Introduction to Graphical Models

Alexander Shekhovtsov
2018
https://cw.fel.cvut.cz/wiki/courses/ucuss18

Roadmap

Introduction: What are Graphical Models

Basic Classification Problems

Two-class

Multi-class

Classification Using Discriminant Functions

- SVMs
- Design measurements, represent them as a feature vector
- Learn the best discriminant function
- Deep NNs (simplified view)
- Learn deep feature vectors
- Apply SVM

Motivation for Graphical Models I: Structured Predictions

- Text Recognition

- Optical Structure Recognition

- Body Parts Segmentation

- Landmarks and Parts Detection

Motivation for Graphical Models II: Probabilistic Reasoning

- Example: Medical Diagnosis
- Knowing the observed variables and conditional probabilities find the likely cause

[Lauritzen and Speigelhalter 1988]
- Originally, such diagrams and methods were used by experts with pen and paper...

- When do probabilities occur?

- As a result of randomness such as thermal noise, but not only...
- A way to represent information
- Example 1: information about population height
- Average human height is 162 cm (single number)
- Human heigh is from 54 to 272 cm (interval)
- Fraction of population of a given heigh
- contains more information
- more information $=>$ better solutions

- defines a probability distribution

Statistical Models

- We represent the information with probabilities $p(x)$
random person in the world

- Some new fact(s) need to be taken into account, e.g. male / female
- Refine the available information, $\mathrm{p}(\mathrm{x} \mid \mathrm{A})$

- Suppose also person weight is known weight

hight
- Example 2: non-functional dependencies

Hidden state $=$ patient's brain

Dependence of MRI 1 on MRI 2 is not a function! $\quad Y=f(X)$?

$$
p(Y \mid X)
$$

Can be described as conditional probability distribution

$\omega \in \Omega$ - elementary event
$A \subset \Omega$ - event
$P: \Omega \rightarrow[0,1]$ - probability measure
$X: \Omega \rightarrow \mathcal{X}$ - random variable $x \in \mathcal{X}$ - a value that r.v. X may take
$X=x$ - all elementary events that map to x :
$\{\omega \in \Omega \mid X(\omega)=x\}$ - an event $P(A) \vee P(X) X \quad P(X=x)$ $p_{X}: \mathcal{X} \rightarrow[0,1]-$ density (or p.m.f.) of X $p_{X}(x)$ - density at point x

This lecture:
$P(X=y, Y=y, Z=z)$ is abbreviated as $P(x, y, z)$
$p_{X, Y \mid Z}(x, y \mid z)$ is abbreviated as $p(x, y \mid z)$ or as
$p(X=1, y \mid z)$ when ambiguous
$p(X)$ will denote $p_{X}(X)$ - the "whole density function" (technically a composition: $\Omega \xrightarrow{X} \mathcal{X} \xrightarrow{\rho_{X}}[0,1]$)

Simple Classification Example

- Two classes to recognize: k in $\{0,1\}$
- take some measurement x , for example thickness

Salmon

1

Sea Bass

- Observe $X=5$, which fish is it?
- What if salmons are extremely rare in you lake?
- Need to know probabilities $\mathrm{p}(\mathrm{K})$ of fish occurrence
- $\mathrm{p}(\mathrm{K}=0)=0.15, \mathrm{p}(\mathrm{K}=1)=0.85$
- So what do we do with these numbers?

Known statistics $p(X \mid k)$ for $k=0,1$ p (measurement | knowing the class)

Theorem (Thomas Bayes, 1701-1761)

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)} \text {, where } A, B \text { are events and } P(B) \neq 0
$$

- For simple classification the denominator does not matter:

$$
p(K=0 \mid x) \gtrless p(K=1 \mid x) \quad \Leftrightarrow \quad \frac{p(K=0 \mid x)}{p(K=1 \mid x)} \gtrless 1 \quad \Leftrightarrow \quad \frac{p(x \mid K=0)}{p(x \mid K=1)} \gtrless \frac{p(K=1)}{p(K=0)}=\theta
$$

- If we have utilities (risks) or want to quantify uncertainty, need posterior probabilities:

$$
\mathrm{p}(\mathrm{~K}=0 \mid \mathrm{x})=0.52, \mathrm{p}(\mathrm{~K}=1 \mid \mathrm{x})=0.47
$$

Parameters as Random Variables

- Experiment: flipping a coin

$$
\begin{aligned}
& K \in\{\text { Heads, Tails }\} \\
& P(K=\text { Heads })=p \\
& P(K=\text { Tails })=1-p
\end{aligned}
$$

p is unknown

- Suppose you tried 20 times and observed: 18 H and 2 T
- What you can say about p ?
- $0<p<1$ (strictly)
- it is more likely that p is closer to 0.9

Bayes posterior of p (Beta distribution)

- but other values of p, including $1 / 2$ are not excluded...
- Bayes has proposed to assign probabilities to p considered as beliefs (the information that we have about p)

Axioms

- Recall axioms of the probability theory:

Axiom 1: $0 \leq P(A) \leq 1$, with $P(A)=1$ if A is certain
Axiom 2: If events $\left(A_{i}\right), i=1,2, \ldots$ are pairwise incompatible (exclusive)
then $P\left(\bigcup_{i} A_{i}\right)=\sum_{i} P\left(A_{i}\right)$
Axiom 3: $P(A \cap B)=P(B \mid A) P(A)$

- Proofs exist that these rules are necessary "if we want to assign numerical values to represent degrees of rational belief in a set of propositions" (Cox 1946).

Axiom 1: $0 \leq P(A) \leq 1$, with $P(A)=1$ if A is certain
Axiom 2: If events $\left(A_{i}\right), i=1,2, \ldots$ are pairwise incompatible (exclusive) then $P\left(\bigcup_{i} A_{i}\right)=\sum_{i} P\left(A_{i}\right)$
Axiom 3: $P(A \cap B)=P(B \mid A) P(A)$

- Exercise: prove the Bayes' theorem:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- Now prove it without axioms?

Richard Price

An Essay towards solving a Problem in the Doctrine of Chances, 1763

50 pages

If there be two fubfequent events, the probability of the $2 \mathrm{~d} \frac{b}{\mathrm{~N}}$ and the probability of both together $\frac{\mathrm{P}}{\mathrm{N}}$, and it being ift difcovered that the 2d event has happened, from hence I guefs that the ift event has alfo happened, the probability I am in the right is $\frac{\mathrm{P}}{\mathrm{b}} \dagger$.
"...in the constitution of things fixt laws according to which things happen...
...and thus to confirm the argument taken from final causes for the existence of the Deity"
Richard Price
...Bicycle invented about 50 years later

Exercise

- Suppose we have a test for cancer with the following statistics:
- The test was positive in 98% of cases when subjects had cancer
- The test was negative in 97% of cases when subjects did not had cancer
- Suppose that 0.1% of the entire population has this disease
- A patient takes a test. Compute
- The probability that a person who test positive has this disease?
- The probability that a person who test negative does not have this disease?

Variables: $C \in\{y, n\}, T \in\{+,-\}$

- Observed variables:
$X_{1}, X_{2}, \ldots, X_{n}$; represented by vector $X=\left(X_{i} \mid i=1, \ldots n\right)$; Event $X=x$ is denoted as x
- Hidden variables:
$K_{1}, K_{2}, \ldots, K_{m}$; represented by vector $K=\left(K_{i} \mid i=1, \ldots m\right)$
(The naming / roles may differ depending on the context)

Definition (Model)

A probabilistic model is the joint probability distribution over a set of random variables. We assume the density $p(X, K)$.

- Models describe how a part of the world works. Are always approximations or simplifications.
- Posterior inference task: Given $X=x$, compute $p(K \mid x)$
- Maximum a posterior task (recognition): $\underset{K}{\operatorname{argmax}} p(K \mid x)$
- Statistical decision making: $\underset{d}{\operatorname{argmin}} \sum_{k} \operatorname{Risk}(d, k) p(k \mid x)$

Model: $p(X, K)$

- Observation: $\mathrm{x}=$ (yes, yes, yes, no)
- Tasks:
- Posterior: $\mathrm{p}(\mathrm{K} 3=\mathrm{yes} \mid \mathrm{x})$ (belief in bronchitis)
- MAP: most likely explanation:

$$
\max _{k} p(k \mid x)
$$

- Decision making:
\{do nothing, heal $1,2,3$, new analysis\}

- More general queries:
- Suppose result of X-ray is not yet available,
- what in the belief in bronchitis versus more serious problems?
- what is the prediction for X-ray?
- how much the belief in bronchitis depends on X-ray?

The Promise and The Catch

- Promises of probabilistic models:
- A sound formulation for a system that can answer different kinds of queries:
- recognition (likely cause)
- handling missing data
- prediction (likely symptoms)
- "what if" queries
- semi-supervised learning (parameters are random variables)
- ...

