
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

Department of Cybernetics

P. Pošík c© 2017 Artificial Intelligence – 1 / 40

Nearest neighbors. Kernel functions, SVM.
Decision trees.

Petr Pošík

Czech Technical University in Prague

Faculty of Electrical Engineering

Dept. of Cybernetics

Nearest neighbors

P. Pošík c© 2017 Artificial Intelligence – 2 / 40

Method of k nearest neighbors

Nearest neighbors

• kNN

• Class. example

• Regression example

• k-NN Summary

SVM

Decision Trees

Summary

P. Pošík c© 2017 Artificial Intelligence – 3 / 40

■ Simple, non-parametric, instance-based method for supervised learning, applicable
for both classification and regression.

■ Do not confuse k-NN with

■ k-means (a clustering algorithm)

■ NN (neural networks)

Method of k nearest neighbors

Nearest neighbors

• kNN

• Class. example

• Regression example

• k-NN Summary

SVM

Decision Trees

Summary

P. Pošík c© 2017 Artificial Intelligence – 3 / 40

■ Simple, non-parametric, instance-based method for supervised learning, applicable
for both classification and regression.

■ Do not confuse k-NN with

■ k-means (a clustering algorithm)

■ NN (neural networks)

■ Training: Just remember the whole training dataset T.

■ Prediction: To get the model prediction for a new data point x (query),

■ find the set Nk(x) of k nearest neighbors of x in T using certain distance measure,

■ in case of classification, determine the predicted class ŷ = h(x) as the majority
vote among the nearest neighbors, i.e.

ŷ = h(x) = arg max
y

∑
(x′ ,y′)∈Nk(x)

I(y′ = y),

■ in case of regression, determine the predicted value ŷ = h(x) as the average of
values y of the nearest neighbors, i.e.

ŷ = h(x) =
1

k ∑
(x′ ,y′)∈Nk(x)

y′,

■ What is the influence of k to the final model?

KNN classification: Example

P. Pošík c© 2017 Artificial Intelligence – 4 / 40

2 4 6 8 10

0

2

4

6

8

10

2 4 6 8 10

0

2

4

6

8

10

2 4 6 8 10

0

2

4

6

8

10

2 4 6 8 10

0

2

4

6

8

10

2 4 6 8 10

0

2

4

6

8

10

2 4 6 8 10

0

2

4

6

8

10

KNN classification: Example

P. Pošík c© 2017 Artificial Intelligence – 4 / 40

2 4 6 8 10

0

2

4

6

8

10

2 4 6 8 10

0

2

4

6

8

10

2 4 6 8 10

0

2

4

6

8

10

2 4 6 8 10

0

2

4

6

8

10

2 4 6 8 10

0

2

4

6

8

10

2 4 6 8 10

0

2

4

6

8

10

■ Only in 1-NN, all training examples are classified correctly (unless there are two exactly the same
observations with a different evaluation).

■ Unbalanced classes may be an issue: the more frequent class takes over with increasing k.

k-NN Regression Example

Nearest neighbors

• kNN

• Class. example

• Regression example

• k-NN Summary

SVM

Decision Trees

Summary

P. Pošík c© 2017 Artificial Intelligence – 5 / 40

The training data:

10

5
0

10
5

5

0

10

k-NN regression example

P. Pošík c© 2017 Artificial Intelligence – 6 / 40

10

5
0

10
5

5

0

10

10

5
0

10
5

5

0

10

10

5
0

10
5

5

0

10

10

5
0

10
5

5

0

10

10

5
0

10
5

5

0

10

10

5
0

10
5

5

0

10

k-NN regression example

P. Pošík c© 2017 Artificial Intelligence – 6 / 40

10

5
0

10
5

5

0

10

10

5
0

10
5

5

0

10

10

5
0

10
5

5

0

10

10

5
0

10
5

5

0

10

10

5
0

10
5

5

0

10

10

5
0

10
5

5

0

10

■ For small k, the surface is rugged.

■ For large k, too much averaging (smoothing) takes place.

k-NN Summary

Nearest neighbors

• kNN

• Class. example

• Regression example

• k-NN Summary

SVM

Decision Trees

Summary

P. Pošík c© 2017 Artificial Intelligence – 7 / 40

Comments:

■ For 1-NN, the division of the input space into convex cells is called a Voronoi
tassellation.

■ A weighted variant can be constructed:

■ Each of the k nearest neighbors has a weight inversely proportional to its
distance to the query point.

■ Prediction is then done using weighted voting (in case of classification) or
weighted averaging (in case of regression).

■ In regression tasks, instead of averaging you can use e.g. (weighted) linear regression
to compute the prediction.

k-NN Summary

Nearest neighbors

• kNN

• Class. example

• Regression example

• k-NN Summary

SVM

Decision Trees

Summary

P. Pošík c© 2017 Artificial Intelligence – 7 / 40

Comments:

■ For 1-NN, the division of the input space into convex cells is called a Voronoi
tassellation.

■ A weighted variant can be constructed:

■ Each of the k nearest neighbors has a weight inversely proportional to its
distance to the query point.

■ Prediction is then done using weighted voting (in case of classification) or
weighted averaging (in case of regression).

