Intro
Notation.

Neural Networks.
Petr Posik

Czech Technical University in Prague
Faculty of Electrical Engineering
Dept. of Cybernetics

Multiple TeGIesSION.o
Logistic TEGIesSION o e
Gradient dESCENT. . . . ottt e e e e e e e e e e e e e e e s
EX: Grad. fOr MRot
EX: Grad. fOr LR . ..o e
Relations t0 NN . ..ottt e e e e e e e e e e e e e e

Multilayer FFN
MLP

A S N oY) 8 g T T =S
AcHVAtioN fUNCHONS.ottt e et et e et e e e e e e

MLP: Learning

BP algorithm .
BP: Example. .
BP Efficiency .
Loss functions

Gradient Descent
Learning rate.

Weights Update

Momentum . .

GD IMPIOVEMENtSt

Regularization

Other NNs
Beyond MLPs

Summary
Competencies

Introduction and Rehearsal 2/32

Notation

In supervised learning, we work with
B an observation described by a vector x = (x1,...,xp),
B the corresponding true value of the dependent variable y, and
B the prediction of a model i = f, (x), where the model parameters are in vector w.
|

Very often, we use homogeneous coordinates and matrix notation, and represent the whole training data set as T = (X, y), where
1 x(l) y(l)
X = : . , and y= .
1 07D yUTh

Learning then amounts to finding such model parameters w* which minimize certain loss (or energy) function:

w" = argmin J(w, T)
w

P. Posik (© 2017 Artificial Intelligence — 3 / 32

Multiple linear regression
Multiple linear regression model:
Y= fw(x) =wix1 + wpxy + ...+ wpxp = xw!

The minimum of
Jmse(w) = % E (y(i) *W))zf
i=1
is given by
w* = (XTX)1xTy,
or found by numerical optimization.

Multiple regression as a linear neuron:

X1 w;
X2 y\
X3
P. Posik (© 2017 Artificial Intelligence — 4 / 32

Logistic regression
Logistic regression model:

§=f(w,x) =glxw"),
where

1

82 = 1=

is the sigmoid (a.k.a logistic) function.
B No explicit equation for the optimal weights.

B The only option is to find the optimum numerically, usually by some form of gradient descent.

Logistic regression as a non-linear neuron:

X1
X2

X3

P. Posik © 2017

Artificial Intelligence — 5 / 32

Gradient descent algorithm

B Given a function J(w) that should be minimized,
B start with a guess of w, and change it so that J(w) decreases, i.e.
B update our current guess of w by taking a step in the direction opposite to the gradient:

w <+ w—aV](w), ie.

d
Wy — Wy — arwf(w),

where all wys are updated simultaneously and a is a learning rate (step size).
B For cost functions given as the sum across the training examples

9 0 (i) o)
%](W)ZE%E(WJC YY),

and we can drop the indices over training data set:

E =E(w,x,y).

P. Posik (© 2017

Artificial Intelligence — 6 / 32

Example: Gradient for multiple regression and squared loss

X
1 w;

X3

Assuming the squared error loss

= Ly,

1
Ewxy) =5y -9 =5

we can compute the derivatives using the chain rule as

ai—fd = g—;%,where

5 = a1 = —(y=9)and
and thus

o = = —-D

P. Posik (© 2017

Artificial Intelligence — 7 / 32

Example: Gradient for logistic regression and crossentropy loss

Assuming the crossentropy loss

E(w,x,y) = —ylogy— (1—y)log(1—7), wherey = g(a) = g(xw"),

we can compute the derivatives using the chain rule as

OF _oEdgon o

dw; 9y da dwy’

E_ y 1oy y-¥

ay y 1-y ya-p

Iy N da _ 9 g

Y=g, and o = S =,
and thus

dE _ 0E Oy oa

dwg 9y da dwy =—(y—9)xa

X1 w Nonlinear activation function:
i
8(a) _ 1
a 8(a) = -
X2 y\ 1+e
Note that
3 §'(a) = g(a) (1-g(a)).