- Obstacles:

- Model representation
- The problems that we can formulate mathematically are not necessarily solvable
- Looks like the right way to go, a major part in AI research
- With some hard work we get subclasses and approximations that are useful

Model Complexity

- Probabilistic models are useful
- To represent the model in the example we need probabilities for all combinations of 8 Boolean variables: $p\left(X_{1}, X_{2}, X_{3}, X_{4}, K_{1}, K_{2}, K_{3}, K_{4}\right)$
- $2^{\wedge} 8=256$ numbers
- Becomes quickly intractable

- to store / to learn

Trivial observation: If all variables are independent, the distribution factors as:
$p(X, K)=p\left(X_{1}\right) p\left(X_{2}\right) p\left(X_{3}\right) p\left(X_{4}\right) p\left(K_{1}\right) p\left(K_{2}\right) p\left(K_{3}\right) p\left(K_{4}\right)$
Can be described by just 8 parameters. Something in between?

Conditional Independence

- Example: smoke, fire, alarm
- all 3 correlated, but
- given smoke $=>$ fire and alarm are independent X and Y with density $p(X, Y)$ are independent iff $p(x, y)=p(x) p(y)$ for all $x \in \mathcal{X}, y \in \mathcal{Y}$
- Conveniently represented with a graph diagram

- Factorization: $p\left(X_{1}, X_{2}, X_{3}\right)=p\left(X_{2}, X_{3} \mid X_{1}\right) p\left(X_{1}\right)=p\left(X_{2} \mid X_{1}\right) p\left(X_{3} \mid X_{1}\right) p\left(X_{1}\right)$
- A directed graphical model (Bayes Network)

Markov Chain

- Example:
- X_{i} - weather state on day i
- Simplifying assumption: the weather on day i depends only on the state on day $\mathrm{i}-1$, but not $\mathrm{i}-2$,

- Factorization: $p\left(X_{1}, X_{2}, X_{3}, \ldots\right)=p\left(X_{1}\right) p\left(X_{2} \mid X_{1}\right) p\left(X_{3} \mid X_{2}\right) \ldots$

State transition diagram

- Example:
- S_{i} - letter in a sequence (hidden)
- X_{i} - observed images

- Factorization: $p(X, S)=p\left(S_{1}\right) \prod_{i=2}^{n} p\left(S_{i} \mid S_{i-1}\right) \prod_{i=1}^{n} p\left(X_{i} \mid S_{i}\right)$
- A region is independent of the rest given some neighborhood

Markov Random Field

- Example: 2D spin glass:
- X_{i} - spin orientation $\{-1,1\}$
- Neighboring states "like" to be the same
- Local Markov Property w.r.t. G:

- Given neighbors of X_{i}, it is independent of the rest.
- Pairwise Markov Property w.r.t. G:

- Absent edge (i, j) iff X_{i} and X_{j} are conditionally independent given the rest.
- Factorization: $p(x)=\prod_{c \in \mathcal{C}(G)} g_{c}\left(x_{c}\right) \quad$ (over cliques of G , more on this later)

Factor Graphs

- Factorization is another constructive way to define joint probability distribution than conditional independence

$$
p(X)=\frac{1}{Z} f_{1}\left(X_{1}\right) f_{2}\left(X_{1}, X_{2}\right) f_{3}\left(X_{1}, X_{2}\right) f_{4}\left(X_{2}, X_{3}\right)
$$

Z is the normalization factor, such that $\sum_{X} p(X)=1$

- It is more general
- Inference algorithms often work directly with the factorization
- But:
- more difficult to learn

(c.f. conditional probabilities we could measure directly from the data)

Factor Graphs

- Coding
- Sending N bits over a noisy channel to decode n bits
- Shannon limit: codes exist with $n / \mathrm{N}<$ channel capacity for arbitrary small error rate
- LDPCs: proposed by Robert Gallager in 1962
- Good decoding algorithms found in 90's
- Appeared to be instances of Belief Propagation
- Motivated a lots of research on BP
- Turbo Codes and LDPCs
- 3G and 4G mobile standards
- digital video broadcasting
- satellite communication systems
- ...
- Current codes coming closer and closer to Shannon limit

Reduced factor graph

Difference Between Recognizing Whole and a Part

- Example: joint probability $p(X, Y)$:
- $p(A, A)=0.4$
- $p(A, B)=0.1$
- $p(B, A)=0.3$
- $p(B, B)=0.2$
- Goal: decide whether X is A or B (say we win $1 \$$ if we guess right)
- Approach 1: the most probable joint state is AA -> decide for A
- Approach 2: compute marginal distribution $p(X)->$ decide based on that
- Continous example:
- X - face position, Y - arm position
- Want to know face position
- In practice, however we deal with approximation algorithms
 that behave poorly at high levels of uncertainty, anyhow

Conclusion

- Summary
- Probabilistic models describe how some part of world works
- Well suited for reasoning with uncertainty and posing many recognition problems
- Graphical Models are probabilistic models
- Have an underlying graph-like structure
- The structure is a way of simplification and is related to the structure of an application
- Modeling is needed to come up with a good structure
- The space complexity is tractable
- Solving the recognition problems (the time complexity) may be difficult
- But still often possible, areas of applications of GMs:
- Computer Vision
- Bioinformatics
- Communications
- ...

Hidden Markov Model

Goals

- Good for Classical Education
- Illustration of MAP and marginals problems that can be solved without hacks
- A very good starting point for understanding methods that work in general graphs (MRFs)
- In fact many methods are only understood as an extension of exact algorithms on trees
- There are actually many applications

Markov Chain

Directed GM

$$
p(x, y)=p\left(x_{1}\right) \prod_{i=2}^{n} p\left(x_{i} \mid x_{i-1}\right)
$$

Given X_{3}, X_{2} and X_{4} are independent

$$
\text { Factorization: } \prod_{i j}^{n} g\left(x_{i}, x_{j}\right)
$$

Factorization in marginals:

$$
\prod_{i j}^{n} \frac{p\left(x_{i}, x_{j}\right)}{p\left(x_{i}\right) p\left(x_{j}\right)} \prod_{i} p\left(x_{i}\right)
$$

For converting between these forms, we
 will need an algorithm for computing marginals

Hidden Markov Model

Directed GM

$$
p(x, y)=p\left(x_{1}\right) \prod_{i=2}^{n} p\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{n} p\left(y_{i} \mid x_{i}\right)
$$

- Sequences (text, grammars)
- Time dependencies (speech, tracking, DNA)
- Good for understanding many things
- Basis for generalization of several algorithms

Undirected GM

Given X_{3}, Y_{3} is independent of the rest Given X_{3}, X_{2} and X_{4} are independent

$$
\prod_{i=2}^{n} g\left(x_{i}, x_{i-1}\right) \prod_{i=1}^{n} f\left(y_{i}, x_{i}\right)
$$

Observe that: $p(x)=p\left(x_{1}\right) \prod_{i=2}^{n} p\left(x_{i} \mid x_{i-1}\right)$ - Markov chain

MAP Problem

Maximum a posteriori (MAP): given observation y we want to find the most probable hidden configuration $x: \max _{x} p(x \mid y)$

Recall $p(x \mid y)=p(x, y) / p(y)$

For fixed $y, \operatorname{pdf} p(x \mid y)$ is a Markov chain on x :
$p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}=\frac{1}{p(y)} p(x) \prod_{i} p\left(y_{i} \mid x_{i}\right)=\frac{1}{p(y)} \prod_{i j} g_{i j}\left(x_{i}, x_{j}\right) \prod_{i} g_{i}\left(x_{i}\right)$
(We'll need marginalization computations to recover a directed or marginals factorization)
To find the MAP solution x we don't need to know $p(y)$:
$\underset{x}{\operatorname{argmax}} \prod_{i} g_{i}\left(x_{i}\right) \prod_{i j} g_{i j}\left(x_{i}, x_{j}\right)$

Energy Minimization

$$
\underset{x}{\operatorname{argmax}} \prod_{i} g_{i}\left(x_{i}\right) \prod_{i j} g_{i j}\left(x_{i}, x_{j}\right)=\underset{x}{\operatorname{argmax}} \log \left(\prod_{i} g_{i}\left(x_{i}\right) \prod_{i j} g_{i j}\left(x_{i}, x_{j}\right)\right)
$$

log is monotone, all factors non-negative

$$
\begin{aligned}
& f_{a}\left(x_{a}\right)=-\log g_{a}\left(x_{a}\right) \\
& \underset{x}{\operatorname{argmin}}\left[E(x)=\frac{\left.\sum_{i} f_{i}\left(x_{i}\right)+\sum_{i j} f_{i j}\left(x_{i}, x_{j}\right)\right]}{\text { data }} \frac{\text { prior }}{}\right.
\end{aligned}
$$

- Need to find a minimum of a function which is a sum of functions of one variable (unary terms) and two variables (pairwise terms)

As Shortest Path

$$
\underset{x}{\operatorname{argmin}}\left[E(x)=\sum_{i} f_{i}\left(x_{i}\right)+\sum_{i j} f_{i j}\left(x_{i}, x_{j}\right)\right]
$$

(Construction known as Trellis graph)

- Paths map one to one to labelings x; cost of a path equals $E(x)$
- Shortest path $<=>$ MAP solution

Algebraic View / Viterbi Algorithm

- Problem:

$$
\min _{x} \sum_{i \in \mathcal{V}} f_{i}\left(x_{i}\right)+\sum_{i j \in \mathcal{E}} f_{i j}\left(x_{i}, x_{j}\right)
$$