■ In regression tasks, instead of averaging you can use e.g. (weighted) linear regression
to compute the prediction.

Advantages:

■ Simple and widely applicable method.

■ For both classification and regression tasks.

■ For both categorial and continuous predictors (independent variables).

Disadvantages:

■ Must store the whole training set (there are methods for training set reduction).

■ During prediction, it must compute the distances to all the training data points (can
be alleviated e.g. by using KD-tree structure for the training set).

Overfitting prevention:

■ Choose the right value of k e.g. using crossvalidation.

Support vector machine

P. Pošík c© 2017 Artificial Intelligence – 8 / 40

Revision

Nearest neighbors

SVM

• Revision

• OSH + basis exp.

• Kernel trick

• SVM

• Linear SVM

• Gaussian SVM

• SVM: Summary

Decision Trees

Summary

P. Pošík c© 2017 Artificial Intelligence – 9 / 40

Optimal separating hyperplane:

■ A way to find a linear classifier optimal in certain sense by means of a quadratic
program (dual task for soft margin version):

maximize
|T|

∑
i=1

αi −
|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)

x
(i)

x
(j)T

w.r.t. α1, . . . , α|T|, µ1, . . . , µ|T|,

subject to αi ≥ 0, µi ≥ 0, αi + µi = C, and
|T|

∑
i=1

αiy
(i) = 0.

■ The parameters of the hyperplane are given in terms of a weighted linear
combination of support vectors:

w =
|T|

∑
i=1

αiy
(i)

x
(i), w0 = y(k) − x

(k)
w

T ,

Revision

Nearest neighbors

SVM

• Revision

• OSH + basis exp.

• Kernel trick

• SVM

• Linear SVM

• Gaussian SVM

• SVM: Summary

Decision Trees

Summary

P. Pošík c© 2017 Artificial Intelligence – 9 / 40

Optimal separating hyperplane:

■ A way to find a linear classifier optimal in certain sense by means of a quadratic
program (dual task for soft margin version):

maximize
|T|

∑
i=1

αi −
|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)

x
(i)

x
(j)T

w.r.t. α1, . . . , α|T|, µ1, . . . , µ|T|,

subject to αi ≥ 0, µi ≥ 0, αi + µi = C, and
|T|

∑
i=1

αiy
(i) = 0.

■ The parameters of the hyperplane are given in terms of a weighted linear
combination of support vectors:

w =
|T|

∑
i=1

αiy
(i)

x
(i), w0 = y(k) − x

(k)
w

T ,

Basis expansion:

■ Instead of a linear model 〈w, x〉, create a linear model of nonlinearly transformed
features 〈w′, Φ(x)〉 which represents a nonlinear model in the original space.

Revision

Nearest neighbors

SVM

• Revision

• OSH + basis exp.

• Kernel trick

• SVM

• Linear SVM

• Gaussian SVM

• SVM: Summary

Decision Trees

Summary

P. Pošík c© 2017 Artificial Intelligence – 9 / 40

Optimal separating hyperplane:

■ A way to find a linear classifier optimal in certain sense by means of a quadratic
program (dual task for soft margin version):

maximize
|T|

∑
i=1

αi −
|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)

x
(i)

x
(j)T

w.r.t. α1, . . . , α|T|, µ1, . . . , µ|T|,

subject to αi ≥ 0, µi ≥ 0, αi + µi = C, and
|T|

∑
i=1

αiy
(i) = 0.

■ The parameters of the hyperplane are given in terms of a weighted linear
combination of support vectors:

w =
|T|

∑
i=1

αiy
(i)

x
(i), w0 = y(k) − x

(k)
w

T ,

Basis expansion:

■ Instead of a linear model 〈w, x〉, create a linear model of nonlinearly transformed
features 〈w′, Φ(x)〉 which represents a nonlinear model in the original space.

What if we put these two things together?

Optimal separating hyperplane combined with the basis expansion

Nearest neighbors

SVM

• Revision

• OSH + basis exp.

• Kernel trick

• SVM

• Linear SVM

• Gaussian SVM

• SVM: Summary

Decision Trees

Summary

P. Pošík c© 2017 Artificial Intelligence – 10 / 40

Using the optimal sep. hyperplane, the examples x occur only in the form of dot products:

the optimization criterion
|T|

∑
i=1

αi −
1

2

|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)

x
(i)

x
(j)T

and in the decision rule f (x) = sign

(
|T|

∑
i=1

αiy
(i)

x
(i)

x
T + w0

)
.

Optimal separating hyperplane combined with the basis expansion

Nearest neighbors

SVM

• Revision

• OSH + basis exp.

• Kernel trick

• SVM

• Linear SVM

• Gaussian SVM

• SVM: Summary

Decision Trees

Summary

P. Pošík c© 2017 Artificial Intelligence – 10 / 40

Using the optimal sep. hyperplane, the examples x occur only in the form of dot products:

the optimization criterion
|T|

∑
i=1

αi −
1

2

|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)

x
(i)

x
(j)T

and in the decision rule f (x) = sign

(
|T|

∑
i=1

αiy
(i)

x
(i)

x
T + w0

)
.

