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Maximum likelihood estimation 2 /43

Likelihood maximization

Let’s have a random variable X with probability distribution px (x|6).

B This emphasizes that the distribution is parameterized by 6 € ©, i.e. the distribution comes from certain parametric family. ® is
the space of possible parameter values.

Learning task: assume the parameters 6 are unknown, but we have an i.i.d. training dataset T = {xy, ..., x, } which can be used to
estimate the unknown parameters.

B The probability of observing dataset T given some parameter values 6 is
o def 1,
p(X10) = [ Tpx(xjl6) = L(6; T).
j=1

B This probability can be interpretted as a degree with which the model parameters 6§ conform to the data T. It is thus called the
likelihood of parameters 0 w.r.t. data T.

B The optimal 6* is obtained by maximizing the likelihood
n
0t — arg max L(6;T) = argrgneagg px(xj|6)
B Since arg max, f(x) = arg max, log f(x), we often maximize the log-likelihood I(6; T) = log L(6; T)
n n
o* = arg%gg(l((?; T) = argr&aé(logjll px(xjl6) = argrggg]; log px (x;16),

which is often easier than maximization of L.
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Incomplete data

Assume we cannot observe the objects completely:
B r.v. X describes the observable part, r.v. K describes the unobservable, hidden part.
B We assume there is an underlying distribution pxk (x, k|8) of objects (x, k).

Learning task: we want to estimate the model parameters 6, but the training set contains i.i.d. samples for the observable part only,
ie. Tx = {x1,..., %, }. (Still, there also exists a hidden, unobservable dataset Tx = {k1,...,kn}.)
B If we had a complete data (Tx, Tx), we could directly optimize [(6; Tx, Tx) = log p(Tx, Tx|6). But we do not have access to Tk.
B If we would like to maximize

1(6; Tx) = log p(Tx|60) = log} _ p(Tx, Tx|6),
Tk

the summation inside log() results in complicated expressions, or we would have to use numerical methods.

B Our state of knowledge about Tk is given by p(Tk|Tx, 6).

B The complete-data likelihood L(6; Tx, Tx) = P(Tx, Tx|6) is a random variable since T is unknown, random, but governed by
the underlying distribution.

B Instead of optimizing it directly, consider its expected value under the posterior distribution over latent variables (E-step), and
then maximize this expectation (M-step).
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Expectation-Maximization algorithm
EM algorithm:

B A general method of finding MLE of prob. dist. parameters from a given dataset when data is incomplete (hidden variables, or
missing values).

Hidden variables: mixture models, Hidden Markov models, ...

]
B Itis a family of algorithms, or a recipe to derive a ML estimation algorithm for various kinds of probabilistic models.
1. Pretend that you know 6. (Use some initial guess 6().) Set iteration counter i = 1.

2

. E-step: Use the current parameter values 001 to find the posterior distribution of the latent variables P(Tx|Tx, 0(-1)). Use this
posterior distribution to find the expectation of the complete-data log-likelihood evaluated for some general parameter values :

Q(6,60 ) =Y p(Tk|Tx,0~V) log p(Tx, Tx|6)-
Tx

3. M-step: maximize the expectation, i.e. compute an updated estimate of 6 as

o) = 0,60~1).
arg max Q(6, )

4. Check for convergence: finish, or advance the iteration counter i <= i + 1, and repeat from 2.
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EM algorithm features

Pros:
B Among the possible optimization methods, EM exploits the structure of the model.
B For px|k from exponential family:
B M-step can be done analytically and there is a unique optimizer.
B The expected value in the E-step can be expressed as a function of § without solving it explicitly for each 6.
B px(Tx|00HD) > px(Tx|6()), i.e. the process finds a local optimum.
B Works well in practice.

Cons:

B Not guaranteed to get globally optimal estimate.
B MLE can overfit; use MAP instead (EM can be used as well).
B Convergence may be slow.
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K-means

7 /43

K-means algorithm

Clustering is one of the tasks of unsupervised learning.