- Use distributivity:

$$
\min (a+c, b+c)=\min (a, b)+c
$$

$$
\min _{x_{1}, \ldots x_{n}}\left[f_{1,2}\left(x_{1}, x_{2}\right)+f_{1}\left(x_{1}\right)+\ldots\right]=\min _{x_{2}, \ldots x_{n}}\left[\min _{x_{1}}\left[\left(f_{1,2}\left(x_{1}, x_{2}\right)+f_{1}\left(x_{1}\right)\right)+\ldots\right]\right.
$$

- Recurrent update:

$$
\begin{aligned}
& \vec{\varphi}_{1}\left(x_{1}\right)=0 \\
& \vec{\varphi}_{j}\left(x_{j}\right)=\min _{x_{i}}\left(f_{i j}\left(x_{i}, x_{j}\right)+f_{i}\left(x_{i}\right)+\vec{\varphi}_{i}\left(x_{i}\right)\right)
\end{aligned}
$$

$$
\vec{\varphi}_{2}\left(x_{2}\right)
$$

Viterbi Algorithm:
Forward pass: computes best path from the left Backward pass: backtrack the minimizer

Shortest path from the left to every state. Core of all message passing algorithms

Given factorization $p(x)=\frac{1}{Z} \prod_{i} g_{i}\left(x_{i}\right) \prod_{i j} g_{i j}\left(x_{i}, x_{j}\right)$
Compute $p\left(x_{i}\right), p\left(x_{i}, x_{j}\right)$:

$$
p\left(x_{i}\right)=\sum_{x_{\mathcal{V} \backslash\{i\}}} p(x)=\sum_{x_{1}, \ldots x_{i-1}, \square, x_{i+1} \ldots x_{n}} p(x) ; \quad p\left(x_{i}, x_{j}\right)=\sum_{x_{\mathcal{V}} \backslash\{i, j\}} p(x)
$$

$$
\begin{aligned}
& p\left(x_{i}\right) \propto \vec{M}_{i}\left(x_{i}\right) g_{i}\left(x_{i}\right) \overleftarrow{M}_{i}\left(x_{i}\right) \\
& \sum_{x_{i}} p\left(x_{i}\right)=1
\end{aligned}
$$

$$
p\left(x_{i}, x_{j}\right) \propto \vec{M}_{i}\left(x_{i}\right) g_{i}\left(x_{i}\right) g_{i j}\left(x_{i}, x_{j}\right) g_{j}\left(x_{j}\right) \overleftarrow{M}_{j}\left(x_{j}\right)
$$

$$
\sum_{x_{i}, x_{j}} p\left(x_{i}, x_{j}\right)=1
$$

Marginals

Given factorization $p(x)=\frac{1}{Z} \prod_{i} g_{i}\left(x_{i}\right) \prod_{i j} g_{i j}\left(x_{i}, x_{j}\right)$
Compute $p\left(x_{i}\right), p\left(x_{i}, x_{j}\right)$:

$$
p\left(x_{i}\right)=\sum_{x_{\mathcal{V} \backslash\{i\}}} p(x)=\sum_{x_{1}, \ldots x_{i-1}, \square, x_{i+1} \ldots x_{n}} p(x) ; \quad p\left(x_{i}, x_{j}\right)=\sum_{x_{\mathcal{V} \backslash\{i, j\}}} p(x)
$$

- Use distributivity: $a \cdot c+b \cdot c=(a+b) \cdot c$,

$$
\begin{aligned}
& \sum_{x_{1}, \ldots x_{i-1}}\left[g_{12}\left(x_{1}, x_{2}\right) \cdot g_{1}\left(x_{1}\right) \cdot(\ldots)\right]=\sum_{x_{2}, \ldots x_{i-1}} \frac{\left[\sum_{x_{1}}\left[\left(g_{12}\left(x_{1}, x_{2}\right) \cdot g_{1}\left(x_{1}\right)\right) \cdot(\ldots)\right]\right.}{\vec{M}_{2}\left(x_{2}\right)} \\
& \text { Recurrent update: }
\end{aligned}
$$ Note: this is matrix-vector product

$$
\begin{aligned}
& \vec{M}_{1}\left(x_{1}\right)=1 \\
& \vec{M}_{j}\left(x_{j}\right)=\sum_{x_{i}}\left(g_{i j}\left(x_{i}, x_{j}\right) \cdot g_{i}\left(x_{i}\right) \cdot \vec{M}_{i}\left(x_{i}\right)\right)
\end{aligned}
$$

- Forward: compute left marginals recurrently: $\vec{M}_{i}\left(x_{i}\right)$
- Backward: compute right marginals recurrently $\overleftarrow{M}_{i}\left(x_{i}\right)$
- Compose marginals as $p\left(x_{i}\right)=\vec{M}_{i}\left(x_{i}\right) g_{i}\left(x_{i}\right) \overleftarrow{M}_{i}\left(x_{i}\right)$

Exercise: Extend to Trees

$$
p\left(x_{i}\right) \propto \vec{M}_{i}\left(x_{i}\right) g_{i}\left(x_{i}\right) \overleftarrow{M}_{i}\left(x_{i}\right)
$$

Generalized Algorithms

- Did you notice the similarity of computations in MAP and marginals problems?

Actually, for any semi-ring (R, \oplus, \otimes) there holds distributivity:

$$
\begin{aligned}
& a \otimes(b \oplus c)=(a \otimes b) \oplus(a \otimes c) \\
& (b \oplus c) \otimes a=(b \otimes a) \oplus(c \otimes a)
\end{aligned}
$$

We can write a generalized algorithm for the problem of $\oplus \otimes$ marginals on a chain (tree):

$$
m_{i}\left(x_{i}\right)=\bigoplus_{x_{\mathcal{V} \backslash i}} \bigotimes_{i j} g_{i j}\left(x_{i}, x_{j}\right)
$$

For example: $(\mathbb{B}, \vee, \wedge),([0,1], \min , \max),(\mathbb{R}$, logsumexp,+$) \sim\left(\mathbb{R}_{+},+, \times\right)$
[Schlesinger M.I. Ten lectures in statistical and structural pattern recognition]

Example: Scan-line Stereo

- Input
- Two images from a calibrated camera pair
- Rectified: epipolar lines correspond to image rows

- Problem
- For each pixel in the left image find the corresponding pixel in the right image

Input Pair

Disparity
Map (GT)

- Output
- Dense depth (disparity) map

Example: Scan-line Stereo

$$
\min _{x} \sum_{i \in \mathcal{V}} f_{i}\left(x_{i}\right)+\sum_{i j \in \mathcal{E}} f_{i j}\left(x_{i}, x_{j}\right)
$$

i - pixel
x_{i} - chosen disparity label
$x=\left(x_{i} \mid i \in \mathcal{V}\right)$ - labeling
$f_{i}\left(x_{i}\right)$ - matching cost
$f_{i j}\left(x_{i}, x_{j}\right)$ - smoothness cost

Conclusion

- Hidden Markov Model is very similar to Markov Chain
- All problems seem to be solvable with a kind of dynamic programming (but e.g. unsupervised learning isn't)
- In fact, trees seem to be important
- Junction Tree Algorithm
- Unsupervised learning (hidden states not observed) - Baum-Welsche algorithm
- Parallel algorithms $\mathrm{O}(\mathrm{n} \log (\mathrm{K}))$ time with K processors:
- sum-product: Fourier transform
- min-sum: lower envelopes, distance transform
- Kalman Filter
- Markov Chain Monte Carlo
- Ergodicity and stationary distribution
- Finale state automata
- Markov Decision Processes

More on Dynamic Programming

Conditional Independence and Bellman Optimality

- Given x_{i}, the optimal solution consists of optimal solution (s to x_{i}) and (x_{i} to t)
- Variables $\left(X_{1, \ldots} X_{i-1}\right)$ and $\left(X_{i+1, \ldots} X_{n}\right)$ are conditionally independent given X_{i}

Lower Envelopes

One minimization of the form

$$
\vec{\varphi}_{j}\left(x_{j}\right)=\min _{x_{i}}\left(\vec{\varphi}_{i}\left(x_{i}\right)+f_{i}\left(x_{i}\right)+f_{i j}\left(x_{i}, x_{j}\right)\right)
$$ is the problem of finding a lower envelope of a set of functions well studied in geometry / graphics

- Lower envelope (distance transform)

$f_{i j}\left(x_{i}, x_{j}\right)=w_{i j} \rho\left(x_{i}-x_{j}\right)$
$O\left(n L^{2}\right)$ - naive approach, n variables, L labels
$O(n L)$ - efficient sequential algorithms [Hirata'96, Meijster'02] [Felzenszwalb\&H.'06]
$O(n \log L)$ - efficient parallel algorithms, using L processors
[Goodrich'86, Chen'02]

Max-Product BP, Tree-Reweighted'

- Can Run Message passing in parallel

$O(n)$ time, $O(n)$ processors
c.f. all shortest paths in a graph
(Floyd-Warshall alg.)

$$
d(i, j):=\min _{k}(d(i, k)+d(k, j))
$$

- Can apply on graphs with loops (loopy BP)

- Over-counting
- May oscillate
- May diverge (unbounded)
- Tree-Reweighted [Wainwright'05]

- Decomposition into trees
- Connection to LP relaxation and its dual
- Parallel algorithm may still oscillate

Markov Random Fields

Goals

- Definitions
- Examples in Computer Vision
- Overview on MAP problem, one technique in detail
- Marginals problem - variational approach in detail

Random Field

- Collection of discrete random variables

$$
X_{1}, X_{2}, \ldots X_{n}, \quad X_{i} \in D
$$

Definition

$p: D^{n} \rightarrow \mathbb{R}$ is a random field if $p(x)>0 \forall x, \sum_{x} p(x)=1$.