Application of the basis expansion changes

the optimization criterion to
|T|

∑
i=1

αi −
1

2

|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)Φ(x

(i))Φ(x
(j))T

and the decision rule to f (x) = sign

(
|T|

∑
i=1

αiy
(i)Φ(x

(i))Φ(x)T + w0

)
.

Optimal separating hyperplane combined with the basis expansion

Nearest neighbors

SVM

• Revision

• OSH + basis exp.

• Kernel trick

• SVM

• Linear SVM

• Gaussian SVM

• SVM: Summary

Decision Trees

Summary

P. Pošík c© 2017 Artificial Intelligence – 10 / 40

Using the optimal sep. hyperplane, the examples x occur only in the form of dot products:

the optimization criterion
|T|

∑
i=1

αi −
1

2

|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)

x
(i)

x
(j)T

and in the decision rule f (x) = sign

(
|T|

∑
i=1

αiy
(i)

x
(i)

x
T + w0

)
.

Application of the basis expansion changes

the optimization criterion to
|T|

∑
i=1

αi −
1

2

|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)Φ(x

(i))Φ(x
(j))T

and the decision rule to f (x) = sign

(
|T|

∑
i=1

αiy
(i)Φ(x

(i))Φ(x)T + w0

)
.

What if we use a scalar function K(x, x′) instead of the dot product in the image space?

The optimization criterion:
|T|

∑
i=1

αi −
1

2

|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)K(x

(i), x
(j))

The discrimination function: f (x) = sign

(
|T|

∑
i=1

αiy
(i)K(x

(i), x) + w0

)
.

Kernel trick

Nearest neighbors

SVM

• Revision

• OSH + basis exp.

• Kernel trick

• SVM

• Linear SVM

• Gaussian SVM

• SVM: Summary

Decision Trees

Summary

P. Pošík c© 2017 Artificial Intelligence – 11 / 40

Kernel function, or just a kernel:

■ A generalized inner product (dot product, scalar product).

■ A function of 2 vector arguments K(a, b) which provides values equal to the dot
product Φ(a)Φ(b)T of the images of the vectors a and b in certain high-dimensional
image space.

Kernel trick

Nearest neighbors

SVM

• Revision

• OSH + basis exp.

• Kernel trick

• SVM

• Linear SVM

• Gaussian SVM

• SVM: Summary

Decision Trees

Summary

P. Pošík c© 2017 Artificial Intelligence – 11 / 40

Kernel function, or just a kernel:

■ A generalized inner product (dot product, scalar product).

■ A function of 2 vector arguments K(a, b) which provides values equal to the dot
product Φ(a)Φ(b)T of the images of the vectors a and b in certain high-dimensional
image space.

Kernel trick:

■ Let’s have a linear algorithm in which the examples x occur only in dot products.

■ Such an algorithm can be made non-linear by replacing the dot products of examples
x with kernels.

■ The result is the same is if the algorithm was trained in some high-dimensional image
space with the coordinates given by many non-linear basis functions.

■ Thanks to kernels, it is not needed to explicitly perform the mapping from the input
space to the highdimensional image space; the algorithm is much more efficient.

Kernel trick

Nearest neighbors

SVM

• Revision

• OSH + basis exp.

• Kernel trick

• SVM

• Linear SVM

• Gaussian SVM

• SVM: Summary

Decision Trees

Summary

P. Pošík c© 2017 Artificial Intelligence – 11 / 40

Kernel function, or just a kernel:

■ A generalized inner product (dot product, scalar product).

■ A function of 2 vector arguments K(a, b) which provides values equal to the dot
product Φ(a)Φ(b)T of the images of the vectors a and b in certain high-dimensional
image space.

Kernel trick:

■ Let’s have a linear algorithm in which the examples x occur only in dot products.

■ Such an algorithm can be made non-linear by replacing the dot products of examples
x with kernels.

■ The result is the same is if the algorithm was trained in some high-dimensional image
space with the coordinates given by many non-linear basis functions.

■ Thanks to kernels, it is not needed to explicitly perform the mapping from the input
space to the highdimensional image space; the algorithm is much more efficient.

Frequently used kernels:

Polynomial: K(a, b) = (ab
T + 1)d, where d is the degree of the polynom.

Gaussian (RBF): K(a, b) = exp

(
−
|a− b|2

σ2

)
, where σ

2 is the „width“ of kernel.

Support vector machine

Nearest neighbors

SVM

• Revision

• OSH + basis exp.

• Kernel trick

• SVM

• Linear SVM

• Gaussian SVM

• SVM: Summary

Decision Trees

Summary

P. Pošík c© 2017 Artificial Intelligence – 12 / 40

Support vector machine

Nearest neighbors

SVM

• Revision

• OSH + basis exp.

• Kernel trick

• SVM

• Linear SVM

• Gaussian SVM

• SVM: Summary

Decision Trees

Summary

P. Pošík c© 2017 Artificial Intelligence – 12 / 40

Support vector machine (SVM)

=

optimal separating hyperplane
learning algorithm

+

the kernel trick

Demo: SVM with linear kernel

Nearest neighbors

SVM

• Revision

• OSH + basis exp.