K-means algorithm for clustering [Mac67]:
B Kis the apriori given number of clusters.
B Algorithm:

1. Choose K centroids i (in almost any way, but every cluster should have at least one example.)
2. For all x, assign x to its closest .

3. Compute the new position of centroids y; based on all examples x;,i € I, in cluster k.

4. If the positions of centroids changed, repeat from 2.

Algorithm features:

B Algorithm minimizes the function (intracluster variance):

k1 5
SN EIE

j=1i=1

B Algorithm is fast, but each time it can converge to a different local optimum of J.

Berkeley, 1967. University of California Press.

[Mac67] J. B. MacQueen. Some methods for classification and analysis of multivariate observations. In Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pages 281-297,

)
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Illustration

K-means clustering: iteration 1
10r
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Ilustration

10

K-means clustering: iteration 2

10
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Illustration

10

K-means clustering: iteration 3
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Ilustration
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K-means clustering: iteration 4

10

P. Posik (© 2017

Artificial Intelligence — 12 / 43

Illustration

K-means clustering: iteration 5

10
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Ilustration

K-means clustering: iteration 6

101
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K-means: EM view

Assume:

B An object can be in one of the |K| states with equal probabilities.
B All pyg(x|k) are isotropic Gaussians: pyx (x[k) = N (x|p, oT).

Recognition (Part of E-step):

B The task is to decide the state k for each x, assuming all i are known.
B The Bayesian strategy (minimizes the probability of error) chooses the cluster which center is the closest to observation x:
*(x) = argmin(x — yx)?
q"(x) = argmin(x — i)

B If i, k € K, are not known, it is a parametrized strategy e (x), where © = (p;)K ;.
B Deciding state k for each x assuming known i, is actually the computation of a degenerate probability distribution
p(Tk|Tx,00~1), ie. the first part of E-step.
Learning (The rest of E-step and M-step):

B Find the maximum-likelihood estimates of y based on known (x1,k1), ..., (x, k;):

*

Vk:mzxi,

where I is a set of indices of training examples (currently) belonging to state k.
B This completes the E-step and implements the M-step.
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EM for Mixture Models 16 / 43

General mixture distributions

Assume the data are samples from a distribution factorized as

PXK(X k) = px(k)pxk (x[k), i-e.

2 pr(k PX\K (x[k)
kekK

and that the distribution is known (except the distribution parameters).

Recognition (Part of E-step):
B Let’s define the result of recognition not as a single decision for some state k (as done in K-means), but rather as
B aset of posterior probabilities (sometimes called responsibilities) for all k given x;
px|x (xi[k) px (k)
Ykek Px|x (xilk)px (k)
that an object was in state k when observation x; was made.

Y (xi) = prx (K|xi, 01)) =

B The 7, (x) functions can be viewed as discriminant functions.
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General mixture distributions (cont.)

Learning (The rest of E-step and M-step):
B Given the training multiset T = (x;, k;)}_; (or the respective v (x;) instead of k;),
B assume 7x(x) is known, pi (k) are not known, and px|x (x|k) are known except the parameter values @, i.e. we shall write
x|k (x]k, ©).
B Let the object model m be a “set” of all unknown parameters m = (px(k), Ok )kek-
B The log-likelihood of model m if we assume k; is known:
log L(m) logquK xi, k Zlong )+ Z;long‘K xilki, ®y,)
1

B The log-likelihood of model m if we assume a distribution () over k is known:

log L(m 2 Y vi(x;)log pi (k) + Z Y (i) log px (xilk, ©x)
i=1keK i=1keK

B We search for the optimal model using maximum likelihood:
= (pk(k), ®f) = argmaxlog L(m)
m
B ie. wecompute
pr(k) =

% 7k (x;) and solve k independent tasks

M:

Il
—

i

n
©} = argmax Y vi(xi) log px ik (xilk, ©x).
=1
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EM for mixture distribution

Unsupervised learning algorithm [?] for general mixture distributions:

1. Initialize the model parameters m = ((pk (k), ©f)Vk).

2. Perform the recognition task, i.e. assuming m is known, compute
pi (k) px k (xilk, ©)

):/eK pr(j)pxik (xilj, ©;)

'Yk(xt) = pK\X(k‘xl)

3. Perform the learning task, i.e. assuming 7 (x;) are known, update the ML estimates of the model parameters pg (k) and ©j, for
all k:

pr(k) = % i'Yk(xi)

n
O = argmax ) 7 (xi) log px| (xilk, ©)
ko i=1
4. Tterate 2 and 3 until the model stabilizes.

Features:
B The algorithm does not specify how to update ® in step 3, it depends on the chosen form of px/x-

B The model created in iteration t is always at least as good as the model from iteration t — 1, i.e. L(m) = p(T|m) increases.

[Mac67] J.B. MacQueen. Some methods for classification and analysis of multivariate observations. In Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pages 281-297,
Berkeley, 1967. University of California Press.
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Special Case: Gaussian Mixture Model

Each kth component is a Gaussian distribution:

1

N (x|pg, Z) = ——p— exp{— (x*%k)TZ (x =)}
(2m) 2 |2 |2

Gaussian Mixture Model (GMM):

K
Z pr (k) pxk (x[k, ©F) = Y eV (x| page, Z)
=1

assuming 2 ap=1land 0 < oy <1

k=1
«f«.mm »‘&\\
0' ‘
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EM for GMM

1. Initialize the model parameters m = ((px (k), px, ¢ ) Vk).

2. Perform the recognition task as in the general case, i.e. assuming m is known, compute
Prk)pxik(xilk ©F)  a N (x| ag, Z)

Z,eK pk(Npxix(xili, ©;)  Ljex aiN (xilpj Z)

')/k(xt) = pK|X(k‘x1)

3. Perform the learning task, i.e. assuming 7, (x;) are known, update the ML estimates of the model parameters ay, iy and Z for

all k:
1 n
= px(k) = Y ve(xi)
i=1
i = Z; 1'Yk(x1)x
z 17k(xz)
s i () (O = o) (xi — )"
k — 7
1 ve(x:)

4. Tterate 2 and 3 until the model stabilizes.

Remarks:
W Each data point belongs to all components to a certain degree 7 (x;).
B The eq. for yy is just a weighted average of x;s.
B The eq. for X is just a weighted covariance matrix.

P. Posik (© 2017 Artificial Intelligence — 21 / 43

Example: Source data

50

30

20

Source data generated from 3 Gaussians. )
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Example: Input to EM algorithm
The data were given to the EM algorithm as an unlabeled dataset.
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Example: EM Iterations
501 :
40+ L o © © 2 b
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Example: EM Iterations
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-30 -20 -10
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Example: EM Iterations
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Example: EM Iterations
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Example: EM Iterations
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Example: EM Iterations

50

40

30

20

10

-10

-10

P. Posik (© 2017

Artificial Intelligence — 29 / 43

Example: EM Iterations
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Example: EM Iterations
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Example: EM Iterations
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Example: EM Iterations
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Example: EM Iterations
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Example: EM Iterations
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Example: Ground Truth and EM Estimate

50

30

10

40

The ground truth (left) and the EM estimate (right) are very close because
B we have enough data,
B we know the right number of components, and
B we were lucky that EM converged to the right local optimum of the likelihood function.
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Baum-Welch Algorithm:

EM for HMM

37/ 43

ISA N

Hidden Markov Model

1st order HMM is a generative probabilistic model formed by

a sequence of hidden variables Xy, ..., Xt,
the domain of all of them is the set of states {s1,...,sn}-

a sequence of observed variables Eq, ..., E;,

the domain of all of them is the set of observations {vy, ..., vp}-

an initial distribution over hidden states P(Xj),
a transition model P(X;|X;_1), and
an emission model P(E;|X;).