- Non-negativity is important for existence of conditional probabilities and other good reasons. Practically not a limitation.

Definition

Random field p is a Markov random field if it satisfies some conditional independence (Markov) properties.

MRF w.r.t. a Graph

- Graph $G=(V, E)$
- Set of nodes V; random variables $X_{i}, i \in V$
- Set of edges E
- Local Markov Property w.r.t. G:
- Given the neighbors of X_{i}, it is independent of the rest:

$$
p\left(X_{i} \mid X_{V_{1}}\right)=p\left(X_{i} \mid X_{N(i)}\right), \forall i \in \mathcal{V}
$$

- Pairwise Markov Property w.r.t. G:

- Absent edge (i, j) in G iff X_{i} and X_{j} are conditionally independent given the rest of variables.

Theorem (Lauritzen 96)

Local and Pairwise Markov Properties are equivalent.

Definition

MRF w.r.t. graph G is a random field satisfying Markov property w.r.t. G

- Conditional independencies help to structure and simplify the distribution

Theorem (Hammersley-Clifford,1971)

MRF p w.r.t. graph G factors over cliques of $G: p(x)=\prod_{c \in C} f_{c}\left(x_{c}\right)$,

- C is the set of cliques - maximal fully connected subgraphs

Definition

p is a Gibbs Random field if it factors as $p(x)=\prod_{c \subset S} f_{c}\left(x_{c}\right)$,

- Here we do not need c to be a clique in some graph
- Knowing factorization is more than knowing conditional independencies
- The factorization is what matters for the representation tractability and inference

MRF Model

Image

Segmentation

Observations: $p(y \mid x)=\prod_{i} p\left(y_{i} \mid x_{i}\right)$
Prior: $p(x)=\prod_{i j} \exp \left(-\lambda\left|x_{i}-x_{j}\right|\right)$
same neighbors are more probable Samples from the prior for varied lambda:

Input Image

binary segmentation

Conditional Random Field

- $x_{i}, i \in V$ - hidden random variables (segmentation)
- $y_{j}, j \in V^{\prime}$ - observed random variables (Image)

Definition (Lafferty et al. 01)

$p(x \mid y)$ is a conditional random field if it satisfies Markov properties w.r.t. x given y.

observed variables y
Generative: $p(y)=\sum_{x} p(x, y)$
can be learned unsupervised

CRF $\mathrm{p}(\mathrm{x} \mid \mathrm{y})$
hidden variables x

Discriminative, no model of $p(y)$ more flexible for recognition

Recognition is the same: $\operatorname{argmin}_{x} p(x, y)=\operatorname{argmin}_{x} p(x \mid y)$

CRF Model

Input Image

binary segmentation

CRF model: $p(y \mid x)=\prod_{i} g_{i}\left(y \mid x_{i}\right)$
$\mathrm{g}_{\mathrm{i}}\left(\mathrm{y} \mid \mathrm{x}_{\mathrm{i}}\right)$ - could be a logistic model, decision tree, boosted classifier, etc.

MAP of MRF - Energy Minimization

- Given the model $p(x)=\prod_{c \in S} g_{c}\left(x_{c}\right)$ find the most probable state:

$$
\max _{x} p(x)
$$

- Joint maximization in all variables
- Take negative logarithm:

$$
\min _{x} \sum_{c \in S}-\log g_{c}\left(x_{c}\right)=\min _{x} E(x)
$$

- Partially separable minimization problem, called Energy minimization
- Belongs to discrete optimization domain (combinatorial optimization, graph theory, ILP, relaxations, etc.)
- Many optimization techniques specifically suitable for computer vision

Pairwise Energy Minimization

Common scenario: only pairwise interactions:

$$
\min _{x} \sum_{i \in \mathcal{V}} f_{i}\left(x_{i}\right)+\sum_{i j \in \mathcal{E}} f_{i j}\left(x_{i}, x_{j}\right)
$$

$(\mathcal{V}, \mathcal{E})$ - graph
\mathcal{V} - set of nodes
\mathcal{E} - set of edges
$x=\left(x_{i} \mid i \in \mathcal{V}\right)$ - labeling

- NP-hard (includes MAX-CUT, vertex packing, etc.)
- Two large groups of methods used in CV:
- minimum cut (graph cuts)
- LP relaxation / message passing
- There are much more

Common scenario: only pairwise interactions:

$$
\min _{x} \sum_{i \in \mathcal{V}} f_{i}\left(x_{i}\right)+\sum_{i j \in \mathcal{E}} f_{i j}\left(x_{i}, x_{j}\right)
$$

$(\mathcal{V}, \mathcal{E})$ - graph
\mathcal{V} - set of nodes
\mathcal{E} - set of edges

$$
x=\left(x_{i} \mid i \in \mathcal{V}\right) \text { - labeling }
$$

- NP-hard (includes MAX-CUT, vertex packing, etc.)
- Two large groups of methods used in CV:
- minimum cut (graph cuts)
- LP relaxation / message passing
- There are much more

Example: Semantic Segmentation

Example: Potts Model for Object Class Segmentation

- \mathcal{V} - set of pixels; $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$ neighboring pixels;
- $\mathcal{X}_{s}=\{1, \ldots K\}$ - class label;
- $E_{f}(x)=\sum_{s \in \mathcal{V}} f_{s}\left(x_{s}\right)+\sum_{s t \in \mathcal{E}} \lambda_{s t} \llbracket x_{s} \neq x_{t} \rrbracket$.

Complexity of Energy Minimization

Cannot guarantee $f(x) \leq P(n) f\left(x^{*}\right)$

$$
f(x) \leq C f\left(x^{*}\right)
$$

$$
f(x)=f\left(x^{*}\right)
$$

As Integer Linear Program

- Energy minimization: $\min _{x} \sum_{i} f_{i}\left(x_{i}\right)+\sum_{i j} f_{i j}\left(x_{i}, x_{j}\right)$
- For each i encode x_{i} with $\mu_{i}(k) \in\{0,1\}, k$ - label
- For each ij encode $\left(x_{i}, x_{j}\right)$ with $\mu_{i j}\left(k, k^{\prime}\right) \in\{0,1\}$
- The objective linearizes
- μ need to respect constraints

$$
\begin{aligned}
& \min _{\mu} \sum_{i} \sum_{k} E_{f i}(k) \mu_{i}(k)+\sum_{i j} \sum_{k, k^{\prime}} E_{f j i}\left(k, k^{\prime}\right) \mu_{i, j}\left(k, k^{\prime}\right) \\
& \mu \geq 0 ; \quad \mu \in\{0,1\}^{\mathcal{I}} \\
& \sum_{k} \mu_{i}(k)=1 \\
& \sum_{k, k^{\prime}} \mu_{i j}\left(k, k^{\prime}\right)=1 \\
& \sum_{k^{\prime}} \mu_{i j}\left(k, k^{\prime}\right)=\mu_{i}(k) \\
& \sum_{k} \mu_{i j}\left(k, k^{\prime}\right)=\mu_{j}\left(k^{\prime}\right)
\end{aligned}
$$

- Consider a class C of problems specified by unrestricted graph structure and pairwise potentials from some set F.

Theorem (Thapper and Zivny 2012, Kolmogorov 2013)
(Roughly) Class C has a polynomial time algorithm iff the Basic LP relaxation is tight for C.

- This means LP relaxation is a rather universal tool
- It is also tight for many practical individual instances or provides a good approximation

Theorem (Prusa, Werner, 2017)

LP Relaxation of MAP MRF is as hard as any linear program. (Already for Potts model with 3 labels on a planar graph).