• Kernel trick

• SVM

• Linear SVM

• Gaussian SVM

• SVM: Summary

Decision Trees

Summary

P. Pošík c© 2017 Artificial Intelligence – 13 / 40

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Demo: SVM with RBF kernel

Nearest neighbors

SVM

• Revision

• OSH + basis exp.

• Kernel trick

• SVM

• Linear SVM

• Gaussian SVM

• SVM: Summary

Decision Trees

Summary

P. Pošík c© 2017 Artificial Intelligence – 14 / 40

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

SVM: Summary

Nearest neighbors

SVM

• Revision

• OSH + basis exp.

• Kernel trick

• SVM

• Linear SVM

• Gaussian SVM

• SVM: Summary

Decision Trees

Summary

P. Pošík c© 2017 Artificial Intelligence – 15 / 40

■ SVM is a very popular model; in the past, the best performance for many tasks was
achieved by SVM (nowadays, boosting or deep NN often perform better).

■ When using SVM, you usually have to set

■ the kernel type,

■ kernel parameter(s), and

■ the (regularization) constant C,

or use a method to find them automatically.

■ Support vector regression (SVR) exists as well.

■ There are many other (originally linear) methods that were kernelized:

■ kernel PCA,

■ kernel logistic regression,

■ . . .

Decision Trees

P. Pošík c© 2017 Artificial Intelligence – 16 / 40

What is a decision tree?

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 17 / 40

Decision tree

■ is a function that

■ takes a vector of attribute values as its input, and

■ returns a “decision” as its output.

■ Both input and output values can be measured on a nominal, ordinal, interval,
and ratio scales, can be discrete or continuous.

■ The decision is formed via a sequence of tests:

■ each internal node of the tree represents a test,

■ the branches are labeled with possible outcomes of the test, and

■ each leaf node represents a decision to be returned by the tree.

What is a decision tree?

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 17 / 40

Decision tree

■ is a function that

■ takes a vector of attribute values as its input, and

■ returns a “decision” as its output.

■ Both input and output values can be measured on a nominal, ordinal, interval,
and ratio scales, can be discrete or continuous.

■ The decision is formed via a sequence of tests:

■ each internal node of the tree represents a test,

■ the branches are labeled with possible outcomes of the test, and

■ each leaf node represents a decision to be returned by the tree.

Decision trees examples:

■ classification schemata in biology (cz: určovací klíče)

■ diagnostic sections in illness encyclopedias

■ online troubleshooting section on software web pages

■ . . .

Attribute description

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 18 / 40

Example: A computer game.
The main character of the game meets various robots along his way. Some behave like
allies, others like enemies.

ally

enemy

head body smile neck holds class

circle circle yes tie nothing ally
circle square no tie sword enemy
.

The game engine may use e.g. the following tree to assign the
ally or enemy attitude to the generated robots:

neck

smile

tie

ally

y
es

enemy

n
o

body

other

ally

tr
ia

n
g

le

enemy

oth
er

Expressiveness of decision trees

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 19 / 40

The tree on previous slide is a Boolean decision tree:

■ the decision is a binary variable (true, false), and

■ the attributes are discrete.

■ It returns ally iff the input attributes satisfy one of the paths leading to an ally leaf:

ally⇔ (neck = tie ∧ smile = yes) ∨ (neck = ¬tie ∧ body = triangle),

i.e. in general

■ Goal ⇔ (Path1 ∨ Path2 ∨ . . .), where

■ Path is a conjuction of attribute-value tests, i.e.

■ the tree is equivalent to a DNF (disjunctive normal form) of a function.

Any function in propositional logic can be expressed as a dec. tree.

■ Trees are a suitable representation for some functions and unsuitable for others.

■ What is the cardinality of the set of Boolean functions of n attributes?

■ It is equal to the number of truth tables that can be created with n attributes.

■ The truth table has 2n rows, i.e. there is 22n
different functions.

■ The set of trees is even larger; several trees represent the same function.

■ We need a clever algorithm to find good hypotheses (trees) in such a large space.

A computer game

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 20 / 40

Example 1:
Can you distinguish between allies and enemies after seeing a few of them?

Allies Enemies

A computer game

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 20 / 40

Example 1:
Can you distinguish between allies and enemies after seeing a few of them?

Allies Enemies

Hint: concentrate on the shapes of heads and bodies.

A computer game

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 20 / 40

Example 1:
Can you distinguish between allies and enemies after seeing a few of them?

Allies Enemies

Hint: concentrate on the shapes of heads and bodies.
Answer: Seems like allies have the same shape of their head and body.
How would you represent this by a decision tree? (Relation among attributes.)

A computer game

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 20 / 40

Example 1:
Can you distinguish between allies and enemies after seeing a few of them?

Allies Enemies

Hint: concentrate on the shapes of heads and bodies.
Answer: Seems like allies have the same shape of their head and body.
How would you represent this by a decision tree? (Relation among attributes.)
How do you know that you are right?

A computer game

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 21 / 40

Example 2:
Some robots changed their attitudes:

Allies Enemies

A computer game

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 21 / 40

Example 2:
Some robots changed their attitudes:

Allies Enemies

No obvious simple rule.
How to build a decision tree discriminating the 2 robot classes?