P. Posik (© 2017

Artificial Intelligence — 8 / 32

Relations to neural networks

B Above, we derived training algorithms (based on gradient descent) for linear regression model and linear classification model.
B Note the similarity with the perceptron algorithm (“just add certain part of a misclassified training example to the weight vector”).
B Units like those above are used as building blocks for more complex/flexible models!

A more complex/flexible model:

K D
p= s (L atrog (Folin)).
k=1 d=1

which is
B anonlinear function of
B a linear combination of
B nonlinear functions of

B linear combinations of inputs.

P. Posik (© 2017 Artificial Intelligence - 9 / 32
Multilayer Feedforward Networks 10 / 32
MLP

Multilayer perceptron (MLP)
B Multilayer feedforward network:
W the ,signal” is propagated from inputs towards outputs; no feedback connections exist.
B It realizes mapping from RP — RC, where D is the number of object features, and C is the number of output variables.

B For binary classification and regression, a single output is sufficient.
B For classification into multiple classes, 1-of-N encoding is usually used.

B Universal approximation theorem: A MLP with a single hidden layer with sufficient (but finite) number of neurons can
approximate any continuous function arbitrarily well (under mild assumptions on the activation functions).

X1 N
n
X2
X3]//\2
P. Posik (© 2017 Artificial Intelligence — 11 / 32

MLP: A look inside

, s
Zi Wi M ! 2 2
X1 k k

X2

X3

Forward propagation:

B Given all the weights w and activation functions g, we can for a single input vector x easilly compute the estimate of the output
vector ¥ by iteratively evaluating in individual layers:

aj=), wjz @
ieSre(f)
zj = g(aj))
B Note that

B z; in (1) may be the outputs of hidden layers neurons or the inputs x;, and
B z; in (2) may be the the outputs of hidden layers neurons or the outputs .

P. Posik © 2017 Artificial Intelligence — 12 / 32

Activation functions

B Identity: g(a) =a
. 0 for a<0,
B Binary step: g(a) = { 1 for a>0
B Logistic (sigmoid): g(a) = o(a) = 1-%—%
B Hyperbolic tangent: g(a) = tanh(a) = 20(a) — 1

0 for a<0,

B Rectified Linear unit (ReLU): g(a) = max(0,a) = { i for a>0

0.0la for a<0,
a for a>0

Leaky ReLU: g(a) = {

P. Posik (© 2017 Artificial Intelligence — 13 / 32

MLP: Learning

How to train a NN (i.e. find suitable w) given the training data set (X, y)?

In principle, MLP can be trained in the same way as a single-layer NN using a gradient descent algorithm:

B Define the loss function to be minimized, e.g. squared error loss:

7| .) 1 7| ¢
](’LU) = ZE(’LU, x(’) = E Z Yik _ylk / where
i=1 i=1k=1
1& B
E(w,x,y) = 5 Y (k=9
k=1

|T| is the size of the training set, and C is the number of outputs of NN.
B Compute the gradient of the loss function w.r.t. individual weights:

VE(w):<aE oE oE)

owy dwy” T dwyy

B Make a step in the direction opposite to the gradient to update the weights:
oE
—f=— ford=1,..., W.
Wy — Wy ”awd ord , 144

How to compute the individual derivatives?

P. Posik (© 2017 Artificial Intelligence — 14 / 32

Error backpropagation

E
Error backpropagation (BP) is the algorithm for computing :7
d

From (1) we can derive:

Consider only aa—E because — Z —E (w, x™,y™),

awd aa]

= 4i

Jw ji
Substituting (4) and (5) into (3):

oE

53— = 9z,
aw]-,- /

Jw ji B 6711] aw],
is the loss function E to the change of w;.”

Let’s introduce the so called error &j: B All values z; are known from forward pass,

®)

(©)

where
' 6 is the error of the neuron on the output of the edge i — j,
E depends on wj; only via aj: z; is the input of the edgei — j.
OE _ OE 9da; 3) “The more we excite edge i — j (big z;) and the larger is the

error of the neuron on its output (large 4;), the more sensitive

hnd

JE B to compute the gradient, we need to compute all §;.
. _ 9% @) P g P j
I da i
P. Posik © 2017 Artificial Intelligence — 15 / 32

Error backpropagation (cont.)

We need to compute the errors J;. For the hidden layers:
-~ JoE
’ 5] = aig]
E depends on a j via all a,
k € Dest(j):
L7 sre()) . Dest(j) = _ OE oy _
~- da; keDest(j) day da;
For the output layer: _ 5 day _
JoE keDest(j) auf
k= @ = g,(ﬂ]‘) 2 wkjék, (8)
keDest(j)
E depends on a; only via 7y = g(a):
because
k:aiE:aTEaﬂ: ,(ﬂk)ai (7) ﬁk:. Z ZUijj:. Z Wk]'g(ﬁ]'),
day ayk day ayk jeSre(k) jeSre(k)
oa

and thus =% = wyig' (a;)
allj / /

“The error J is distributed to ; in the lower layer according to the weight wy; (which is the speed of growth of the linear
combination a;) and according to the size of g’(a;) (which is the speed of growth of the activation function).”

P. Posik (© 2017 Artificial Intelligence — 16 / 32

Error backpropagation algorithm

JoE

Algorithm 1: Error Backpropagation: the computation of derivatives g

1 begin
2 Perform a forward pass for observation x. This will result in values of all a; and z; for the vector x.
3 Evaluate the error J; for the output layer (using Eq. 7):

oE

5 = g () &=
J g(ﬂk)ayk

4 Using Eq. 8, propagate the errors §; back to get all the remaining 6;:

6=¢'(a)), wid
keDest(j)

5 Using Eq. 6, evaluate all the derivatives to get the whole gradient:

P. Posik (© 2017 Artificial Intelligence — 17 / 32

Error backpropagation: Example

NN with a single hidden layer:

C

1
W Squared error loss: E = = Y (v — 7)?
quared error 1oss 2 = (yk yk)

B Activation func. in the output layer: identity g (ax) = ar, g;(ax) =1

1
s &la) =z(1-z)

B Activation func. in the hidden layer: sigmoidal g;(a;) = 1T
e

Computing the errors J:
oE ~
B Output layer: §; = gi(ﬂk)a = —(yx — i)

B Hidden layer: §; = gj-(a]-) Yo wgd=zj(1—z) Y, wb
keDest(j) keDest(f)

Computation of all the partial derivatives:

oE oE
= §x; B
aw]‘,' 5]3(, awk]- kZ]
Online learning;: Batch learning:
Wji — Wi — 115]'367' |T|

) o (n) ()
ij ij _ 175’{2]. ZU]Z w]z n n;l 51 xl
500
wk]- wkij 25k Zj
n=1

P. Posik (© 2017 Artificial Intelligence — 18 / 32

Error backpropagation efficiency
Let W be the number of weights in the network (the number of parameters being optimized).

B The evaluation of E for a single observation requires O(W) operations (evaluation of w;;z; dominates, evaluation of g(a;) is
neglected).

We need to compute W derivatives for each observation:
B Classical approach:
B Find explicit equations for %‘fji‘
B To compute each of them O(W) steps are required.
B In total, O(W?) steps for a single training example.
B Backpropagation:
B Requires only O(W) steps for a single training example.