- It means it is very unlikely to come up with an algorithm better than $\mathrm{O}\left(\mathrm{n}^{3.5} \mathrm{~L}\right)$
- Many approximate methods developed in Computer Vision

Capacitated network
$G=(V, E, c)$,
$c(u, v) \geq 0-\operatorname{arc}$ capacities

- Problem history: $30+$ years
- Active research for better algorithms:
- theoretical (Orlin'12: O(mn) algorithm), parallel algorithms
- practical, esp. in computer vision

Cut cost: $\sum_{\substack{(u, v) \in E \\ u \in S \\ v \notin S}} c(u, v) \rightarrow \min _{\substack{S \in S \\ t \notin S}}$
Source set S

Sink set $T=V \backslash S$

Reduction to Minimum s-t Cut

- Let $x_{i} \in\{0,1\}$
- Energy minimization: $\min _{x} \sum_{i \in \mathcal{V}} f_{i}\left(x_{i}\right)+\sum_{i j \in \mathcal{E}} f_{i j}\left(x_{i}, x_{j}\right)$
- Expand as polynomial:

$$
\begin{array}{ll}
f_{i}\left(x_{i}\right)=f_{i}(1) x_{i}+f_{i}(0)\left(1-x_{i}\right) & =c_{0}+c_{i} x_{i} ; \\
f_{i j}\left(x_{i}, x_{j}\right)=\ldots & =c_{0}^{\prime}+c_{i}^{\prime} x_{i}+c_{j}^{\prime \prime} x_{j}+c_{i j} x_{i}\left(1-x_{j}\right) .
\end{array}
$$

- Minimum cut: $\min _{S \subset V} \sum_{i j \in(S, V \backslash S)} c_{i j}$

- Solvable in polynomial time if $\mathrm{cuv}>=0$

Image

Segmentation result

Exercise

Recall the segmentation model: $f_{i j}\left(x_{i}, x_{j}\right)=\lambda\left|x_{i}-x_{j}\right|, x_{i} x_{j} \in\{0,1\}$
Derive $c_{i j}$ such that $f_{i j}$ expresses as
$c_{0}+a x_{i}+b x_{j}+c_{i j} x_{i}\left(1-x_{j}\right)$

Multiview Reconstruction
Lempitsky et al. 2006
Boykov and Lempitsky 2006

Surface Fitting
Lempitsky and Boykov 2007

3D Segmentation
Boykov and Joly 2001 Boykov and Funka-Lea 2006 Boykov and Kolmogorov 2003

(More with further extensions)

Just few more...

Example: Joint Segmentation and Parameter Estimation

- Input:

- Output:
- Complete segmentation

Rother, Kolmogorov, Blake: "GrabCut" - Interactive Foreground Extraction using Iterated Graph Cuts

- Markov random field (generative) model:
- Segmentation x : $\Omega \rightarrow\{0,1\}$
- Model: $p(x)$ - neighboring pixels are more likely to take the same segment
- Color clusters: $k: \Omega \rightarrow\{1, \ldots K\}$
- Model: $p(k \mid x)$ - conditionally independent for all pixels
- Image: $I: \Omega \rightarrow \mathbb{R}^{3}$ - color drawn from a color cluster
- Model: $p(I \mid k)$ - conditionally independent for all pixels

Method

- Given appearance model find best segmentation (min-cut)
- Given segmentation refit the appearance model
- Problem: fitting a Gaussian mixture is not closed form, may oscillate or get stuck
- Solution: Expectation Maximization algorithm

Stereo as Mincut

Sequence Alignment problem (bioinformatics), Needleman-Wunsch algorithm (1970) Also good for scan-line stereo!

Shortest Path
C

Minimum Cut - extends to surfaces

Hard to construct directly (one CV paper did)

$$
f_{i, j}\left(x_{i}, x_{j}\right)=V\left(x_{i}-x_{j}\right), \text { convex }
$$

Moregenerally, submodular

Multi-class segmentation for a hierarchy of nested candidate regions

[Lempitsky et al. A Pylon Model for Semantic Segmentation, 2011]

Optimized Crossover

Current best solution

Proposal solution

Crossover (fusion problem)

Local Search in some combinatorial locality

[Boykov, Veksler, and Zabih: "Fast Approximate Energy Minimization via Graph Cuts", 1999]

Space of Possible Expansion of One Label

Expansion Move

- Start with initial solution x
- For each label a
- Consider the Expansion-Move to a:
- x_{i} stays or switches to a -> reduce to graph cut and solve
- Iterate until \times stops changing

Semi-metric $f_{i j}(\alpha, \beta)$:

- $f_{i j}(\alpha, \beta)=0$ iff $\alpha=\beta$
- $f_{i j}(\alpha, \beta)=f_{i j}(\beta, \alpha) \geq 0$
- $f_{i j}(\alpha, \beta) \leq f_{i j}(\alpha, \gamma)+f_{i j}(\gamma, \beta)$

"robust" potentials:
outliers not over penalized

Theorem (Boykov, Veksler, Zabich, 1999)

For semi-metric problems, the expansion-move algorithm finds a solution with an approximation ratio: $2 c=2 c \max _{i j} \frac{\max _{\alpha \neq \beta} f_{i j}(\alpha, \beta)}{\min _{\alpha \neq \beta} f_{i j}(\alpha, \beta)}$

Applications of graph cuts

A general and fast technique
In 2011 received
Helmholtz Prize (Test of Time) Award

MRF Marginals - Mean Field Approximation

Computing Marginals

$$
p(x \mid y) \propto \exp \left(\sum_{i}-\phi_{i}\left(x_{i}, y_{i}\right)-\sum_{(i, j)} \phi_{i j}\left(x_{i}, x_{j}\right)\right) \quad \phi_{j i}\left(x_{j}, x_{i}\right) \equiv \phi_{i j}\left(x_{i}, x_{j}\right)
$$

Posterior of the states given image
Want to estimate marginals $p\left(x_{i} \mid y\right)$

$$
p\left(x_{i} \mid y\right)=\mathbb{E}_{X_{\mathcal{V} \backslash i\}}}[p(x \mid y)] \propto \sum_{x_{\mathcal{V} \backslash\{i\}}} \exp \left(\sum_{i}-\phi_{i}\left(x_{i}, y_{i}\right)-\sum_{(i, j)} \phi_{i j}\left(x_{i}, x_{j}\right)\right)
$$

Example of Marginal Probabilities

Factorized Approximation of the Posterior

MRF

$p\left(x_{i} \mid y\right)=\propto \sum_{x_{\mathcal{V} \backslash\{i\}}} \exp \left(\sum_{i}-\phi_{i}\left(x_{i}, y_{i}\right)-\sum_{(i, j)} \phi_{i j}\left(x_{i}, x_{j}\right)\right) \quad q(x)=\prod_{i} q_{i}\left(x_{i}\right)$

Want to estimate marginals $p\left(X_{i} \mid I\right)$

Mean Field
00000
00000
00000
$0 \quad 0 \quad 0 \quad 0$
00000

Approximation of the posterior (assume posterior distribution is concentrated around one configuration)

KL Divergence

Let $p(X)$ and $q(X)$ be two probability distributions.

Definition

Kullback-Leibler divergence (1951) of p and q is

$$
K L(p(X) \| q(X))=\sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}
$$

In the definition above $0 \log \frac{0}{0}=0 \log \frac{0}{q}=0$ and $p \log p 0=\infty$.
For continuous variables:

$$
K L(p(X) \| q(X))=\int p(x) \log \frac{p(x)}{q(x)} d x
$$

The expected number of extra bits required to code samples from p using a code optimized for q The amount of information lost when q is used to approximate p
Non-negative, $\mathrm{KL}(\mathrm{p} \| \mathrm{q})=0$ iff $\mathrm{p}=\mathrm{q}$

Assume $p(x)>0, q(x)>0, \sum_{x} p(x)=1, \sum_{x} q(x)=1$
Statement: $\sum_{x} p(x) \log \frac{p(x)}{q(x)} \geq 0$
Proof
Denote $y(x)=\frac{q(x)}{p(x)}$, the inequality reads:
$\sum_{x} p(x)(-\log y(x)) \geq 0$
Observe that log is a convex function, apply Jensen's inequality:
$\sum_{x} p(x)(-\log y(x)) \geq-\log \sum_{x} p(x) y(x)=-\log 1=0$

From strictly convexity: equality iff all $\mathrm{y}(\mathrm{x})$ are equal

Asymmetry

Minimizing forward KL divergence:

$$
\min _{q} K L(p \| q) \quad\left(\int p(x) \log \frac{p(x)}{q(x)} d x\right)
$$

Well on average in the expectation over p

Minimizing reverse KL divergence:

$$
\min _{q} K L(q \| p) \quad\left(\int q(x) \log \frac{q(x)}{p(x)} d x\right)
$$

Example: p-bimodal
q-Gaussian

Well on average in the expectation over q concentrating around a mode of p

- This gives rise to two families of variational methods

$$
K L(q \| p)=\sum_{x} q(x) \log \frac{q(x)}{p(x)}=-\sum_{x} q(x) \log p(x)+\sum_{x} q(x) \log q(x)
$$

Entropy of independent variables is additive:

$$
\begin{array}{r}
\sum_{x} q(x) \log q(x)=\sum_{x} \prod_{i^{\prime}} q_{i^{\prime}}\left(x_{i^{\prime}}\right) \sum_{i} \log q_{i}\left(x_{i}\right)=\sum_{x} \sum_{i} \prod_{i^{\prime}} q_{i^{\prime}}\left(x_{i^{\prime}}\right) \log q_{i}\left(x_{i}\right) \\
=\sum_{i} \sum_{x} \prod_{i^{\prime}} q_{i^{\prime}}\left(x_{i^{\prime}}\right) \log q_{i}\left(x_{i}\right)=\sum_{i} \sum_{x_{i}} q_{i}\left(x_{i}\right) \log q_{i}\left(x_{i}\right)=\sum_{i}-H\left(q_{i}\right) .
\end{array}
$$