Alternative hypotheses

P. Pošík c© 2017 Artificial Intelligence – 22 / 40

Example 2: Attribute description:

head body smile neck holds class

triangle circle yes tie nothing ally
triangle triangle no nothing ball ally
circle triangle yes nothing flower ally
circle circle yes tie nothing ally
triangle square no tie ball enemy
circle square no tie sword enemy
square square yes bow nothing enemy
circle circle no bow sword enemy

Alternative hypotheses (suggested by an oracle for now): Which of the trees is the best (right) one?

neck

smile

tie

ally

y
es

enemy

n
o

body

other

ally

tr
ia

n
g

le

enemy

oth
er

body

ally

tri
angle

holds

ci
rc

le

enemy

sw
or

d

ally

oth
er

enemy

square

holds

enemy

sw
or

d

body

other

enemy

sq
u

ar
e

ally

oth
er

How to choose the best tree?

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 23 / 40

We want a tree that is

■ consistent with the training data,

■ is as small as possible, and

■ which also works for new data.

How to choose the best tree?

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 23 / 40

We want a tree that is

■ consistent with the training data,

■ is as small as possible, and

■ which also works for new data.

Consistent with data?

How to choose the best tree?

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 23 / 40

We want a tree that is

■ consistent with the training data,

■ is as small as possible, and

■ which also works for new data.

Consistent with data?

■ All 3 trees are consistent.

Small?

How to choose the best tree?

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 23 / 40

We want a tree that is

■ consistent with the training data,

■ is as small as possible, and

■ which also works for new data.

Consistent with data?

■ All 3 trees are consistent.

Small?

■ The right-hand side one is the simplest one:

left middle right

depth 2 2 2
leaves 4 4 3
conditions 3 2 2

Will it work for new data?

How to choose the best tree?

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 23 / 40

We want a tree that is

■ consistent with the training data,

■ is as small as possible, and

■ which also works for new data.

Consistent with data?

■ All 3 trees are consistent.

Small?

■ The right-hand side one is the simplest one:

left middle right

depth 2 2 2
leaves 4 4 3
conditions 3 2 2

Will it work for new data?

■ We have no idea!

■ We need a set of new testing data (different data from the same source).

Learning a Decision Tree

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 24 / 40

It is an intractable problem to find the smallest consistent tree among > 22n
trees.

We can find approximate solution: a small (but not the smallest) consistent tree.

Learning a Decision Tree

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 24 / 40

It is an intractable problem to find the smallest consistent tree among > 22n
trees.

We can find approximate solution: a small (but not the smallest) consistent tree.

Top-Down Induction of Decision Trees (TDIDT):

■ A greedy divide-and-conquer strategy.

■ Progress:

1. Find the most important attribute.

2. Divide the data set using the attribute values.

3. For each subset, build an independent tree (recursion).

■ “Most important attribute”: attribute that makes the most difference to the
classification.

■ All paths in the tree will be short, the tree will be shallow.

Attribute importance

P. Pošík c© 2017 Artificial Intelligence – 25 / 40

head body smile neck holds class

triangle circle yes tie nothing ally
triangle triangle no nothing ball ally
circle triangle yes nothing flower ally
circle circle yes tie nothing ally
triangle square no tie ball enemy
circle square no tie sword enemy
square square yes bow nothing enemy
circle circle no bow sword enemy

triangle: 2:1 triangle: 2:0 yes: 3:1 tie: 2:2 ball: 1:1
circle: 2:2 circle: 2:1 no: 1:3 bow: 0:2 sword: 0:2
square: 0:1 square: 0:3 nothing: 2:0 flower: 1:0

nothing: 2:1

Attribute importance

P. Pošík c© 2017 Artificial Intelligence – 25 / 40

head body smile neck holds class

triangle circle yes tie nothing ally
triangle triangle no nothing ball ally
circle triangle yes nothing flower ally
circle circle yes tie nothing ally
triangle square no tie ball enemy
circle square no tie sword enemy
square square yes bow nothing enemy
circle circle no bow sword enemy

triangle: 2:1 triangle: 2:0 yes: 3:1 tie: 2:2 ball: 1:1
circle: 2:2 circle: 2:1 no: 1:3 bow: 0:2 sword: 0:2
square: 0:1 square: 0:3 nothing: 2:0 flower: 1:0

nothing: 2:1

A perfect attribute divides the examples into sets containing only a single class. (Do you remember the
simply created perfect attribute from Example 1?)

A useless attribute divides the examples into sets containing the same distribution of classes as the set
before splitting.

None of the above attributes is perfect or useless. Some are more useful than others.

Choosing the best attribute

P. Pošík c© 2017 Artificial Intelligence – 26 / 40

Information gain:

■ Formalization of the terms “useless”, “perfect”, “more useful”.

■ Based on entropy, a measure of the uncertainty of a random variable V with possible values vi :

H(V) = −∑
i

p(vi) log2 p(vi)

Choosing the best attribute

P. Pošík c© 2017 Artificial Intelligence – 26 / 40

Information gain:

■ Formalization of the terms “useless”, “perfect”, “more useful”.

■ Based on entropy, a measure of the uncertainty of a random variable V with possible values vi :

H(V) = −∑
i

p(vi) log2 p(vi)

■ Entropy of the target variable C (usually a class) measured on a data set S (a finite-sample estimate of
the true entropy):

H(C, S) = −∑
i

p̂(ci) log2 p̂(ci),

where p̂(ci) =
NS(ci)
|S|

, and NS(ci) is the number of examples in S that belong to class ci .