P. Posik © 2017 Artificial Intelligence — 19 / 32

Loss functions

Task

Suggested loss function

Binary classification

Multinomial classification

Regression

Multi-output regression

T _ _ _
Cross-entropy:] = —) [y(’) log 7 + (1 —y®) log(1 — y('))}

i=1

7| ¢

Multinomial cross-entropy: | = — 2 2 I (y(i) =k)log ﬁf(i)
i=1k=1
T)
Squared error: | = Z(y(') - 9{'))2
i=1
7l ¢ .)
Squared error: | = Z E(y,(f) - ?,((l))z
i=1k=1

Note: often, mean errors are used.

B The optimum is in the same point, of course.

B Computed as the average w.r.t. the number of training examples |T|.

P. Posik © 2017

Gradient Descent

Artificial Intelligence — 20 / 32

21/ 32

Learning rate annealing

w' = argrrgn](w; X,y)

Learning rate decay:

B Decrease the learning rate in time.

u
B Exponential decay: () = yjpe**
u

Hyperbolic decay: 11“) = %

Gradient descent: w1 = w®) — 0V (w "),
where 7(!) > 0 is the learning rate or step size at iteration ¢.

Task: find such parameters w* which minimize the model cost over the training set, i.e.

Step decay: reduce the learning rate every few iterations by certain factor, e.g. %

P. Posik © 2017

Artificial Intelligence — 22 / 32

10

Weights update

When should we update the weights?
B Batch learning:

B Compute the gradient w.r.t. all the training examples (epoch).
B Several epochs are required to train the network.
B Inefficient for redundant datasets.

B Online learning:

B Compute the gradient w.r.t. a single training example only.

B Stochastic Gradient Descent (SGD)

B Converges almost surely to local minimum when ;") decreases appropriately in time.
B Mini-batch learning:

B Compute the gradient w.r.t. a small subset of the training examples.

B A compromise between the above 2 extremes.

P. Posik (© 2017 Artificial Intelligence — 23 / 32

Momentum
Momentum
B Perform the update in an analogy to physical systems: a particle with certain mass and velocity gets acceleration from the
gradient (“force”) of the loss function:
o) = () 4 ,](f)V](w(f))

Wt —) | (1)

B SGD with momentum tends to keep traveling in the same direction, preventing oscillations.
B It builds the velocity in directions with consistent (but possibly small) gradient.

Nesterov’'s Momentum

B Slightly different update equations:

o) = 4o 4 OV (w® + po®)
Wt —) | (1)
B Classic momentum corrects the velocity using gradient at w(!); Nesterov uses gradient at w(®) + po(*) which is more similar to
(t+1)
w!" Y,

B Stronger theoretical convergence guarantees; slightly better in practice.

P. Posik (© 2017 Artificial Intelligence — 24 / 32

11

Further gradient descent improvements

Resilient Propagation (Rprop)

| a% may differ a lot for different parameters w;.

B Rprop does not use the value, only its sign to adapt the step size for each weight separately.
B Often, an order of magnitude faster than basic GD.
]

Does not work well for mini-batches.

Adaptive Gradient (Adagrad)

B Idea: Reduce learning rates for parameters having high values of gradient.

Root Mean Square Propagation (RMSprop)

B Similar to AdaGrad, but employs a moving average of the gradient values.
B Can be seen as a generalization of Rprop, can work also with mini-batches.

Adaptive Moment Estimation (Adam)

B Improvement of RMSprop.
B Uses moving averages of gradients and their second moments.

See also:
B http://sebastianruder.com/optimizing-gradient-descent/
B http://cs231n.github.io/neural-networks-3/
M http://cs231n.github.io/assets/nn3/opt2.gif, http://cs231n.github.io/assets/nn3/optl.gif

P. Posik (© 2017 Artificial Intelligence — 25 / 32

Regularization 26 / 32

Overfitting and regularization

Owerfitting in NN is often characterized by weight values that are very large in magnitude. How to deal with it?

B Get more data.
B Use a simpler model (less hidden layers, less neurons, different activation functions).
B Use regularization (penalize the model complexity).