Simulating HMM:
1.

Generate an initial state x( according to P(Xp). Set t < 1.
Generate a new current state x; according to P(X|x;_1).
Generate an observation e; according to P(E;|x;).
Advance time t < ¢t + 1.

Finish, or repeat from step 2.

With HMM:

efficient algorithms exist for solving inference tasks;

B but we have no idea (so far) how to learn HMM parameters from the observation sequence, because we do not have access to

the hidden states.

P. Posik (© 2017
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Learning HMM from data

Is it possible to learn HMM from data?
B No known way to analytically solve for the model which maximizes the probability of observations.
B No optimal way of estimating the model parameters from the observation sequences.
B We can find model parameters such that the probability of observations is maximized — Baum-Welch algorithm (a special

case of EM).

Let’s use a slightly different notation to emphasize the model parameters:

7 = [m;] = [P(X1 = s;)] ... vector of the initial probabilities of states
A = [a;;] = [P(Xi = 5j|X;—1 = s;)] ... the matrix of transition probabilities to next state given the current state
B = [bjx] = [P(Et = v|X; = s;)] ... the matrix of observation probabilities given the current state

The whole set of HMM parameters is then 6 = (71, A, B)

The algorithm (presented on the next slides) will

B compute the expected numbers of being in a state or taking a transition given the observations and the current model parameters

0 = (7, A, B), and then

compute the new estimate of model parameters ¢’ = (7/, A’, B),

such that P(e}[6") > P(¢}6).

P. Posik (© 2017
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Sufficient statistics
Let’s define
B the probability of transition from state s; at time ¢ to state s; at time ¢ + 1, given the model and the observation sequence e} :

ar(si)aibixBri1(s)) _

1) = P(X; = s;, Xpyq = silet,0) =
(i f) (Xt = si, X111 S]‘ell ) P(EHB)

_ ar(s;)aiibixBri1(s;)
ISP I a(s;)aijbiBeia(sj)”

where a; and B; are the forward and backward messages computed by the forward-backward algorithm, and
B the probability of being in state s; at time ¢, given the model and the observation sequence:

N
ve(i) = Y& (i ).

j=1

Then we can interpret
T-1

] 2 Yk (i) as the expected number of transitions from state s;, and

k=1
T-1

u Z Gk (i, ) as the expected number of transitions from s; to s;.
k=1

P. Posik (© 2017 Artificial Intelligence — 40 / 43

Baum-Welch algorithm
The re-estimation formulas are
7t} = expected frequency of being in state s; at time (t = 1) =

= 71(i)

, _ expected number of transitions from s; to s;
a.. = =

ki expected number of transitions from s;
T-1x (:
_ Zk:l gk (l/])
=N T-1,
Zkzl 'Yk(l)
,  expected number of times being in state s; and observing vy
e = =

expected number of times being in state s;

_ XL e =w)n()
Zthl 7¢(f)

As with other EM variants, with the old model parameters 6 = (7, A, B) and new, re-estimated parameters 6’ = (7', A/, B'), the new
model is at least as likely as the old one:

P(e1[0') = P(ef|6)

The above equations are used iteratively with 6’ taking place of 6.

P. Posik (© 2017 Artificial Intelligence — 41 / 43
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Summary 42 / 43

Competencies

After this lecture, a student shall be able to ...
B define and explain the task of maximum likelihood estimation;
explain why we can maximize log-likelihood instead of likelihood, describe the advantages;
describe the issues we face when trying to maximize the likelihood in case of incomplete data;
explain the general high-level principle of Expectation-Maximization algorithm;
describe the pros and cons of the EM algorithm, especially what happens with the likelihood in one EM iteration;
describe the EM algorithm for mixture distributions, including the notion of responsibilities;

explain the Baum-Welch algorithm, i.e. the application of EM to HMM; what parameters are learned and how (conceptually).
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