Choosing the best attribute

P. Pošík c© 2017 Artificial Intelligence – 26 / 40

Information gain:

■ Formalization of the terms “useless”, “perfect”, “more useful”.

■ Based on entropy, a measure of the uncertainty of a random variable V with possible values vi :

H(V) = −∑
i

p(vi) log2 p(vi)

■ Entropy of the target variable C (usually a class) measured on a data set S (a finite-sample estimate of
the true entropy):

H(C, S) = −∑
i

p̂(ci) log2 p̂(ci),

where p̂(ci) =
NS(ci)
|S|

, and NS(ci) is the number of examples in S that belong to class ci .

■ The entropy of the target variable C remaining in the data set S after splitting into subsets Sk using
values of attribute A (weighted average of the entropies in individual subsets):

H(C, S, A) = ∑
k

p̂(Sk)H(C, Sk), where p̂(Sk) =
|Sk |

|S|

■ The information gain of attribute A for a data set S is

Gain(A, S) = H(C, S)− H(C, S, A).

Choose the attribute with the highest information gain, i.e. the attribute with the lowest H(C, S, A).

Choosing the test attribute (special case: binary classification)

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 27 / 40

■ For a Boolean random variable V which is true with probability q, we can define:

HB(q) = −q log2 q− (1− q) log2(1− q)

■ Specifically, for q = 0.5,

HB(0.5) = −
1

2
log2

1

2
−

(
1−

1

2

)
log2

(
1−

1

2

)
= 1

■ Entropy of the target variable C measured on a data set S with Np positive and Nn

negative examples:

H(C, S) = HB

(
Np

Np + Nn

)
= HB

(
Np

|S|

)

Choosing the test attribute (example)

P. Pošík c© 2017 Artificial Intelligence – 28 / 40

head body smile neck holds

triangle: 2:1 triangle: 2:0 yes: 3:1 tie: 2:2 ball: 1:1
circle: 2:2 circle: 2:1 no: 1:3 bow: 0:2 sword: 0:2
square: 0:1 square: 0:3 nothing: 2:0 flower: 1:0

nothing: 2:1

head:
p(Shead=tri) =

3
8 ; H(C, Shead=tri) = HB

(
2

2+1

)
= 0.92

p(Shead=cir) =
4
8 ; H(C, Shead=cir) = HB

(
2

2+2

)
= 1

p(Shead=sq) =
1
8 ; H(C, Shead=sq) = HB

(
0

0+1

)
= 0

H(C, S, head) = 3
8 · 0.92 + 4

8 · 1 +
1
8 · 0 = 0.84

Gain(head, S) = 1− 0.84 = 0.16

body:
p(Sbody=tri) =

2
8 ; H(C, Sbody=tri) = HB

(
2

2+0

)
= 0

p(Sbody=cir) =
3
8 ; H(C, Sbody=cir) = HB

(
2

2+1

)
= 0.92

p(Sbody=sq) =
3
8 ; H(C, Sbody=sq) = HB

(
0

0+3

)
= 0

H(C, S, body) = 2
8 · 0 +

3
8 · 0.92 + 3

8 · 0 = 0.35
Gain(body, S) = 1− 0.35 = 0.65

smile:
p(Ssmile=yes) =

4
8 ; H(C, Syes) = HB

(
3

3+1

)
= 0.81

p(Ssmile=no) =
4
8 ; H(C, Sno) = HB

(
1

1+3

)
= 0.81

H(C, S, smile) = 4
8 · 0.81 + 4

8 · 0.81 + 3
8 · 0 = 0.81

Gain(smile, S) = 1− 0.81 = 0.19

neck:
p(Sneck=tie) =

4
8 ; H(C, Sneck=tie) = HB

(
2

2+2

)
= 1

p(Sneck=bow) =
2
8 ; H(C, Sneck=bow) = HB

(
0

0+2

)
= 0

p(Sneck=no) =
2
8 ; H(C, Sneck=no) = HB

(
2

2+0

)
= 0

H(C, S, neck) = 4
8 · 1 +

2
8 · 0 +

2
8 · 0 = 0.5

Gain(neck, S) = 1− 0.5 = 0.5

holds:
p(Sholds=ball) =

2
8 ; H(C, Sholds=ball) = HB

(
1

1+1

)
= 1

p(Sholds=swo) =
2
8 ; H(C, Sholds=swo) = HB

(
0

0+2

)
= 0

p(Sholds=flo) =
1
8 ; H(C, Sholds=flo) = HB

(
1

1+0

)
= 0

p(Sholds=no) =
3
8 ; H(C, Sholds=no) = HB

(
2

2+1

)
= 0.92

H(C, S, holds) = 2
8 · 1 +

2
8 · 0 +

1
8 · 0 +

3
8 · 0.92 = 0.6

Gain(holds, S) = 1− 0.6 = 0.4

The body attribute

■ brings us the largest information gain, thus

■ it shall be chosen for the first test in the tree!