Ridge regularization:

B Modified loss function, e.g. for squared error:
/ L (40 - 20w’ P
J'(w) = J(w) + penalty = — yW—axWw') +—) w;.
2m = mi=

B Modified weight update in GD:

aJ :<1_17a) aJ

wd(_wd_ﬂawd - Wd"?m,

m
weight decay

where 7 is the learning rate, « is the regularization strength, m is the number of examples in the batch.
B The biases (weights connected to constant 1) should not be regularized!

P. Posik (© 2017 Artificial Intelligence — 27 / 32

12

http://sebastianruder.com/optimizing-gradient-descent/
http://cs231n.github.io/neural-networks-3/
http://cs231n.github.io/assets/nn3/opt2.gif
http://cs231n.github.io/assets/nn3/opt1.gif

Dropout
B Idea: Average many NNs, share weights to make it computationally feasible.
B For each training example, omit each neuron with certain probability (often p = 0.5).
B This is like sampling from 2N networks where N is the number of units.
B Only a small part of the 2N networks is actually sampled.
B Prevents coadaptation of feature vectors.
(a) Standard Neural Net (b) After applying dropout.
Srivastava et al.: A Simple Way to Prevent Neural Networks from Overfitting, 2014
P. Posik (© 2017 Artificial Intelligence - 28 / 32
Other types of Neural Networks 29 /32
Beyond MLPs

MLPs are only one type of neural networks. Other types of FFNNs include:

B Radial basis functions (RBF) nets. Neurons contain prototypes, forward propagation resembles a (smoothed) nearest neighbors
method.

Autoencoders. Learn a compact representation of the input data.

B Convolutional nets. Replace the fully-connected layer with a convolutional layer that has smaller number of weights and
reuses them for many input variables. Aimed at image processing.

Recurrent nets contain also feedback connections.

B They preserve a kind of state of the network.
Simple recurrent architectures: Jordan, Elman. Network output or state used together with input in the next iteration.

]

B Hopfield net. Used as associative memory.

B Long short-term memory (LSTM). Suitable for processing data sequences in time.
]

Other architectures:
B Kohonen’s self-organizing maps (SOM). Used for unsupervised learning.
B Neural gas. Used e.g. to approximately solve the traveling salesperson problem.
]

P. Posik (© 2017 Artificial Intelligence - 30 / 32

13

Summary 31/32

Competencies

After this lecture, a student shall be able to ...

describe the model of a simple neuron, and explain its relation to multivariate regression and logistic regression;
explain how to find weights of a single neuron using gradient descent (GD) algorithm;

derive the update equations used in GD to optimize the weights of a single neuron for various loss functions and various
activation functions;

describe a multilayer feedforward network and discuss its usage and characteristics;
compare the use of GD in case of a single neuron and in case of NN, discuss similarities and differences;
explain the error backpropagation (BP) algorithm — its purpose and principle;

implement BP algorithm for a simple NN, and suggest how the implementation should be modified to allow application for
complex networks;

discuss the purpose of various modifications of GD algorithm (learning rate decay, weight update schedule, momentum, ...);
discuss the regularization options for NN (weight decay, dropout);
be aware of other types of NNs, not only feedforward nets.

P. Posik (© 2017 Artificial Intelligence — 32 / 32

14

	Introduction and Rehearsal
	Notation
	Multiple linear regression
	Logistic regression
	Gradient descent algorithm
	Example: Gradient for multiple regression and squared loss
	Example: Gradient for logistic regression and crossentropy loss
	Relations to neural networks

	Multilayer Feedforward Networks
	MLP
	MLP: A look inside
	Activation functions
	MLP: Learning
	BP
	Error backpropagation algorithm
	Error backpropagation: Example
	Error backpropagation efficiency
	Loss functions

	Gradient Descent
	Learning rate annealing
	Weights update
	Momentum
	Further gradient descent improvements

	Regularization
	Overfitting and regularization
	Dropout

	Other NNs
	Beyond MLPs

	Summary
	Competencies

