layer: $\delta_k = g_k'(a_k) \frac{\partial E}{\partial \widehat{y}_k} = -(y_k \widehat{y}_k)$
- Hidden layer: $\delta_j = g_j'(a_j) \sum_{k \in Dest(j)} w_{kj} \delta_k = z_j (1 z_j) \sum_{k \in Dest(j)} w_{kj} \delta_k$

Error backpropagation: Example

NN with a single hidden layer:

Multilayer FFN

• MLP

• MLP: A look inside

Activation functions

• MLP: Learning

• BP

Intro

• BP algorithm

• BP: Example

• BP Efficiency

• Loss functions

Gradient Descent

Regularization

RBF Networks

Summary

Squared error loss: $E = \frac{1}{2} \sum_{k=1}^{C} (y_k - \widehat{y}_k)^2$

Activation func. in the output layer: identity $g_k(a_k) = a_k$, $g'_k(a_k) = 1$

Activation func. in the hidden layer: sigmoidal $g_j(a_j) = \frac{1}{1 + e^{-a_j}}$, $g_j'(a_j) = z_j(1 - z_j)$

Computing the errors δ :

Output layer: $\delta_k = g_k'(a_k) \frac{\partial E}{\partial \widehat{y}_k} = -(y_k - \widehat{y}_k)$

Hidden layer: $\delta_j = g_j'(a_j) \sum_{k \in Dest(j)} w_{kj} \delta_k = z_j (1 - z_j) \sum_{k \in Dest(j)} w_{kj} \delta_k$

Computation of all the partial derivatives:

$$\frac{\partial E}{\partial w_{ji}} = \delta_j x_i \qquad \qquad \frac{\partial E}{\partial w_{kj}} = \delta_k z_j$$

Multilayer FFN

- MLP
- MLP: A look inside
- Activation functions
- MLP: Learning
- BP
- BP algorithm
- BP: Example
- BP Efficiency
- Loss functions

Gradient Descent

Regularization

RBF Networks

Summary

Error backpropagation: Example

NN with a single hidden layer:

- Squared error loss: $E = \frac{1}{2} \sum_{k=1}^{C} (y_k \widehat{y}_k)^2$
- Activation func. in the output layer: identity $g_k(a_k) = a_k$, $g'_k(a_k) = 1$
- Activation func. in the hidden layer: sigmoidal $g_j(a_j) = \frac{1}{1 + e^{-a_j}}$, $g_j'(a_j) = z_j(1 z_j)$

Computing the errors δ :

- Output layer: $\delta_k = g_k'(a_k) \frac{\partial E}{\partial \widehat{y}_k} = -(y_k \widehat{y}_k)$
- Hidden layer: $\delta_j = g_j'(a_j) \sum_{k \in Dest(j)} w_{kj} \delta_k = z_j (1 z_j) \sum_{k \in Dest(j)} w_{kj} \delta_k$

Computation of all the partial derivatives:

$$\frac{\partial E}{\partial w_{ii}} = \delta_j x_i$$

Online learning:

$$w_{ji} \longleftarrow w_{ji} - \eta \delta_j x_i$$
$$w_{kj} \longleftarrow w_{kj} - \eta \delta_k z_j$$

$$\frac{\partial E}{\partial w_{kj}} = \delta_k z_j$$

Batch learning:

$$w_{ji} \longleftarrow w_{ji} - \eta \sum_{n=1}^{|T|} \delta_j^{(n)} x_i^{(n)}$$

$$w_{kj} \longleftarrow w_{kj} - \eta \sum_{n=1}^{|T|} \delta_k^{(n)} z_j^{(n)}$$

Multilayer FFN

- MLP
- MLP: A look inside
- Activation functions
- MLP: Learning
- BP
- BP algorithm
- BP: Example
- BP Efficiency
- Loss functions

Gradient Descent

Regularization

RBF Networks

Summary

Error backpropagation efficiency

Let *W* be the number of weights in the network (the number of parameters being optimized).