Choosing subsequent test attribute

P. Pošík c© 2017 Artificial Intelligence – 29 / 40

No further tests are needed for robots with triangular and squared bodies.
Dataset for robots with circular bodies:

head body smile neck holds class

triangle circle yes tie nothing ally
circle circle yes tie nothing ally
circle circle no bow sword enemy

triangle: 1:0 yes: 2:0 tie: 2:0 nothing: 2:0
circle: 1:1 no: 0:1 bow: 0:1 sword: 0:1

Choosing subsequent test attribute

P. Pošík c© 2017 Artificial Intelligence – 29 / 40

No further tests are needed for robots with triangular and squared bodies.
Dataset for robots with circular bodies:

head body smile neck holds class

triangle circle yes tie nothing ally
circle circle yes tie nothing ally
circle circle no bow sword enemy

triangle: 1:0 yes: 2:0 tie: 2:0 nothing: 2:0
circle: 1:1 no: 0:1 bow: 0:1 sword: 0:1

All the attributes smile, neck, and holds

■ take up the remaining entropy in the data set, and

■ are equally good for the test in the group of robots with circular bodies.

Decision tree building procedure

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 30 / 40

Algorithm 1: BuildDT

Input : the set of examples S,
the set of attributes A,
majority class of the parent node CP

Output: a decision tree
1 begin
2 if S is empty then
3 return leaf with CP

4 C←majority class in S
5 if all examples in S belong to the same class C then
6 return leaf with C

7 if A is empty then
8 return leaf with C

9 A← arg maxa∈A Gain(a, S)
10 T ← a new decision tree with root test on attribute A
11 foreach value vk of A do
12 Sk ← {x|x ∈ S ∧ x.A = vk}
13 tk ← BuildDT(Sk, A− A, C)
14 add branch to T with label A = vk and attach a subtree tk

15 return tree T

Algorithm characteristics

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 31 / 40

■ There are many hypotheses (trees) consistent with the dataset S; the algorithm will
return any of them, unless there is some bias in choosing the tests.

■ The current set of considered hypotheses has always only 1 member (greedy selection
of the successor). The algorithm cannot provide answer to the question how many
hypotheses consistent with the data exist.

■ The algorithm does not use backtracking; it can get stuck in a local optimum.

■ The algorithm uses batch learning, not incremental.

How to prevent overfitting for trees?

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 32 / 40

Tree pruning:

■ Let’s have a fully grown tree T.

■ Choose a test node having only leaf nodes as descensdants.

■ If the test appears to be irrelevant, remove the test and replace it with a leaf node with
the majority class.

■ Repeat, until all tests seem to be relevant.

How to prevent overfitting for trees?

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 32 / 40

Tree pruning:

■ Let’s have a fully grown tree T.

■ Choose a test node having only leaf nodes as descensdants.

■ If the test appears to be irrelevant, remove the test and replace it with a leaf node with
the majority class.

■ Repeat, until all tests seem to be relevant.

How to check if the split is (ir)relevant?

1. Using statistical χ2 test:

■ If the distribution of classes in the leaves does not differ much from the
distribution of classes in their parent, the split is irrelevant.

2. Using an (independent) validation data set:

■ Create a temporary tree by replacing a subtree with a leaf.

■ If the error on validation set decreased, accept the pruned tree.

How to prevent overfitting for trees?

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 32 / 40

Tree pruning:

■ Let’s have a fully grown tree T.

■ Choose a test node having only leaf nodes as descensdants.

■ If the test appears to be irrelevant, remove the test and replace it with a leaf node with
the majority class.

■ Repeat, until all tests seem to be relevant.

How to check if the split is (ir)relevant?

1. Using statistical χ2 test:

■ If the distribution of classes in the leaves does not differ much from the
distribution of classes in their parent, the split is irrelevant.

2. Using an (independent) validation data set:

■ Create a temporary tree by replacing a subtree with a leaf.

■ If the error on validation set decreased, accept the pruned tree.

Early stopping:

■ Hmm, if we grow the tree fully and then prune it, why cannot we just stop the tree
building when there is no good attribute to split on?

■ Prevents us from recognizing situations when

■ there is no single good attribute to split on, but

■ there are combinations of attributes that lead to a good tree!

Missing data

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 33 / 40

Decision trees are one of the rare model types able to handle missing attribute values.

1. Given a complete tree, how to classify an example with a missing attribute value
needed for a test?

■ Pretend that the object has all possible values for this attribute.

■ Track all possible paths to the leaves.

■ The leaf decisions are weighted using the number of training examples in the
leaves.

2. How to build a tree if the training set contains examples with missing attribute
values?

■ Introduce a new attribute value: “Missing” (or N/A).

■ Build tree in a normal way.

Multivalued attributes

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 34 / 40

What if the training set contains e.g. name, social insurance number, or other id?

■ When each example has a unique value of an attribute A, the information gain of A is
equal to the entropy of the whole data set!

■ Attribute A is chosen for the tree root; yet, such a tree is useless (overfitted).

Multivalued attributes

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 34 / 40

What if the training set contains e.g. name, social insurance number, or other id?

■ When each example has a unique value of an attribute A, the information gain of A is
equal to the entropy of the whole data set!

■ Attribute A is chosen for the tree root; yet, such a tree is useless (overfitted).