Cross-entropy decouples over pairwise terms:

$$
\begin{array}{r}
\sum_{x} q(x) \log p(x)=-\sum_{x} \prod_{i^{\prime}} q_{i^{\prime}}\left(x_{i^{\prime}}\right)\left(\sum_{i} \phi_{i}\left(x_{i}\right)+\sum_{i j} \phi_{i j}\left(x_{i}, x_{j}\right)\right) \\
=-\sum_{i} \sum_{x_{i}} \phi_{i}\left(x_{i}\right) q_{i}\left(x_{i}\right)-\sum_{i j} \sum_{x_{i}, x_{j}} \phi_{i j}\left(x_{i}, x_{j}\right) q_{i}\left(x_{i}\right) q_{j}\left(x_{j}\right)
\end{array}
$$

$$
\min _{q} \sum_{i} \sum_{x_{i}} q_{i}\left(x_{i}\right)\left(\log q_{i}\left(x_{i}\right)+\phi_{i}\left(x_{i}\right)+\sum_{j \in \mathcal{N}(i)} \sum_{x_{j}} q_{j}\left(x_{j}\right) \phi_{i j}\left(x_{i}, x_{j}\right)\right)
$$

s.t. $\quad q_{i} \geq 0 ; \quad \sum_{x_{i}} q_{i}\left(x_{i}\right)=1 \quad \forall i \quad \mid \quad$ Lagrange multiplier λ_{i}

$$
0=\frac{\partial}{\partial q_{i}\left(x_{i}\right)}=\log q_{i}\left(x_{i}\right)+\phi_{i}\left(x_{i}\right)+1+\sum_{j \in \mathcal{N}(i)} \sum_{x_{j}} q_{j}\left(x_{j}\right) \phi_{i j}\left(x_{i}, x_{j}\right)-\lambda_{i}
$$

$$
\log q_{i}\left(x_{i}\right)=-\phi_{i}\left(x_{i}\right)-\sum_{j \in \mathcal{N}(i)} \sum_{x_{j}} q_{j}\left(x_{j}\right) \phi_{i j}\left(x_{i}, x_{j}\right)-\lambda_{i}^{\prime}
$$

$$
q_{i}\left(x_{i}\right) \propto \exp \left(-\phi_{i}\left(x_{i}\right)\right) \prod_{j \in \mathcal{N}(i)} \exp \left(-\sum_{x_{j}} q_{j}\left(x_{j}\right) \phi_{i j}\left(x_{i}, x_{j}\right)\right)
$$

Algorithms:
sequential coordinate-wise minimization (convergent)
parallel coordinate-wise (may oscilate)

Assume potentials have the following structure: $\phi_{i j}\left(x_{i}, x_{j}\right)=\rho\left(x_{i}, x_{j}\right) k(i-j)$
$\log q_{i}\left(x_{i}\right)=\phi_{i}\left(x_{i}\right)+\sum_{j \neq i} \sum_{x_{j}} q_{j}\left(x_{j}\right) \rho\left(x_{i}, x_{j}\right) k(i-j)-\lambda^{\prime}$

Parallel update can be implemented efficiently:

- For all labels I :
- $s(j):=\sum_{l^{\prime}} q_{j}\left(l^{\prime}\right) \rho\left(I, I^{\prime}\right)$
- $\log q_{i}^{\prime}(I):=\phi_{i}(I)+\sum_{j \neq i} s(j) k(i-j)=\phi_{i}(I)+s * k-s(i) k(0)$
- Renormalize all q_{i}^{\prime}
[Kraehenbuehl and Koltun: Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials, 2012]
Potentials of the form: $\phi_{i j}\left(x_{i}, x_{j}\right)=\rho\left(x_{i}, x_{j}\right) \sum_{m} w_{m} k^{m}\left(f_{i}-f_{j}\right)$, f-some features \rightarrow bilateral filtering

Convergence with some assumptions, better algorithms than parallel coordinate-descent, other relaxations
[Kraehenbuehl and Koltun: Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials, 2012]

$$
\begin{aligned}
& K L(p \| q)=\sum_{x} p(x) \log \frac{p(x)}{q(x)}=\sum_{x} p(x) \log p(x)-\sum_{x} p(x) \log q(x) \\
& \text {-Entropy of } \mathrm{p} \quad \text { Cross-entropy }-\mathbb{E}_{p(X)} \log q(X)
\end{aligned}
$$

When minimizing in $\mathrm{q}, \mathrm{H}(\mathrm{p})$ does not matter
Cross-entropy simplifies using factorization of q :
$\sum_{x} p(x) \log q(x)=\sum_{x} p(x) \sum_{i} \log q_{i}\left(x_{i}\right)=\sum_{i} \sum_{x_{1}, \ldots, x_{i}, \ldots, x_{n}} p(x) \log q_{i}\left(x_{i}\right)=\sum_{i} \sum_{x_{i}} p\left(x_{i}\right) \log q_{i}\left(x_{i}\right)$
Turns out that we need to know marginals $\mathrm{p}\left(\mathrm{X}_{\mathrm{i}}\right)$. But then:

$$
\begin{aligned}
& \min _{q}- \sum_{i} \\
& \sum_{x_{i}} p\left(x_{i}\right) q_{i}\left(x_{i}\right) \\
& \text { s.t. } \sum_{i} q_{i}=1
\end{aligned} \quad \Rightarrow q_{i}\left(x_{i}\right)=p\left(x_{i}\right)
$$

Forward divergence was the "right one" but we did not get a simplification

Mean Field as Approximation and Forward KL

Terms from the original distribution

The iterative algorithm can be understood as follows. At each iteration

- Approximate $p(x) \approx \hat{p}(x)=p\left(x_{i} \mid x_{V \backslash\{i\}}\right) q\left(x_{V \backslash\{i\}}\right)$
- Minimize $K L(\hat{p} \| q)$

Note, the second step efficiently means $q_{i}:=\hat{p}\left(x_{i}\right)=\sum_{x_{\mathcal{N}(i)}} p\left(x_{i} \mid x_{\mathcal{N}(i)}\right) q\left(x_{\mathcal{N}(i)}\right)$

Graphical Models as Neural Networks

Materials: Arnab et al. "Conditional Random Fields Meet Deep Neural Networks for Semantic Segmentation", 2018
$X_{1} \in\{\mathrm{bg}$, cat, dog, person $\}$

Pixels/ locations

$$
X_{28}=\operatorname{dog}
$$

Classifier for each pixel

$$
X_{1}=\mathrm{bg} \quad X_{4}=\mathrm{cat}
$$

Enforce consistence with CRF

Gradual "Neuralization" of CRF approaches

Convolutional
Feature Extractor \qquad Linear Classifier
Deep Convolutional Neural Network

FCN + Mean Field CRF

Mean Field CRF inference as common CNN operations

$Q_{u}(l) \leftarrow \frac{1}{\sum_{l^{\prime}} \exp \left(U_{u}\left(l^{\prime}\right)\right)} \exp \left(U_{u}(l)\right)$ while not converged do	\triangleright Initialization
$\tilde{Q}_{u}^{(m)}(l) \leftarrow \sum_{v \neq u} k^{(m)}\left(\mathbf{f}_{u}, \mathbf{f}_{v}\right) Q_{v}(l)$ for all m	
$\check{Q}_{u}(l) \leftarrow \sum_{m} w^{(m)} \tilde{Q}_{u}^{(m)}(l)$	\triangleright Message Passing
$\hat{Q}_{u}(l) \leftarrow \sum_{l^{\prime} \in L} \mu\left(l, l^{\prime}\right) \check{Q}_{u}\left(l^{\prime}\right) \quad \triangleright$ Weighting Filter Outputs	
$\breve{Q}_{u}(l) \leftarrow U_{u}(l)-\hat{Q}_{u}(l)$	\triangleright Compatibility Transform
$Q_{u}(l) \leftarrow \frac{1}{\sum_{l^{\prime}} \exp \left(\breve{Q}_{u}\left(l^{\prime}\right)\right)} \exp \left(\breve{Q}_{u}(l)\right)$	
end while	\triangleright Adding Unary Potentials

Mean Field Iteration

Conditional random fields as recurrent neural, networks (Zheng et al., 2015)

Another Example: CRF with Learned Potential Structure

Improved results compared to DenseCRF, based on Gibbs sampling (training and test time)

CNN+CRF Stereo

Knöbelreiter et al. End-to-End Training of Hybrid CNN+CRF Models for Stereo, 2017

Adaptive regularizer: $w_{i j} \rho\left(\left|x_{i}-x_{j}\right|\right)$
Commonly applied in segmentation, stereo
Contrast sensitive (gradient) model: $w_{i j}=\exp \left(\alpha\left|I_{i}-I_{j}\right|^{\beta}\right)$

Replaces post-processing such as Cost aggregation / filtering, SGM, etc.
Generalizes engineered features Occurs in many matching problems: image retrieval, optical flow, stereo

Effect of Joint Training

Unary CNN

Unary CNN + CRF

Discussion

- CRF could improve the results
- But also, we practically implemented it with CNN-like elements
- It means that in fact we have designed specialized CNN layers with a special structure - allowing for more spatial interactions
- enforcing clustering of neighboring predictions
- adjusting to image edges
- Does it matter that these layers were derived from MAP CRF?
- Further Topics
- Deep Boltzman machine, Deep Bayesian network

Bayesian Networks

Directed Graphical Model (Bayesian Network)

- Directed Acyclic Graph
- Graph $G=(V, E)$
- Set of nodes V; random variables $X_{i}, i \in V$
- Set of directed edges $E \subset V \times V$
- There are no directed loops in G
- Parents of i is the set $\mathrm{Pa}(i)=\{j \in \mathcal{V} \mid(j, i) \in E\}$

Edges encode "direct dependencies"

Definition

Bayesian network w.r.t. graph G is a random field that factorizes as

$$
p(X)=\prod_{i \in V} p\left(X_{i} \mid X_{\mathrm{Pa}(i)}\right)
$$

- As considered by Neal (1992)
- Binary variables
- Conditional probabilities using logistic model:

$$
\begin{aligned}
& p\left(Y_{j}=1 \mid X\right)=\frac{1}{1+\exp \left(-\sum_{i} w_{i} X_{i}\right)} \\
& p(Y \mid X)=\prod_{j} p\left(Y_{j} \mid X\right)
\end{aligned}
$$

- Logistic conditional probabilities:
- the probability model that has linear discriminant function
- can be also derived assuming the factorization
- Same conditional probabilities in:
- restricted Bolzman machine, deep Bolzman machine, deep Bayesian network
- X - observed feature vector
- K in $\{0,1\}$ - hidden class label (face / not face)

The optimal Bayesian classifier is given by

Equivalently, with log-odds:

$$
f(x):=\log p(K=1 \mid x)-\log p(K=0 \mid x) \lessgtr \eta
$$

What is the form of conditional distribution $p(K \mid X)$ such that $f(x)$ is linear: $f(x)=w^{\top} x$?

Consider a joint model $p(X, Y)=p(Y \mid X) p(X)$
Conditional distribution $p(Y \mid X)$ is strongly conditionally independent if it factors as:

$$
\begin{gathered}
p(y \mid x)=\frac{1}{Z(x)} \prod_{i, j} g_{i j}\left(x_{i}, y_{j}\right) \\
p(y \mid x)=\frac{1}{Z(x)} \exp \sum_{i, j} u_{i j}\left(x_{i}, y_{j}\right)=\prod_{j} \frac{1}{Z_{j}(x)} \exp \sum_{i} u_{i j}\left(x_{i}, y_{j}\right)=\prod_{j} p\left(y_{j} \mid x\right)
\end{gathered}
$$

Any function $u_{i j}\left(x_{i}, y_{j}\right)$ of binary variables can be written as $u_{i j}\left(x_{i}, y_{j}\right)=y_{j} W_{i j} x_{j}+b_{j} y_{j}+c_{i} x_{i}+d$ Terms $c_{i} x_{i}+d$ cancel in the normalization of $p(Y \mid X)$

$$
\begin{aligned}
& p\left(Y_{j}=1 \mid x\right)=\frac{1}{z_{j}(x)} \exp \left(\sum_{i} W_{i j} x_{j}+b_{j}\right), \quad p\left(Y_{j}=0 \mid x\right)=\frac{1}{z_{j}(x)} \exp (0)=\frac{1}{z_{j}(x)} \\
& p\left(Y_{j}=1 \mid x\right)=\frac{1}{1+\exp \left\{-\left(\sum_{i} W_{i j} x_{j}+b_{j}\right)\right\}}
\end{aligned}
$$

- Global conditional independencies - Markov Blanket
- Local conditional independencies - Moral Graph
- Optimal approximations by trees - Chow-Liu trees
- Other names for BN:
- belief network,
- directed graphical model
- (probabilistic network, causal network, knowledge map)

Neural Networks as Graphical Models

Materials: Shekhovtosv, Flach, Busta: "Feed-forward Uncertainty Propagation in Belief and Neural Networks", 2018

Recall: Sigmoid Belief Network

$$
\begin{aligned}
& p\left(Y_{j}=1 \mid X\right)=\frac{1}{1+\exp \left(-\sum_{i} w_{i} X_{i}\right)} \\
& p(Y \mid X)=\prod p\left(Y_{j} \mid X\right)
\end{aligned}
$$

Assume input $X^{0}=x^{0}$ is given,
Model: $p\left(X^{n}, X^{n-1}, \ldots, X^{1} \mid x^{0}\right)$

First level posterior: $\quad p\left(X^{1}=1 \mid x^{0}\right)=\mathcal{S}\left(W^{1} x^{0}\right)$
Second level posterior: $p\left(X^{2}=1 \mid x^{0}\right)=\sum_{x^{1}} p\left(X^{2}=1 \mid x^{1}\right) p\left(x^{1} \mid x^{0}\right)$

Network output: $p\left(X^{n} \mid x^{0}\right)=\mathbb{E}_{X^{1}, X^{2}, \ldots X^{n-1}} p\left(X^{n}, X^{n-1}, \ldots, X^{1} \mid x^{0}\right)$

- Sigmoid output is often interpreted as probability (e.g. part detectors, hierarchy of logistic models)
- NNs do not compute the expectation (substitute it inside)

- Use cases for computing the expectation:
- Improve stability (robustness) of neural networks
- Training networks with binary activations / weights

Sigmoid NN as Approximation

For two consecutive layers X, Y
Apply the first order Taylor approximation for the moments of functions of random variables:
$p\left(Y=1 \mid x^{0}\right)=\mathbb{E}_{X \sim P\left(X \mid x^{0}\right)}\left[\mathcal{S}\left(w^{\top} X\right)\right] \approx \mathcal{S}\left(E_{X}\left[w^{\top} X\right]\right)=\mathcal{S}\left(w^{\top} E_{X}[X]\right)$
Note that for Bernoulli variables $E_{Y}[Y]=p\left(Y=1 \mid x^{0}\right)$.
We obtained standard NN propagation rules where activations are the "means"

- Is this difference important?

Example: Logic Gates

- For example, composition of parts:
$\mathrm{X}_{1}=1$ if seeing "car mirror"
$\mathrm{X}_{2}=1$ if seeing "car stop light"
- If $X_{1}=1$ with probability 0.3 and $X_{2}=1$ with probability 0.2 what is the probability that booth are present: $\mathrm{X}_{1} \& \mathrm{X}_{2}$?

Let us fit logistic model $p(Y=1 \mid X)=\mathcal{S}\left(a\left(X_{1}+X_{2}\right)+b\right)$
And compare $\mathbb{E}_{X} \mathcal{S}\left(a\left(X_{1}+X_{2}\right)+b\right)$ with $\mathrm{AP} 1=\mathcal{S}\left(a \mathbb{E}_{X}\left[X_{1}+X_{2}\right]+b\right)$

$p\left(X_{1}=1\right)$	$p\left(X_{2}=1\right)$	$\mathbb{E}\left[X_{1} \wedge X_{2}\right]$	$\mathbb{E}[Y]$	AP 1
0	0	0	0.00015	0.00015
0	1	0	0.05	0.05
1	1	1	0.95	0.95
0.25	0.25	0.0625	0.077	0.0027
0.5	0.5	0.25	0.26	0.05
0.75	0.75	0.56	0.55	0.5

Parameters a, b are set such that: $\mathrm{S}(\mathrm{a}(1+1)+\mathrm{b})>0.95, \mathrm{~S}(\mathrm{a}(0+0)+\mathrm{b})<0.05$
Logistic model is ok, but NN severely underestimates the probability of X_{1} AND X_{2}. Similarly, for $\mathrm{X}_{1} \mathrm{OR} \mathrm{X}_{2}$, NN overestimates the probabilities.

Could it Be One of the Reasons for Instability?

original semantic segmentation framework

compromised semantic segmentation framework

Houdini: Fooling Deep Structured Prediction Models, Cisse et al. Cisse 2017

CNNs are sensitive to random noise and to adversarial attacks (structured noise optimized to compromise a given network)

The other reasons could be:
Lack of regularization (overfitting)? CNN structure?

Uncertain / Missing Inputs

- Uncertain input may be:
- Sensor noise (noisy image, lidar, computational sensors, etc.)
- an input from other networks

- Known ${ }^{1}$ to improve generalization of NNs
- Usually sampled at training time and replaced with means at test time

- Another case for statistical treatment
[1] Srivastava et al. (2014) Dropout: A Simple Way to Prevent Neural Networks from Overfitting
[2] Wang, S. and Manning, C. (2013). Fast dropout training. In ICML

More generally, let $Y=f(X, Z)$
Then c.d.f. of Y given $X, F_{Y}(y \mid X)=\mathbb{E}_{Z} \llbracket f(X, Z) \leq y \rrbracket$
We can in principle reconstruct $p(Y \mid X)$

In dropout training objective we have something like:
$\mathbb{E}_{Z}\left[\log \operatorname{softmax}\left(W^{n} \operatorname{ReLU}\left(W^{n-1} \operatorname{ReLU}\left(\ldots W^{1} x^{0} \ldots\right) Z_{n-2}\right) Z_{n-1}\right)\right)$

- All neurons are random variables
- Feed-forward network = directed graphical model

Output Uncertainty

- Goal: if we take into account all stochastic components, we should be able:
- in classification: compute better likelihoods (confidence estimates)
- in regression: output with uncertainty

Something like this:

Sampling techniques [Some paper]
Several methods exist, but not widely used and many open research questions

Feed-forward Uncertainty Propagation

General diagram for all layers

$$
\text { Linear: } Y=w^{\top} X
$$

$$
\begin{aligned}
\mu^{\prime} & =\mathbb{E}[Y]=w^{\top} \mathbb{E}[X]=w^{\top} \mu, \\
\sigma^{\prime 2} & =\sum_{i j} w_{i} w_{j} \operatorname{Cov}[X] \approx \sum_{i} w_{i}^{2} \sigma_{i}^{2},
\end{aligned}
$$

$$
\operatorname{ReLU}: Y=\max (X, 0)
$$

$$
\begin{aligned}
& \text { Assume } X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \\
& \mu^{\prime}=\int_{-\infty}^{\infty} p(X) f(X) d x \\
& \sigma^{\prime}=\int_{-\infty}^{\infty} p(X) f(X)^{2} d x-\mu^{\prime 2}
\end{aligned}
$$

- Also supporting: sigmoid, softmax, max-poolig, maxOut, dropout, ...

Different Coordinate-wise Functions

- Expectations are always smooth

Propagation Methods: Example

- AP1: take clean image and propagate with standard rules
- MC: take several samples of noise and collect statistics from propagating image+noise
- AP2: propagating mean and variance
 Bit if it is high we would not know about it

Data: CIFAR10

Network: 9 convolutional layers + last layer: average pooling, softmax

Better Stability

- Currently only for shallow networks, working on improving it

Statistics over the Dataset

- Problem:
compute expectations of neurons (mean and variance) over the dataset
- Used for: (same as in Batch Normalization)
- initialization (start in a non-saturated regime)
- normalization (a reparametrization better conditioning gradient descent)

Poor initialization: all inputs to a neuron are in a saturated part

Statistics for Normalization

- Shekhovtsov and Flach: Neural Network Normalization using Analytic Variance Propagation

Analytic Dropout

- Can give a better generalization than standard dropout and trains faster
- Related work: Wang and Manning "Fast dropout training"

(BN performs better in this plot)

Take Away Message

- Lots of things to improve in NNs understanding them as probabilistic models
- uncertain inputs, stability of NNs under perturbations
- uncertain outputs for regression
- initialization and normalization
- improving training with dropout and other noisy regularizers
- generative models
- better learning models

Variational Bayesian Learning

Maximum Likelihood

Let x be an input and y the prediction or class label we want to recognize.
Consider a conditional model $p(y \mid x ; \theta)$ parametrized by θ.
Let $D=\left\{\left(x^{t}, y^{t}\right) \mid t=1, \ldots T\right\}$ be a set of training samples.
Recall the maximum likelihood approach:

- Training: find the maximum conditional likelihood estimate of θ :

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} \prod_{t} p\left(y^{t} \mid x^{t} ; \theta\right)
$$

- Testing: recognize new input x using $\hat{\theta}$:

$$
y=\underset{y}{\operatorname{argmax}} p(y \mid x ; \hat{\theta})
$$

- The confidence is given by the posterior $p(y \mid x ; \hat{\theta})$

Bayesian Learning

Bayesian approach

- Consider θ as a random variable, with a priori distribution $p(\theta)$
- The conditional model becomes $p(y \mid x, \theta)$
- Training: the posterior estimate of θ given D is:
$p(\theta \mid D)=\frac{p(D \mid \theta) p(\theta)}{p(D)}=\frac{\prod_{t} p\left(y^{t} \mid x^{t}, \theta\right) p(\theta) p^{*}(x)}{p(D)}$,
where $p^{*}(x)$ is the true distribution of inputs, which we will not be estimating and assume that x is independent of θ.
- Up to normalization: $p(\theta \mid D) \propto \prod_{t} p\left(y^{t} \mid x^{t}, \theta\right) p(\theta)$. Can compute for a given θ using all the data.
- Testing: given x, integrate out θ :
$p(y \mid x)=\int p(y \mid x, \theta) p(\theta \mid D) d \theta \quad$ - in general intractable

Example: Uniform Distribution

- Let $p(x ; \theta)$ be a uniform distribution in $[0, \theta]$.
- Want to estimate θ.
- Suppose we know a priori $\theta \in[0,10]$, choose $p(\theta)$ uniform in $[0,10]$. Given a sample $\mathcal{D}=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$, compute Bayesian estimate of $p(\theta \mid \mathcal{D})$:

$$
p(\theta \mid \mathcal{D}) \propto \prod_{i=1}^{n} p\left(x_{i} \mid \theta\right) p(\theta)=\prod_{i=1}^{n} \frac{1}{\theta} \llbracket x_{i} \leq \theta \rrbracket p(\theta)
$$

Example: Uniform Distribution

Variational Bayesian Learning

- Proposition: compute approximation to $p(\theta \mid D)$ by a simpler distribution $q(\theta)$.
- Let for example $\theta \in \mathbb{R}^{d}$ and

$$
q(\theta)=\prod_{i=1}^{d} p_{\mathcal{N}}\left(\theta_{i} ; \hat{\theta}, \hat{\sigma}^{2}\right)
$$

- For each coordinate of θ we would like to estimate mean and variance.
- Recall the mean field approach:

$$
\min _{q} K L(q(\theta) \| p(\theta \mid D))
$$

- Only this time θ is continuous.

Sensible if expect the posterior to be concentrated around some point

Variational Bayesian Learning

Having q, The Bayesian posterior is approximated using distribution q in place of $p(\theta \mid D)$:

$$
p(y \mid x, D) \approx \int p(y \mid x, \theta) q(\theta) d \theta
$$

Variational Bayesian Learning

Solving the variational problem. Expand KL:

$$
\begin{aligned}
K L(q(\theta) \| p(\theta \mid D)) & =\mathbb{E}_{\theta \sim q(\theta)} \log \frac{q(\theta)}{p(\theta \mid D)}=\mathbb{E}_{\theta \sim q(\theta)} \log \frac{q(\theta)}{\prod_{t} p\left(y^{t} \mid x^{t}, \theta\right) p(\theta) / p(D)} \\
& =\mathbb{E}_{\theta \sim q(\theta)}\left[-\sum_{t} \log p\left(y^{t} \mid x^{t}, \theta\right)\right]+K L(q(\theta) \| p(\theta))+\log p(D) .
\end{aligned}
$$

log likelihood, expected over parameters, data evidence
data-independent regularization

Special case I:

When we choose q to be the delta-function at $\hat{\theta}$ (fix a tiny $\hat{\sigma}$) and the prior $p(\theta)$ as $\mathcal{N}\left(0, \sigma_{0}^{2} I\right)$, the variational optimization becomes, up to constants,

$$
\min _{\hat{\theta}}\left[-\sum_{t} \log p\left(y^{t} \mid x^{t}, \hat{\theta}\right)\right]+\frac{\|\hat{\theta}\|^{2}}{2 \sigma_{0}^{2}}
$$

I.e., we recover the maximum likelihood, with a weight regularization.

Variational Bayesian Learning with SGD

$$
\left.\left.\begin{array}{l}
K L(q(\theta) \| p(\theta \mid D))=\mathbb{E}_{\theta \sim q(\theta)}\left[-\sum_{t} \log p\left(y^{t} \mid x^{t}, \theta\right)\right]+K L(q(\theta) \| p(\theta))+\log p(D) . \\
\underset{q}{\operatorname{argmin}} K L(q(\theta) \| p(\theta \mid D))=\underset{q}{\operatorname{argmin}}-|D| \mathbb{E}_{\theta \sim q}(x, y) \sim D
\end{array}\right]-\log p(y \mid x, \theta)\right]+K L(q(\theta) \| p(\theta)) .
$$

Special case II: $q(\theta)=q(\theta \mid \phi)$ is Gaussian with parameters ϕ

- $K L(q(\theta) \| p(\theta))$ is closed form for several types of priors $p(\theta)$
- Gradient in q of the data evidence expresses as:

$$
\frac{\partial}{\partial \phi} \mathbb{E}_{\substack{\theta \sim q \\(x, y) \sim D}}[-\log p(y \mid x, \theta)]=\underset{\substack{\theta \sim q \\(x, y) \sim D}}{\mathbb{D}^{2}}\left[-\frac{\partial}{\partial \phi} \log p(y \mid x, \theta)\right]
$$

A stochastic estimate of the gradient an be made from few samples of the data and parameters - means we can apply SGD

Variational Bayesian Learning with SGD

Stochastic gradient in q :

- pick a random training sample $\left(x^{t}, y^{t}\right)$ (or a batch)
- sample parameters θ from current posterior: $\theta \sim q(\theta)$
- Evaluate usual \log likelihood $\log p\left(y^{t} \mid x^{t}, \theta\right)$
- add regularizer
- back propagate and perform a gradient descent step in parameters of q

Looks similar to training with dropout, doesn't it?

References:

- Graves A.: Practical Variational Inference for Neural Networks, 2009
- Schulman, J., Heess, N., Weber, T., Abbeel, P.: Gradient estimation using stochastic computation graphs, 2015

Books

- Cowell et al. "Probabilistic Networks and Expert Systems: Exact Computational Methods for Bayesian Networks", 2007
- S. L. Lauritzen. Graphical models., 1996
- Sebastian Nowozin and Christoph H. Lampert. Structured Learning and Prediction in Computer Vision