The evaluation of E for a single observation requires $\mathcal{O}(W)$ operations (evaluation of $w_{ji}z_i$ dominates, evaluation of $g(a_i)$ is neglected).

We need to compute *W* derivatives for each observation:

- Classical approach:
 - Find explicit equations for $\frac{\partial E}{\partial w_{ii}}$.
 - To compute each of them $\mathcal{O}(W)$ steps are required.
 - In total, $\mathcal{O}(W^2)$ steps for a single training example.
- Backpropagation:
 - Requires only $\mathcal{O}(W)$ steps for a single training example.

Loss functions

Task	Suggested loss function
Binary classification	Cross-entropy: $J = -\sum_{i=1}^{ T } \left[y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right]$
Multinomial classification	Multinomial cross-entropy: $J = -\sum_{i=1}^{ T } \sum_{k=1}^{C} I(y^{(i)} = k) \log \hat{y}_k^{(i)}$
Regression	Squared error: $J = \sum_{i=1}^{ T } (y^{(i)} - \hat{y}^{(i)})^2$
Multi-output regression	Squared error: $J = \sum_{i=1}^{ T } \sum_{k=1}^{C} (y_k^{(i)} - \hat{y}_k^{(i)})^2$

Note: often, mean errors are used.

- Computed as the average w.r.t. the number of training examples |T|.
- The optimum is in the same point, of course.

P. Pošík © 2017 Artificial Intelligence – 20 / 33

Gradient Descent

P. Pošík © 2017 Artificial Intelligence – 21 / 33

Learning rate annealing

Task: find such parameters w^* which minimize the model cost over the training set, i.e.

$$w^* = \arg\min_{w} J(w; X, y)$$

Intro

Multilayer FFN

Gradient Descent

- Learning rate
- Weights update
- Momentum
- GD improvements

Regularization

RBF Networks

Summary

Learning rate annealing

Task: find such parameters w^* which minimize the model cost over the training set, i.e.

$$w^* = \arg\min_{w} J(w; X, y)$$

Gradient descent: $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta^{(t)} \nabla J(\mathbf{w}^{(t)})$, where $\eta^{(t)} > 0$ is the **learning rate** or **step size** at iteration t.

Intro

Multilayer FFN

Gradient Descent

- Learning rate
- Weights update
- Momentum
- GD improvements

Regularization

RBF Networks

Summary

Learning rate annealing

Task: find such parameters w^* which minimize the model cost over the training set, i.e.

$$w^* = \arg\min_{w} J(w; X, y)$$

Gradient descent: $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta^{(t)} \nabla J(\mathbf{w}^{(t)})$, where $\eta^{(t)} > 0$ is the **learning rate** or **step size** at iteration t.

Intro

Multilayer FFN

Gradient Descent

- Learning rate
- Weights update
- Momentum
- GD improvements

Regularization

RBF Networks

Summary

Decrease the learning rate in time.

Learning rate decay:

Step decay: reduce the learning rate every few iterations by certain factor, e.g. $\frac{1}{2}$.

Exponential decay: $\eta^{(t)} = \eta_0 e^{-kt}$

Hyperbolic decay: $\eta^{(t)} = \frac{\eta_0}{1+kt}$

Multilayer FFN

Gradient Descent

- Learning rate
- Weights update
- Momentum
- GD improvements

Regularization

RBF Networks

Summary

Weights update

When should we update the weights?

Batch learning:

- Compute the gradient w.r.t. all the training examples (epoch).
- Several epochs are required to train the network.
- Inefficient for redundant datasets.

Online learning:

- Compute the gradient w.r.t. a single training example only.
- Stochastic Gradient Descent (SGD)
- Converges almost surely to local minimum when $\eta^{(t)}$ decreases appropriately in time.

■ Mini-batch learning:

- Compute the gradient w.r.t. a small subset of the training examples.
- A compromise between the above 2 extremes.

Multilayer FFN

Gradient Descent

- Learning rate
- Weights update
- Momentum
- GD improvements

Regularization

RBF Networks

Summary

Momentum

Momentum

Perform the update in an analogy to physical systems: a particle with certain mass and velocity gets acceleration from the gradient ("force") of the loss function:

$$egin{aligned} m{v}^{(t+1)} &= \mu m{v}^{(t)} + \eta^{(t)}
abla J(m{w}^{(t)}) \ m{w}^{(t+1)} &= m{w}^{(t)} + m{v}^{(t+1)} \end{aligned}$$

- SGD with momentum tends to keep traveling in the same direction, preventing oscillations.
- It builds the velocity in directions with consistent (but possibly small) gradient.

Multilayer FFN

Gradient Descent

- Learning rate
- Weights update
- Momentum
- GD improvements

Regularization

RBF Networks

Summary

Momentum

Momentum

Perform the update in an analogy to physical systems: a particle with certain mass and velocity gets acceleration from the gradient ("force") of the loss function:

$$egin{aligned} m{v}^{(t+1)} &= \mu m{v}^{(t)} + \eta^{(t)}
abla J(m{w}^{(t)}) \ m{w}^{(t+1)} &= m{w}^{(t)} + m{v}^{(t+1)} \end{aligned}$$

- SGD with momentum tends to keep traveling in the same direction, preventing oscillations.
- It builds the velocity in directions with consistent (but possibly small) gradient.

Nesterov's Momentum

Slightly different update equations:

$$v^{(t+1)} = \mu v^{(t)} + \eta^{(t)} \nabla J(w^{(t)} + \mu v^{(t)})$$

 $w^{(t+1)} = w^{(t)} + v^{(t+1)}$

- Classic momentum corrects the velocity using gradient at $w^{(t)}$; Nesterov uses gradient at $w^{(t)} + \mu v^{(t)}$ which is more similar to $w^{(t+1)}$.
- Stronger theoretical convergence guarantees; slightly better in practice.

Multilayer FFN

Gradient Descent

- Learning rate
- Weights update
- Momentum
- GD improvements

Regularization

RBF Networks

Summary

Further gradient descent improvements

Resilient Propagation (Rprop)

- lacksquare $\frac{\partial J}{\partial w_d}$ may differ a lot for different parameters w_d .
- Rprop does not use the value, only its *sign* to adapt the step size for each weight separately.
- Often, an order of magnitude faster than basic GD.
- Does not work well for mini-batches.

P. Pošík © 2017 Artificial Intelligence – 25 / 33

Multilayer FFN

Gradient Descent

- Learning rate
- Weights update
- Momentum
- GD improvements

Regularization

RBF Networks

Summary

Further gradient descent improvements

Resilient Propagation (Rprop)

- \bullet $\frac{\partial J}{\partial w_d}$ may differ a lot for different parameters w_d .
- Rprop does not use the value, only its sign to adapt the step size for each weight separately.
- Often, an order of magnitude faster than basic GD.
- Does not work well for mini-batches.

Adaptive Gradient (Adagrad)

Idea: Reduce learning rates for parameters having high values of gradient.

P. Pošík © 2017 Artificial Intelligence – 25 / 33

Multilayer FFN

Gradient Descent

- Learning rate
- Weights update
- Momentum
- GD improvements

Regularization

RBF Networks

Summary

Further gradient descent improvements

Resilient Propagation (Rprop)

- lacksquare $\frac{\partial J}{\partial w_d}$ may differ a lot for different parameters w_d .
- Rprop does not use the value, only its *sign* to adapt the step size for each weight separately.
- Often, an order of magnitude faster than basic GD.
- Does not work well for mini-batches.

Adaptive Gradient (Adagrad)

Idea: Reduce learning rates for parameters having high values of gradient.

Root Mean Square Propagation (RMSprop)

- Similar to AdaGrad, but employs a moving average of the gradient values.
- Can be seen as a generalization of Rprop, can work also with mini-batches.

P. Pošík © 2017 Artificial Intelligence – 25 / 33

Multilayer FFN

Gradient Descent

- Learning rate
- Weights update
- Momentum
- GD improvements

Regularization

RBF Networks

Summary

Further gradient descent improvements

Resilient Propagation (Rprop)

- lacksquare $\frac{\partial J}{\partial w_d}$ may differ a lot for different parameters w_d .
- Rprop does not use the value, only its *sign* to adapt the step size for each weight separately.
- Often, an order of magnitude faster than basic GD.
- Does not work well for mini-batches.

Adaptive Gradient (Adagrad)

Idea: Reduce learning rates for parameters having high values of gradient.

Root Mean Square Propagation (RMSprop)

- Similar to AdaGrad, but employs a moving average of the gradient values.
- Can be seen as a generalization of Rprop, can work also with mini-batches.

Adaptive Moment Estimation (Adam)

- Improvement of RMSprop.
- Uses moving averages of gradients and their second moments.

Multilayer FFN

Gradient Descent

- Learning rate
- Weights update
- Momentum
- GD improvements

Regularization

RBF Networks

Summary

Further gradient descent improvements

Resilient Propagation (Rprop)

- lacksquare $\frac{\partial J}{\partial w_d}$ may differ a lot for different parameters w_d .
- Rprop does not use the value, only its *sign* to adapt the step size for each weight separately.
- Often, an order of magnitude faster than basic GD.
- Does not work well for mini-batches.

Adaptive Gradient (Adagrad)

Idea: Reduce learning rates for parameters having high values of gradient.

Root Mean Square Propagation (RMSprop)

- Similar to AdaGrad, but employs a moving average of the gradient values.
- Can be seen as a generalization of Rprop, can work also with mini-batches.

Adaptive Moment Estimation (Adam)

- Improvement of RMSprop.
- Uses moving averages of gradients and their second moments.

See also:

- http://sebastianruder.com/optimizing-gradient-descent/
- http://cs231n.github.io/neural-networks-3/
- http://cs231n.github.io/assets/nn3/opt2.gif,http://cs231n.github.io/assets/nn3/opt1.gif

Regularization

P. Pošík © 2017 Artificial Intelligence – 26 / 33

Overfitting and regularization

Overfitting in NN is often characterized by weight values that are very large in magnitude. How to deal with it?

Intro

Multilayer FFN
Gradient Descent

Regularization

- Ridge
- Dropout

RBF Networks

Summary

- Get more data.
- Use a simpler model (less hidden layers, less neurons, different activation functions).
- Use *regularization* (penalize the model complexity).

P. Pošík © 2017 Artificial Intelligence – 27 / 33

Overfitting and regularization

Overfitting in NN is often characterized by weight values that are very large in magnitude. How to deal with it?

Intro

Multilayer FFN

Gradient Descent

Regularization

- Ridge
- Dropout

RBF Networks

Summary

- Get more data.
- Use a simpler model (less hidden layers, less neurons, different activation functions).
- Use regularization (penalize the model complexity).

Ridge regularization:

Modified loss function, e.g. for squared error:

$$J'(w) = J(w) + \text{penalty} = \frac{1}{2m} \sum_{i=1}^{m} (y^{(i)} - x^{(i)} w^T)^2 + \frac{\alpha}{m} \sum_{d=1}^{D} w_d^2.$$

Modified weight update in GD:

$$w_d \leftarrow w_d - \eta \frac{\partial J'}{\partial w_d} = \underbrace{\left(1 - \frac{\eta \alpha}{m}\right) w_d}_{\text{weight decay}} - \eta \frac{\partial J}{\partial w_d},$$

where η is the learning rate, α is the regularization strength, m is the number of examples in the batch.

The biases (weights connected to constant 1) should not be regularized!

Multilayer FFN

Gradient Descent

Regularization

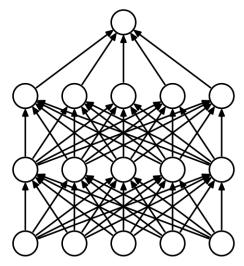
- Ridge
- Dropout

RBF Networks

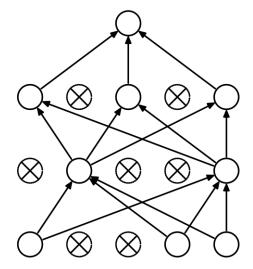
Summary

Dropout

- Idea: Average many NNs, share weights to make it computationally feasible.
- For each training example, omit each neuron with certain probability (often p = 0.5).
- This is like sampling from 2^N networks where N is the number of units.
- Only a small part of the 2^N networks is actually sampled.
- Prevents coadaptation of feature vectors.



(a) Standard Neural Net



(b) After applying dropout.

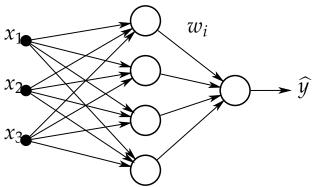
Srivastava et al.: A Simple Way to Prevent Neural Networks from Overfitting, 2014

Radial Basis Function Networks

P. Pošík © 2017 Artificial Intelligence – 29 / 33

RBF networks

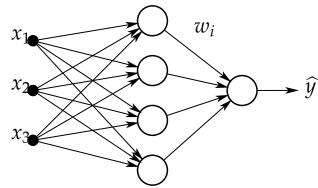
A simple RBF network:



P. Pošík © 2017 Artificial Intelligence – 30 / 33

RBF networks

A simple RBF network:



RBF network realizes function

$$\widehat{y} = \sum_{i=1}^{N} w_i \rho \left(|x - c_i| \right)$$

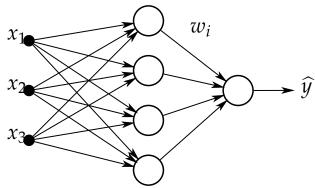
where

- N is the number of RBF neurons in the hidden layer,
- \mathbf{c}_i is a centroid of the *i*th neuron, and
- w_i are the weights of the output linear combination.
- **RBF** function ρ is usually Gaussian

$$\rho\left(|x-c_i|\right) = \exp\left(-\frac{|x-c_i|^2}{\sigma^2}\right)$$

RBF networks

A simple RBF network:



RBF network realizes function

$$\widehat{y} = \sum_{i=1}^{N} w_i \rho \left(|x - c_i| \right)$$

where

- N is the number of RBF neurons in the hidden layer,
- \mathbf{c}_i is a centroid of the *i*th neuron, and
- w_i are the weights of the output linear combination.
- **RBF** function ρ is usually Gaussian

$$\rho(|x-c_i|) = \exp\left(-\frac{|x-c_i|^2}{\sigma^2}\right)$$

RBF functions are local:

changing the parameters of one neuron has only a small effect on network predictions for points far away from the neuron centroid.

RBF networks are universal approximators:

With sufficient number of neurons they are able to approximate any continuous function with arbitrary precision.

To train the network we must learn

- the weights w_i ,
- the centroids c_i , and
- the "sizes" of RBF functions σ^2 .

Learning is usually done in 2 phases:

- 1. learn the centroids c_i (e.g. using k-means),
- 2. learn weights w_i .

RBF network extensions

Normalized architecture

The network function is

$$\widehat{y} = \sum_{i=1}^{N} w_i u \left(|x - c_i| \right)$$

where *u* is a normalized RBF:

$$u(|x-c_i|) = \frac{\rho(|x-c_i|)}{\sum_{j=1}^{N} \rho(|x-c_j|)}$$

P. Pošík © 2017 Artificial Intelligence – 31 / 33

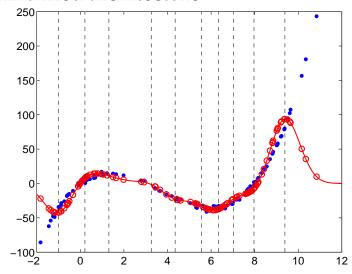
RBF network extensions

Normalized architecture

The network function is

$$\widehat{y} = \sum_{i=1}^{N} w_i u \left(|x - c_i| \right)$$

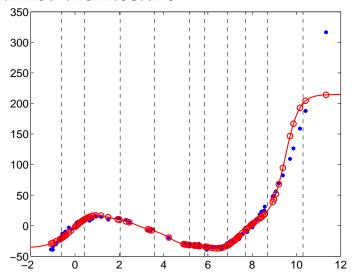
Unnormalized architecture:



where *u* is a normalized RBF:

$$u(|x-c_i|) = \frac{\rho(|x-c_i|)}{\sum_{j=1}^{N} \rho(|x-c_j|)}$$

Normalized architecture:



P. Pošík © 2017 Artificial Intelligence – 31 / 33

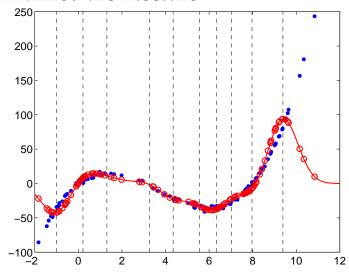
RBF network extensions

Normalized architecture

The network function is

$$\widehat{y} = \sum_{i=1}^{N} w_i u \left(|x - c_i| \right)$$

Unnormalized architecture:



Mixture of locally linear models

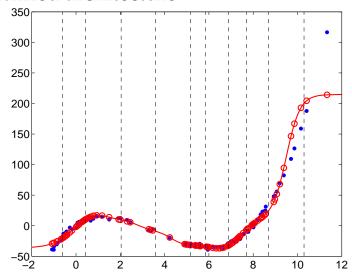
For unnormalized architecture:

$$\widehat{y} = \sum_{i=1}^{N} (a_i + \boldsymbol{b}_i (\boldsymbol{x} - \boldsymbol{c}_i)) \rho(|\boldsymbol{x} - \boldsymbol{c}_i|)$$
 nebo

where *u* is a normalized RBF:

$$u(|x-c_i|) = \frac{\rho(|x-c_i|)}{\sum_{j=1}^{N} \rho(|x-c_j|)}$$

Normalized architecture:



For normalized architecture:

$$\widehat{y} = \sum_{i=1}^{N} (a_i + \boldsymbol{b}_i (\boldsymbol{x} - \boldsymbol{c}_i)) u (|\boldsymbol{x} - \boldsymbol{c}_i|)$$

Summary

P. Pošík © 2017 Artificial Intelligence – 32 / 33

Competencies

After this lecture, a student shall be able to ...

- describe the model of a simple neuron, and explain its relation to multivariate regression and logistic regrassion;
- explain how to find weights of a single neuron using gradient descent (GD) algorithm;
- derive the update equations used in GD to optimize the weights of a single neuron for various loss functions and various activation functions;
- describe a multilayer feedforward network and discuss its usage and characteristics;
- compare the use of GD in case of a single neuron and in case of NN, discuss similarities and differences;
- explain the error backpropagation (BP) algorithm its purpose and principle;
- implement BP algorithm for a simple NN, and suggest how the implementation should be modified to allow application for complex networks;
- discuss the purpose of various modifications of GD algorithm (learning rate decay, weight update schedule, momentum, ...);
- discuss the regularization options for NN (weight decay, dropout);
- describe RBF networks and explain their main differences to MLP.

P. Pošík © 2017 Artificial Intelligence – 33 / 33