Solutions:

1. Allow only Boolean test of the form A = vk and allow the remaining values to be
tested later in the tree.

2. Use a different split importance measure instead of Gain, e.g. GainRatio:

■ Normalize the information gain by a maximal amount of information the split
can have:

GainRatio(A, S) =
Gain(A, S)

H(A, S)
,

where H(A, S) is the entropy of attribute A and represents the largest
information gain we can get from splitting using A.

Attributes with different prices

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 35 / 40

What if the tests in the tree also cost us some “money”?

■ Then we would like to have the cheap test close to the root.

■ If we have Cost(A) ∈ 〈0, 1〉 then we can use e.g.

Gain2(A, S)

Cost(A)
,

or

2Gain(A,S) − 1

(Cost(A) + 1)w

to bias the preference for cheaper tests.

Continuous input attributes

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 36 / 40

Continuous or integer-valued input attributes:

■ Use binary splits with the highest information gain.

■ Sort the values of the attribute.

■ Consider only split points lying between 2 examples with different classification.

Temperature -20 -9 -2 5 16 26 32 35
Go out? No No Yes Yes Yes Yes No No

■ Previously used attributes can be used again in subsequent tests!

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

Petal Length

P
et

al
 W

id
th

SETOSA

VIRGINICA

VIRGINICA

VIRGINICA

VERSICOLOR

Continuous output variable

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 37 / 40

Regression tree:

■ In each leaf, it can have

■ a constant value (usually an average of the output variable over the training set),
or

■ a linear function of some subset of numerical input attributes

■ The learning algorithm must decide when to stop splitting and begin applying linear
regression.

0
10

5

10

10

Regression tree

85

15

6
4

20

Trees: Summary

Nearest neighbors

SVM

Decision Trees

• Intuition

• Attributes

• Expressivness

• Test 1

• Test 2

• Alternatives

• Best tree?

• Learning

• Attr. importance

• Information gain

• Entropy, binary

• Example: step 1

• Example: step 2

• TDIDT

• TDIDT Features

• Overfitting

•Missing data

•Multivalued attr.

• Attr. price

• Continuous inputs

• Regression tree

• Summary

Summary

P. Pošík c© 2017 Artificial Intelligence – 38 / 40

■ Decision trees belong to the simplest, most universal and most widely used
prediction models.

■ They are often used in ensemble methods as a building block.

■ They are not suitable for all modeling problems (relations, etc.).

■ TDIDT is the most widely used technique to build a tree from data.

■ It uses greedy divide-and-conquer approach.

■ Individual tree variants differ mainly

■ in what type of attributes they are able to handle,

■ in the attribute importance measure (information gain, gain ratio, Gini index, χ2,
etc.),

■ if they make enumerative or just binary splits,

■ if and how they can handle missing data,

■ whether they do only axis-parallel splits, or allow for oblique trees,

■ etc.

Summary

P. Pošík c© 2017 Artificial Intelligence – 39 / 40

Competencies

P. Pošík c© 2017 Artificial Intelligence – 40 / 40

After this lecture, a student shall be able to . . .

■ explain, use, and implement method of k nearest neighbors for both classification and regression;

■ explain the influence of k to the form of the final model;

■ describe advantages and disadvantages of k-NN, and suggest a way hot to find a suitable value of k;

■ show how to force the algorithm for learning the optimal separating hyperplane to find a nonlinear
model using basis expansion, and using a kernel function;

■ explain the meaning of kernels, and their advantages compared to basis expansion;

■ explain the principle of support vector machine;

■ describe the structure of classification and regression tree, and the way it is used to determine a
prediction;

■ know a lower bound on the number of Boolean decision trees for a dataset with n attributes;

■ describe TDIDT algorithm and its features, and know whether it will find the optimal tree;

■ explain how to choose the best attribute for a split, and be able to manually perform the choice for
simple examples;

■ describe 2 methods to prevent tree overfitting, and argue which of them is better;

■ explain how a decision tree can handle missing data during training and during prediction;

■ describe what happens and what to do if the dataset contains an attribute with unique value for each
observation;

■ explain how to handle continuous input and output variables (as opposed to the discrete attributes).

	Nearest neighbors
	kNN
	KNN classification: Example
	k-NN Regression Example
	k-NN regression example
	k-NN Summary

	Support vector machine
	Revision
	Optimal separating hyperplane combined with the basis expansion
	Kernel trick
	Support vector machine
	Demo: SVM with linear kernel
	Demo: SVM with RBF kernel
	SVM: Summary

	Decision Trees
	What is a decision tree?
	Attribute description
	Expressiveness of decision trees
	A computer game
	A computer game
	Alternative hypotheses
	How to choose the best tree?
	Learning a Decision Tree
	Attribute importance
	Choosing the best attribute
	Choosing the test attribute (special case: binary classification)
	Choosing the test attribute (example)
	Choosing subsequent test attribute
	Decision tree building procedure
	Algorithm characteristics
	How to prevent overfitting for trees?
	Missing data
	Multivalued attributes
	Attributes with different prices
	Continuous input attributes
	Continuous output variable
	Trees: Summary

	Summary
	Competencies

	pdstartclock:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:

