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Introduction: What are Graphical Models



• Design measurements, represent them as a feature vector 
• Learn the best discriminant function
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Basic Classification Problems

• SVMs

{0, 1}

…

{1,..K}

• Deep NNs (simplified view)
• Learn deep feature vectors 
• Apply SVM

11/22
LINEARLY SEPARABLE SVM

The aim is to find linear discriminant function

f(x,w, b) = sign(hw, xi+ b) = sign

�
w

T
x + b

�

R

m

⌅ VC dimension (capacity) depends on
the margin m

h  R

2

m

2
+ 1

⌅
R is given by the data itself.

⌅ Margin m can be optimized in the
classifier design.

Conclusion: separation hyperplanes with larger margin have
lower VC dimension , lower value of the upper bound.

Two-class Multi-class

Classification Using Discriminant Functions
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Motivation for Graphical Models I: Structured Predictions

{space of text sentences}

• Optical Structure Recognition
• Image Segmentation

• Text Recognition

• Landmarks and Parts Detection
• Body Parts Segmentation
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Motivation for Graphical Models II: Probabilistic Reasoning
• Example: Medical Diagnosis 

• Knowing the observed variables and conditional probabilities find the likely cause

Observed

Observed

Hidden

• Originally, such diagrams and methods were used by experts with pen and paper…

p(⌧ |↵)

[Lauritzen and Speigelhalter 1988]



• When do probabilities occur? 
• As a result of randomness such as thermal noise, but not only… 
• A way to represent information 

• Example 1: information about population height 
• Average human height is 162 cm (single number) 
• Human heigh is from 54 to 272 cm (interval) 
• Fraction of population of a given heigh  

• contains more information 
• more information => better solutions 
• defines a probability distribution
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Statistical Models



• We represent the information with probabilities p(x) 

• Some new fact(s) need to be taken into account, e.g. male / female 
• Refine the available information, p(x|A) 

• Suppose also person weight is known
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Statistical Models

random person in the world

weight

hight
Refine further



MRI 1 — function MRI 2 — function, different exposure time

Dependence of MRI 1 on MRI 2 is not a function!

• Example 2: non-functional dependencies
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Statistical Models

Hidden state = patient’s brain

Can be described as conditional probability distribution 

X Y

Z

Y = f(X) ?

p(Y |X)



! 2 ⌦ – elementary event

A ⇢ ⌦ – event

P : ⌦ ! [0, 1] – probability measure

X : ⌦ ! X – random variable

x 2 X – a value that r.v. X may take

X = x – all elementary events that map to x :

{! 2 ⌦ |X (!) = x} - an event

P(A) P(X ) P(X = x)

pX : X ! [0, 1] – density (or p.m.f.) of X

pX (x) – density at point x
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Probability Cheat Sheet

Probability space

truly random event

⌦

This lecture:

P(X=y ,Y=y ,Z=z) is abbreviated as P(x , y , z)
pX ,Y |Z (x , y |z) is abbreviated as p(x , y |z) or as

p(X=1, y |z) when ambiguous

p(X ) will denote pX (X ) – the “whole density function”

(technically a composition: ⌦

X! X pX! [0, 1])

{sunny, rain}[�⇡,⇡]



• Two classes to recognize: k in {0,1} 
• take some measurement x, for example thickness 

• Observe X=5, which fish is it? 
• What if salmons are extremely rare in you lake? 
• Need to know probabilities p(K) of fish occurrence 
• p(K=0) = 0.15, p(K=1) = 0.85 

• So what do we do with these numbers?
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Simple Classification Example

Known statistics p(X|k) for k=0,1

x

x

0 1
p(measurement | knowing the class)



• For simple classification the denominator does not matter:
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Bayes’ Theorem

*0.15  vs. *0.85 

p(K=0 | x) ? p(K=1 | x) , p(K=0 | x)
p(K=1 | x) ? 1 , p(x |K=0)

p(x |K=1) ?
p(K=1)
p(K=0) = ✓

• If we have utilities (risks) or want to quantify uncertainty, need posterior probabilities:  
p(K=0|x) = 0.52, p(K=1|x) = 0.47

Theorem (Thomas Bayes, 1701–1761)

P(A |B) = P(B|A)P(A)
P(B) , where A, B are events and P(B) 6= 0



• Experiment: flipping a coin  

• Suppose you tried 20 times and observed: 18 H and 2 T  

• What you can say about p? 
• 0 < p < 1 (strictly) 
• it is more likely that p is closer to 0.9 
• but other values of p, including 1/2 are not excluded… 

• Bayes has proposed to assign probabilities to p considered as beliefs (the information that we 
have about p)
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Parameters as Random Variables

Bayes posterior of p (Beta distribution)

K 2 {Heads,Tails}
P(K=Heads) = p

P(K=Tails) = 1� p

p is unknown



• Proofs exist that these rules are necessary  
“if we want to assign numerical values to represent degrees of rational belief in a set of 
propositions” (Cox 1946). 
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Axioms

Axiom 1: 0  P (A)  1, with P (A) = 1 if A is certain

Axiom 2: If events (Ai), i = 1, 2, . . . are pairwise incompatible (exclusive)

then P (

S
i Ai) =

P
i P (Ai)

Axiom 3: P (A \B) = P (B |A)P (A)

• Recall axioms of the probability theory:



• Exercise: prove the Bayes’ theorem:
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Exercise

Axiom 1: 0  P (A)  1, with P (A) = 1 if A is certain

Axiom 2: If events (Ai), i = 1, 2, . . . are pairwise incompatible (exclusive)

then P (

S
i Ai) =

P
i P (Ai)

Axiom 3: P (A \B) = P (B |A)P (A)

P (A |B) =
P (B |A)P (A)

P (B)

• Now prove it without axioms?
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Back in 1760s…
Richard Price

50 pages

…Bicycle invented about 50 years later

“…in the constitution of things fixt laws according to which things happen… 
…and thus to confirm the argument taken from final causes for the existence of the Deity”

Richard Price

An Essay towards solving a 
Problem in the Doctrine of 

Chances, 1763



• Suppose we have a test for cancer with the following statistics: 
• The test was positive in 98% of cases when subjects had cancer 
• The test was negative in 97% of cases when subjects did not had cancer 

• Suppose that 0.1% of the entire population has this disease 

• A patient takes a test. Compute 
• The probability that a person who test positive has this disease? 
• The probability that a person who test negative does not have this disease? 
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Exercise

Variables: C 2 {y , n}, T 2 {+,�}
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Probabilistic Models
• Observed variables:
X1,X2, . . . ,Xn; represented by vector X = (Xi | i = 1, . . . n); Event X = x is denoted as x

• Hidden variables:
K1,K2, . . . ,Km; represented by vector K = (Ki | i = 1, . . .m)

Definition (Model)

A probabilistic model is the joint probability distribution over a set of random

variables. We assume the density p(X ,K ).

• Models describe how a part of the world works. Are always approximations or simplifications.

• Posterior inference task: Given X = x , compute p(K | x)
• Maximum a posterior task (recognition): argmax

K
p(K | x)

• Statistical decision making: argmin

d

P
k
Risk(d , k)p(k | x)

(The naming / roles may differ depending on the context)
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Example of Tasks

• More general queries: 
• Suppose result of X-ray is not yet available, 

• what in the belief in bronchitis versus more serious problems? 
• what is the prediction for X-ray? 
• how much the belief in bronchitis depends on X-ray?

X1 X2

K1 K2

K3K4

X3 X4

Model: p(X ,K )

• Observation: x = (yes, yes, yes, no) 
• Tasks: 

• Posterior: p(K3=yes | x)  
(belief in bronchitis) 

• MAP: most likely explanation: 
  

• Decision making:
{do nothing, heal 1,2,3, new analysis}

maxk p(k | x)



• Promises of probabilistic models: 
• A sound formulation for a system that can answer different kinds of queries: 

• recognition (likely cause) 
• handling missing data 
• prediction (likely symptoms) 
• “what if” queries 

• semi-supervised learning (parameters are random variables) 
• … 

• Obstacles: 
• Model representation 
• The problems that we can formulate mathematically are not necessarily solvable 

• Looks like the right way to go, a major part in AI research 
• With some hard work we get subclasses and approximations that are useful

20

The Promise and The Catch
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Model Complexity

X1 X2

K1 K2

K3K4

X3 X4

• Probabilistic models are useful 

• To represent the model in the 
example we need probabilities for all 
combinations of 8 Boolean variables: 

•  2^8 =256 numbers 
• Becomes quickly intractable 

• to store / to learn

p(X1,X2,X3,X4,K1,K2,K3,K4)

Can be described by just 8 parameters. Something in between?

Trivial observation: If all variables are independent, the distribution factors as:

p(X ,K ) = p(X1)p(X2)p(X3)p(X4)p(K1)p(K2)p(K3)p(K4)



• Example: smoke, fire, alarm 
• all 3 correlated, but 
• given smoke => fire and alarm are independent
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Conditional Independence

smoke

fire alarm

• Factorization:
• A directed graphical model (Bayes Network)

X1

X2 X3
p(X2,X3|X1) = p(X2 |X1)p(X3|X1)

p(X1,X2,X3) = p(X2,X3 |X1)p(X1) = p(X2 |X1)p(X3|X1)p(X1)

• Conveniently represented with a graph diagram

X and Y with density p(X ,Y ) are independent

i↵ p(x , y) = p(x)p(y) for all x 2 X , y 2 Y



• Example: 
• Xi  — weather state on day i 
• Simplifying assumption: the weather on day i depends only on the state on day i-1, but not i-2,

…
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Markov Chain

day 1 day 2 day 3
X1 X2 X3 …

• Factorization: p(X1,X2,X3, . . . ) = p(X1)p(X2 |X1)p(X3|X2) . . .

State transition diagram
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Hidden Markov Model

• Factorization:

• Example: 
• Si — letter in a sequence (hidden) 
• Xi — observed images

p(X , S) = p(S1)
nY

i=2

p(Si | Si�1)
nY

i=1

p(Xi | Si )
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In Images
• A region is independent of the rest given some neighborhood
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Markov Random Field

• Factorization:

• Example: 2D spin glass: 
• Xi — spin orientation {-1,1} 
• Neighboring states “like” to be 

the same

• Local Markov Property w.r.t. G :

• Given neighbors of Xi , it is independent of the rest.

• Pairwise Markov Property w.r.t. G :

• Absent edge (i , j) i↵ Xi and Xj are conditionally independent given the rest.

(over cliques of G, more on this later)p(x) =
Y

c2C(G)

gc(xc)



• Factorization is another constructive way to define joint  
probability distribution than conditional independence
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Factor Graphs

• It is more general 
• Inference algorithms often work directly with the factorization 
• But: 

• more difficult to learn 
(c.f. conditional probabilities we could measure directly from the data)

p(X ) =
1

Z
f1(X1)f2(X1,X2)f3(X1,X2)f4(X2,X3)

Z is the normalization factor, such that

P
X
p(X ) = 1
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Factor Graphs



• Coding 
• Sending N bits over a noisy channel to decode n bits 
• Shannon limit: codes exist with n/N < channel 

capacity for arbitrary small error rate  

• LDPCs: proposed by Robert Gallager in 1962 
• Good decoding algorithms found in 90’s 
• Appeared to be instances of Belief Propagation 
• Motivated a lots of research on BP 

• Turbo Codes and LDPCs 
• 3G and 4G mobile standards 
• digital video broadcasting 
• satellite communication systems 
• … 

• Current codes coming closer and closer to Shannon 
limit 29

Low Density Parity Check Codes

Message bits

Parity bits

received signal

received

Gaussian noise

[Daphne Coller, Coursera]

X1 X2 X3 X4

Y1 Y2 Y3 Y4

X5 X6 X7

Y5 Y6 Y7

Reduced factor graph

X5 X6 X7

X1 X2 X3 X4



• Example: joint probability p(X,Y): 
• p(A,A) = 0.4 
• p(A,B) = 0.1 
• p(B,A) = 0.3 
• p(B,B) = 0.2 

• Goal: decide whether X is A or B (say we win 1$ if we guess right) 
• Approach 1: the most probable joint state is AA -> decide for A 
• Approach 2: compute marginal distribution p(X) -> decide based on that 

• Continous example: 
• X - face position, Y - arm position 
• Want to know face position 

• In practice, however we deal with approximation algorithms  
that behave poorly at high levels of uncertainty, anyhow
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Difference Between Recognizing Whole and a Part

most probable (x, y)

most probable x



• Summary 
• Probabilistic models describe how some part of world works 
• Well suited for reasoning with uncertainty and posing many recognition problems 
• Graphical Models are probabilistic models 

• Have an underlying graph-like structure 
• The structure is a way of simplification and is related to the structure of an application 
• Modeling is needed to come up with a good structure 
• The space complexity is tractable 

• Solving the recognition problems (the time complexity) may be difficult 
• But still often possible, areas of applications of GMs: 

• Computer Vision 
• Bioinformatics 
• Communications 
• …

31

Conclusion



Hidden Markov Model



• Good for Classical Education 
• Illustration of MAP and marginals problems that can be solved without hacks 
• A very good starting point for understanding methods that work in general graphs (MRFs) 
• In fact many methods are only understood as an extension of exact algorithms on trees 
• There are actually many applications

33

Goals
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Markov Chain

X1 X2 X3 X4

Directed GM

X1 X2 X3 X4

Undirected GM

Given X3, X2 and X4 are independent 
 …

Factorization:

nQ
ij
g(xi , xj)

nY

ij

p(xi , xj)

p(xi )p(xj)

Y

i

p(xi )

X1 X2 X3 X4

p(x , y) = p(xn)
n�1Y

i=1

p(xi | xi+1)

p(x , y) = p(x1)
nY

i=2

p(xi | xi�1)

Equivalent directed GM

Factorization in marginals:

X1 X2 X3 X4

For converting between these forms, we 
will need an algorithm for computing marginals
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Hidden Markov Model

hidden

observed

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Directed GM

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Undirected GM

p(x , y) = p(x1)
nY

i=2

p(xi | xi�1)
nY

i=1

p(yi | xi )
Given X3, Y3 is independent of the rest 
Given X3, X2 and X4 are independent

nY

i=2

g(xi , xi�1)
nY

i=1

f (yi , xi )• Sequences (text, grammars) 
• Time dependencies (speech, tracking, DNA) 
• Good for understanding many things 
• Basis for generalization of several algorithms

Observe that: p(x) = p(x1)
nQ

i=2
p(xi | xi�1) – Markov chain



For fixed y , pdf p(x | y) is a Markov chain on x :

p(x | y) = p(y | x)p(x)
p(y)

=

1

p(y)

p(x)

Y

i

p(yi | xi ) =
1

p(y)

Y

ij

gij(xi , xj)
Y

i

gi (xi )
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MAP Problem
Maximum a posteriori (MAP): given observation y we want to find the most probable hidden

configuration x : max

x

p(x | y)

Recall p(x | y) = p(x , y)/p(y)

(We’ll need marginalization computations to recover a directed or marginals factorization)

priordata

To find the MAP solution x we don’t need to know p(y):

argmax

x

Y

i

g

i

(x

i

)

Y

ij

g

ij

(x

i

, x
j

)
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Energy Minimization

log is monotone, all factors non-negative

fa(xa) = � log ga(xa)

argmax

x

Y

i

g

i

(x

i

)

Y

ij

g

ij

(x

i

, x
j

) = argmax

x

log

⇣Y

i

g

i

(x

i

)

Y

ij

g

ij

(x

i

, x
j

)

⌘

argmin
x

h
E (x) =

X

i

f

i

(x
i

) +
X

ij

f

ij

(x
i

, x
j

)
i

priordata

• Need to find a minimum of a function which is a sum of functions of one variable (unary 
terms) and two variables (pairwise terms)
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As Shortest Path

0
0

fi(xi)

fij(xi,xj)

1 n

fj(xj)

i j
• Paths map one to one to labelings x; cost of a path equals E(x) 
• Shortest path <=> MAP solution

argmin
x

h
E (x) =

X

i

f

i

(x
i

) +
X

ij

f

ij

(x
i

, x
j

)
i

(Construction known as Trellis graph)



• Problem:

min

x

X

i2V
f

i

(x

i

) +

X

ij2E
f

ij

(x

i

, x
j

)

• Use distributivity:

min(a+ c , b + c) = min(a, b) + c

min

x1,...xn

⇥
f1,2(x1, x2) + f1(x1) + . . .

⇤
= min

x2,...xn

⇥
min

x1

[

�
f1,2(x1, x2) + f1(x1)

�
+ . . .

⇤

• Recurrent update:

�!' 1(x1) = 0

�!'
j

(x

j

) = min

x

i

�
f

ij

(x

i

, x
j

) + f

i

(x

i

) +

�!'
i

(x

i

)

�
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Algebraic View / Viterbi Algorithm

i j

Shortest path from the left to every state. Core of all message passing algorithms

Viterbi Algorithm: 
Forward pass: computes best path from the left 
Backward pass: backtrack the minimizer

�!' 2(x2)

�!
' j(xj)
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Marginals
Given factorization p(x) =

1
Z

Q
i

g

i

(x

i

)

Q
ij

g

ij

(x

i

, x
j

)

Compute p(x

i

), p(x

i

, x
j

):

p(x

i

) =

X

xV\{i}

p(x) =

X

x1,...xi�1, ,x
i+1...xn

p(x); p(x

i

, x
j

) =

X

xV\{i,j}

p(x)

ji

xj

xi

i

xi

p(xi ) /
�!
M i (xi )gi (xi )

 �
M i (xi )

P
x

i

p(x
i

) = 1

p(xi , xj) /
�!
M i (xi )gi (xi )gij(xi , xj)gj(xj)

 �
M j(xj)

P
x

i

,x
j

p(x
i

, x
j

) = 1
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Marginals
Given factorization p(x) =

1
Z

Q
i

g

i

(x

i

)

Q
ij

g

ij

(x

i

, x
j

)

Compute p(x

i

), p(x

i

, x
j

):

p(x

i

) =

X

xV\{i}

p(x) =

X

x1,...xi�1, ,x
i+1...xn

p(x); p(x

i

, x
j

) =

X

xV\{i,j}

p(x)

• Use distributivity: a · c + b · c = (a+ b) · c ,
X

x1,...xi�1

⇥
g12(x1, x2) · g1(x1) · (. . . )

⇤
=

X

x2,...xi�1

⇥X

x1

[
�
g12(x1, x2) · g1(x1)

�
· (. . . )

⇤

• Recurrent update:

�!
M1(x1) = 1
�!
M

j

(x
j

) =
X

x

i

�
g

ij

(x
i

, x
j

) · g
i

(x
i

) ·
�!
M

i

(x
i

)
�

Note: this is matrix-vector product

�!
M2(x2)
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Forward-Backward Algorithm

• Forward: compute left marginals recurrently:

�!
M i (xi )

• Backward: compute right marginals recurrently

 �
M i (xi )

• Compose marginals as p(xi ) =
�!
M i (xi )gi (xi )

 �
M i (xi )
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Exercise: Extend to Trees

i

xi

p(xi ) /
�!
M i (xi )gi (xi )

 �
M i (xi )
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Generalized Algorithms
• Did you notice the similarity of computations in MAP and marginals problems?

[Schlesinger M.I. Ten lectures in statistical and structural pattern recognition]

Actually, for any semi-ring (R ,�,⌦) there holds distributivity:

a⌦ (b � c) = (a⌦ b)� (a⌦ c)

(b � c)⌦ a = (b ⌦ a)� (c ⌦ a)

We can write a generalized algorithm for the problem of �⌦ marginals on a chain (tree):

m

i

(x

i

) =

M
xV\i

O
ij

g

ij

(x

i

, x
j

)

For example: (B,_,^), ([0, 1],min,max), (R, logsumexp,+) ⇠ (R+,+,⇥)



• Input 
• Two images from a calibrated camera pair 
• Rectified: epipolar lines correspond to image rows 

• Problem 
• For each pixel in the left image find the corresponding pixel in the 

right image 

• Output 
• Dense depth (disparity) map 45

Example: Scan-line Stereo

Input Pair

Disparity 
Map (GT)
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Example: Scan-line Stereo

i - pixel

x = (xi | i 2 V) - labeling
xi - chosen disparity label

fi(xi) - matching cost

fij(xi, xj) - smoothness cost

min
x

X

i2V
f

i

(x
i

) +
X

ij2E
f

ij

(x
i

, x

j

)

i j

xi
xj
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Intro Plots References

State-of-the-Art Heuristics for Stereo

(a) (b)

p

(c) (d)
Figure 1: Grid structures of previous approaches. Nodes
represent pixels, while edges indicate that the smooth-
ness function operates on the adjacent nodes. (a) Four-
connected grid. (b) Scanline-based DP approaches. (c)
Tree-based DP proposed by (Veksler, 2005). (d) Approach
of (Hirschmüller, 2005) to derive the disparity of pixel p.

ing (Scharstein and Szeliski, 2002). However, a se-
vere limitation of these optimization algorithms is that
they are computationally rather expensive. Especially
for the graph-cut approach, calculation of a single dis-
parity map can still take several minutes.
To bypass the NP-complete optimization problem,

classical DP approaches (Bobick and Intille, 1999;
Ohta and Kanade, 1985; Wang et al., 2006) adopt
a greatly simplified neighbourhood structure in their
smoothness terms. They enforce smoothness only
within, but not across horizontal scanlines. The corre-
sponding grid graph is illustrated in Figure 1b. Since
there is no interconnection between horizontal scan-
lines, an energy minimum for this grid structure can
be derived by computing the optimum for each scan-
line separately. The exact optimum of (1) on each in-
dividual scanline is then determined using DP. Such
approaches are favourable for their excellent com-
putational speed. Skipping the vertical smoothness
edges, however, leads to the well-known scanline
streaking effect. This inherent problem represents a
major reason for the bad reconstruction quality of DP
in comparison to the state-of-the-art.
Recently, (Veksler, 2005) proposed approximat-

ing the four-connected grid via a tree. The motiva-
tion is that efficient DP-based optimization also works
on tree structures. Roughly spoken, the tree is con-
structed by discarding edges that show a high gradient
in the intensity image from the four-connected grid.
In contrast to scanline-based DP, horizontal and ver-
tical edges are treated symmetrically, which weakens

the streaking problem. Nevertheless, as can be seen
from Figure 1c, a large number of edges have to be
sacrificed in order to obtain a tree structure. The in-
formation of these edges remains unused, which is
most likely the reason for the only average results
of this method. Subsequent work (Deng and Lin,
2006; Lei et al., 2006) combines tree-based DP with
colour segmentation. These algorithms improve the
results on standard images such as the Middlebury
set (Scharstein and Szeliski, 2002). They, however,
fail if segments overlap disparity discontinuities.
A different approach to handle the streaking prob-

lem is to compute multiple DP passes. Two-pass
methods (Gong and Yang, 2005; Kim et al., 2005)
first apply DP on the horizontal scanlines and use the
results to bias the second pass, which operates on
the vertical scanlines. While horizontal streaks are
reduced, these algorithms introduce vertical streaks,
and their scanline-based nature is clearly visible in the
resulting disparity maps.

(Hirschmüller, 2005) proposed a hybrid approach
between local and global methods. The disparity
of each pixel is computed using the winner-takes-all
strategy, i.e. without considering the disparity assign-
ments of neighbouring pixels. Instead of aggregating
matching costs from spatially surrounding pixels, the
algorithm computes DP paths from various directions
towards each pixel p as shown in Figure 1d. Cost
aggregation is then performed by summing up the in-
dividual path costs. In Hirschmüller’s approach, the
disparity of an image point is influenced by only a
small subset of the whole image’s pixels. This repre-
sents a problem if none of the paths captures enough
texture to provide a clear cost minimum at the correct
disparity. To weaken this problem, Hirschmüller pro-
posed increasing the number of paths. Nevertheless,
this results in higher computational demands and only
partially represents a remedy to the problem. In a sub-
sequent paper (Hirschmüller, 2006), he addressed this
problem using image segmentation.

2 THE SIMPLE TREEMETHOD

The algorithm proposed in this paper performs a sep-
arate disparity computation for each individual pixel.
We apply an individual tree construction in order to
determine the disparity of a single pixel. The tree’s
root node is formed by the pixel whose disparity
needs to be computed. Although our trees prove to be
effective, their structure is relatively simple. (Hence,
we call our algorithm the Simple Tree Method.) For
now, it is only important to know that a tree spans all
pixels of the reference frame. A global minimum of
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Figure 1: Grid structures of previous approaches. Nodes
represent pixels, while edges indicate that the smooth-
ness function operates on the adjacent nodes. (a) Four-
connected grid. (b) Scanline-based DP approaches. (c)
Tree-based DP proposed by (Veksler, 2005). (d) Approach
of (Hirschmüller, 2005) to derive the disparity of pixel p.
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they are computationally rather expensive. Especially
for the graph-cut approach, calculation of a single dis-
parity map can still take several minutes.
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major reason for the bad reconstruction quality of DP
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Recently, (Veksler, 2005) proposed approximat-
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In contrast to scanline-based DP, horizontal and ver-
tical edges are treated symmetrically, which weakens
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an energy function that operates on the tree structure
is determined via DP. We then look up the disparity
that lies on this energy minimum in the root node. Fi-
nally, this disparity is assigned to the image point for
which we performed the disparity computation.
In comparison to (Hirschmüller, 2005), our algo-

rithm assigns disparities based on the exact solution
of a clearly defined optimization problem. This might
represent a more “meaningful” result than selecting
the minimum of summed-up path costs. More impor-
tantly, we use tree structures that incorporate all pixels
of the reference image. A pixel’s disparity is there-
fore influenced by all other pixels and not just by a
subset thereof. This is what (Veksler, 2005) refers to
as “truly global”. Practically spoken, our algorithm
does not show the problem of missing image features
that help to disambiguate a pixel’s disparity, which is
specifically important in less textured image regions.
In the context of (Veksler, 2005), the most distinct

difference is that we do not apply a single tree to com-
pute the disparities of all pixels at once, but design
more flexible trees that vary their grid structures with
the spatial position of the pixel under consideration.
Obviously, we also share the disadvantage of losing
a large number of edges by approximating the four-
connected grid via a tree. However, as will be shown
in this section, we address this problem by using two
complementary tree structures, each of which incor-
porating a complementary set of edges.
The remainder of this section is organized as fol-

lows. We start by defining our energy function (sec-
tion 2.1). We then present the tree structures applied
in our approach (section 2.2). DP on a tree is reviewed
in section 2.3. Efficient optimization of the energy
function on our tree structures is discussed in section
2.4. Section 2.5 shows how our algorithm combines
two different types of trees. Finally, occlusion han-
dling is addressed in section 2.6.

2.1 Energy Function

Let I be the set of all pixels in the reference frame
and D denote the set of allowed disparity labels. We
formulate the stereo matching task as finding a dis-
parity solution D that maps each pixel p ∈ I to a dis-
parity dp ∈ D . The goodness of a disparity map D is
evaluated by an energy functional, which is subject to
minimization. We define the energy function by

E(D) = ∑
p∈I

m(p,dp)+ ∑
(p,q)∈N

s(dp,dq). (2)

Here, the data term m(p,dp) computes the pixel dis-
similarity of p being assigned to dp. We implement
this function using the sampling-insensitive measure-

p p

(a) (b)
Figure 2: Tree-based approximations of the four-connected
grid applied in this approach. Two trees are constructed for
each pixel p of the reference frame. (a) Horizontal Tree. (b)
Vertical Tree.

ment of (Birchfield and Tomasi, 1998) on RGB val-
ues. The smoothness function applied on two pixels
p and q that are neighbours according to a predefined
set N is defined by

s(dp,dq) =

⎧

⎨

⎩

0 : dp = dq
P1 : |dp−dq| = 1
P2 : otherwise.

(3)

We impose a user-defined penalty P1 for small jumps
in disparity that do not exceed a value of one pixel.
Such jumps commonly occur for slanted surfaces and
are typically overpenalized when using the standard
Potts model. A second penalty P2 with P2 > P1 ac-
counts for penalizing large jumps in disparity that oc-
cur at disparity borders. In order to align disparity dis-
continuities with discontinuities in the intensity im-
age, we compute the value of P2 by

P2 =

{

P3 ·P′2 : |Ip− Iq| < T
P′2 : otherwise (4)

with |Ip− Iq| being the summed-up absolute differ-
ences of RGB channels. P′2, P3 and T denote prede-
fined constants.

2.2 Simple Tree Structures

Choosing the set of neighbours N in equation (2)
defines the complexity of the resulting optimization
problem. In the ideal case, N is formed by all pairs of
spatially neighbouring pixels of the reference image.
Since it is known that optimization of the resulting
four-connected grid (Figure 1a) is difficult and com-
putationally challenging, we propose finding approx-
imations of this grid in each individual image point.
Our approximations are based on trees, i.e. graphs that
do not contain cycles. If N consists of pixel pairs that
form a tree on the grid graph, exact minimization of
our energy can efficiently be accomplished via DP.
Our first approximation is shown in Figure 2a.

The tree is rooted on pixel p whose disparity is com-
puted. It includes all horizontal smoothness edges
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Figure 2: (a) Star-shaped graphs associated in SGM to two adjacent pixels. (b) Depiction of
the 8 image traversals and the corresponding recursion directions r and r
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2.2 SGM and streaking artifacts

In the light of this result we can understand the occurrence of the streaking artifacts in SGM.
Although the optimization is exact over the star-shaped graph, the graphs for two adjacent
pixels (as shown in figure 2(a)) are loosely related as they share only the nodes on a single
line (plus 4 intersection points). In this case, when the data term on the horizontal line
is weak, i.e. all disparity hypothesis are equally plausible, the messages from the vertical
directions, which are completely unrelated, can and will produce different results for each
pixel. This also means that the smoothness constraint is poorly enforced by SGM because
the messages are restricted to the 8 paths of the graph.

3 More Global Matching

Our main contribution can be summarized as a change in the recursive update formula (3).
In the spirit of the belief update formula (6) we propose to update L

r

using information from
more than one direction. Concretely our strategy injects information from the 2D problem
in the processing of SGM’s 1D paths (see figure 1). This is efficiently done by incorporating
messages from the nodes visited in the previous scanline (i.e. the pixel above).

Let us consider the left-to-right direction. The image is traversed in raster order (left-to-
right, top-to-bottom) and SGM updates each node p using only the beliefs from the node on
its left L

r

(p� r, ·). Instead we propose to access as well the beliefs from the node directly
above p (indicated by the direction r

?) . Thus our proposed recursion is:

L

r

(p,d) =C

p

(d)+ Â
x2{r,r?}

1
2

min
d

02D
(L

r

(p�x,d0)+V (d,d0)). (9)

As a result of this multiple recursion, the belief at a given pixel is influenced by its entire
upper-left quadrant (as illustrated in figure 1). In comparison SGM recursion only sees
information from the line of pixels to its left.

For each propagation direction r we compute L

r

using an adequate traversal order (de-
picted in figure 2(b)). The resulting beliefs are then combined using the over-counting cor-
rected formula (8), and the disparity is estimated by WTA. Compared to SGM, MGM only
requires a few extra operations per pixel.
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Figure 1: An example of a minimum spanning tree gener-
ated from an image.

intensities. The construction of the MST, the message pass-
ing scheme, and the associated probabilistic models are dis-
cussed in the following sections.

3.1. Minimum Spanning Trees from Images

Prior to aggregation, minimum spanning trees are con-
structed from the input images to facilitate the sharing of
disparity evidence between pixels. An assumption is made
that neighboring pixels with similar color are more likely to
have similar disparity, and thus an algorithm stands to ben-
efit from sharing disparity evidence along edges in the tree.
Fig. 1 shows an example of a minimum spanning tree that
connects all of the pixels in a 9×8 image. Notice that short
paths through the tree tend to connect neighboring pixels
with similar color. In contrast, long paths tend to connect
pixels with significantly different color.

In order to find the minimum spanning tree, costs must
first be assigned to each edge linking neighboring pixels in
the four-connected image grid. Since changes in disparity
often coincide with noticeable changes in image intensity
[27], it is natural to choose costs that are proportional to
the intensity difference between neighboring pixels. Here,
the cost of each edge is assigned according to the distance
between pixels as measured by the sum of absolute inten-
sity differences. Once costs have been assigned, Kruskal’s
algorithm [14] is applied to iteratively remove high-cost
edges from the grid until the minimum spanning tree is ob-
tained. The representation of the MST used by the proposed
method is a set of child/parent pixel pairs, ordered in a way
that all paths from the leaf nodes up to the root node can be
traversed in a single scan through the pairs.

3.2. Upward-Downward Algorithm

The MSTs representing the images are assumed to have
the properties of a hidden Markov tree (HMT), i.e., the dis-
parity of each pixel is conditionally independent of the dis-
parities of all other pixels given the disparities of its imme-

c1 d1

c2 d2

c3 d3 c4 d4

Figure 2: Subsection of a hidden Markov tree (HMT) model
where each state node, denoted by dn, is associated with an
observation node, denoted by cn. In this illustration, parent
nodes are placed above, and connected to, their child nodes.
For example, the children of d2 are c(d2) = {d3, d4} and
the parent of d2 is p(d2) = d1.

diate neighbors in the tree. Hidden Markov trees are defined
by 1) a set of connections between nodes that have hidden
states, and 2) a set of observations associated with the state
of each node. In the context of stereo matching, the hidden
state is the disparity dn of pixel n, and the observation is the
vector of costs cn of choosing all possible disparity values.
Fig. 2 illustrates an example of such an HMT.

The HMT model allows efficient calculation of the max-
imum a posteriori (MAP) disparity estimate

d̂n = argmax
dn

P (C|dn)P (dn)

of each pixel n, where C = [c1, . . . , cN ] denotes the set
of all observed matching costs throughout the entire image,
P (C|dn) is the likelihood of observing the cost C given dis-
parity dn, and P (dn) is the prior probability of disparity dn.
The structure and properties of the HMT can be exploited to
calculate the large multivariate distribution P (C|dn)P (dn)
efficiently using the upward-downward algorithm [6].

The probability distribution that is computed using the
upward-downward algorithm can be reformulated as

P (C|dn)P (dn) = P (dn,C)

= P (Cn|dn)P (dn,C\n) (1)

using conditional independence relationships assumed by
the HMT model, where Cn denotes the collection of costs
that belong to the subtree rooted at node dn, and C\n de-
notes the collection of all costs excluding those in Cn. In
Fig. 2, C2 includes c3, c4, and all costs associated with
children of d3 and d4. The cost C\3 includes c1, c2, c4, and
all other costs not connected to children of d3.

The calculation of (1) using the upward-downward algo-
rithm is decomposed into two stages, where β messages are
first passed up from the leaf nodes to the root node (the up-
ward stage) and then α messages are passed down from the
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Figure 1: Grid structures of previous approaches. Nodes
represent pixels, while edges indicate that the smooth-
ness function operates on the adjacent nodes. (a) Four-
connected grid. (b) Scanline-based DP approaches. (c)
Tree-based DP proposed by (Veksler, 2005). (d) Approach
of (Hirschmüller, 2005) to derive the disparity of pixel p.

ing (Scharstein and Szeliski, 2002). However, a se-
vere limitation of these optimization algorithms is that
they are computationally rather expensive. Especially
for the graph-cut approach, calculation of a single dis-
parity map can still take several minutes.
To bypass the NP-complete optimization problem,

classical DP approaches (Bobick and Intille, 1999;
Ohta and Kanade, 1985; Wang et al., 2006) adopt
a greatly simplified neighbourhood structure in their
smoothness terms. They enforce smoothness only
within, but not across horizontal scanlines. The corre-
sponding grid graph is illustrated in Figure 1b. Since
there is no interconnection between horizontal scan-
lines, an energy minimum for this grid structure can
be derived by computing the optimum for each scan-
line separately. The exact optimum of (1) on each in-
dividual scanline is then determined using DP. Such
approaches are favourable for their excellent com-
putational speed. Skipping the vertical smoothness
edges, however, leads to the well-known scanline
streaking effect. This inherent problem represents a
major reason for the bad reconstruction quality of DP
in comparison to the state-of-the-art.
Recently, (Veksler, 2005) proposed approximat-

ing the four-connected grid via a tree. The motiva-
tion is that efficient DP-based optimization also works
on tree structures. Roughly spoken, the tree is con-
structed by discarding edges that show a high gradient
in the intensity image from the four-connected grid.
In contrast to scanline-based DP, horizontal and ver-
tical edges are treated symmetrically, which weakens

the streaking problem. Nevertheless, as can be seen
from Figure 1c, a large number of edges have to be
sacrificed in order to obtain a tree structure. The in-
formation of these edges remains unused, which is
most likely the reason for the only average results
of this method. Subsequent work (Deng and Lin,
2006; Lei et al., 2006) combines tree-based DP with
colour segmentation. These algorithms improve the
results on standard images such as the Middlebury
set (Scharstein and Szeliski, 2002). They, however,
fail if segments overlap disparity discontinuities.
A different approach to handle the streaking prob-

lem is to compute multiple DP passes. Two-pass
methods (Gong and Yang, 2005; Kim et al., 2005)
first apply DP on the horizontal scanlines and use the
results to bias the second pass, which operates on
the vertical scanlines. While horizontal streaks are
reduced, these algorithms introduce vertical streaks,
and their scanline-based nature is clearly visible in the
resulting disparity maps.

(Hirschmüller, 2005) proposed a hybrid approach
between local and global methods. The disparity
of each pixel is computed using the winner-takes-all
strategy, i.e. without considering the disparity assign-
ments of neighbouring pixels. Instead of aggregating
matching costs from spatially surrounding pixels, the
algorithm computes DP paths from various directions
towards each pixel p as shown in Figure 1d. Cost
aggregation is then performed by summing up the in-
dividual path costs. In Hirschmüller’s approach, the
disparity of an image point is influenced by only a
small subset of the whole image’s pixels. This repre-
sents a problem if none of the paths captures enough
texture to provide a clear cost minimum at the correct
disparity. To weaken this problem, Hirschmüller pro-
posed increasing the number of paths. Nevertheless,
this results in higher computational demands and only
partially represents a remedy to the problem. In a sub-
sequent paper (Hirschmüller, 2006), he addressed this
problem using image segmentation.

2 THE SIMPLE TREEMETHOD

The algorithm proposed in this paper performs a sep-
arate disparity computation for each individual pixel.
We apply an individual tree construction in order to
determine the disparity of a single pixel. The tree’s
root node is formed by the pixel whose disparity
needs to be computed. Although our trees prove to be
effective, their structure is relatively simple. (Hence,
we call our algorithm the Simple Tree Method.) For
now, it is only important to know that a tree spans all
pixels of the reference frame. A global minimum of

VISAPP 2008 - International Conference on Computer Vision Theory and Applications
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scanline DP

full graph

Veksler-05

 + connect similar colors first 
 + learned potentials

Hirschmüller-05 (SGM) 
 + own tree for each pixel 
 + reuse messages in DP

Facciolo et al.-15 (MGM) 
+ combine more messages

A. Shekhovtsov Parallel Dual Block Optimization for Energy Minimization

Tree-based Heuristics for Stereo



• Hidden Markov Model is very similar to Markov Chain 
• All problems seem to be solvable with a kind of dynamic programming  

(but e.g. unsupervised learning isn’t) 
• In fact, trees seem to be important

48

Conclusion



• Junction Tree Algorithm 
• Unsupervised learning (hidden states not observed) — Baum-Welsche algorithm 
• Parallel algorithms O(n log(K)) time with K processors: 

• sum-product: Fourier transform 
• min-sum: lower envelopes, distance transform 

• Kalman Filter 
• Markov Chain Monte Carlo 

• Ergodicity and stationary distribution 
• Finale state automata 
• Markov Decision Processes

49

Further Topics
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More on Dynamic Programming

• Given xi, the optimal solution consists of optimal solution (s to xi) and (xi to t) 
• Variables (X1,… Xi-1) and (Xi+1,… Xn) are conditionally independent given Xi

s

t

xi

Conditional Independence and Bellman Optimality
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Lower Envelopes

�!
'

j

(x
j

) = min
xi

(�!'
i

(x
i

) + f

i

(x
i

) + f

ij

(x
i

, x

j

))

O(nL2
) - naive approach, n variables, L labels

O(nL) - e�cient sequential algorithms

O(n logL) - e�cient parallel algorithms, using L processors

fij(xi, xj) = wij⇢(xi � xj)

[Hirata’96, Meijster’02] [Felzenszwalb&H.’06]

[Goodrich’86, Chen’02]

One minimization of the form

• Lower envelope (distance transform)

fij(xi , xj) + f

0
i (xi )

xj

iis the problem of finding a lower envelope of a 
set of functions well studied in geometry / 
graphics
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Max-Product BP, Tree-Reweighted1

+

d(i, j) := min
k

(d(i, k) + d(k, j))

i
j

c.f. all shortest paths in a graph

(Floyd–Warshall alg.)

O(n) time, O(n) processors

+ - Over-counting 
- May oscillate 
- May diverge (unbounded)

+
1

2

1

2

1 1
- Decomposition into trees 
- Connection to LP relaxation and its dual 
- Parallel algorithm may still oscillate

• Can Run Message passing in parallel

• Can apply on graphs with loops (loopy BP)

• Tree-Reweighted [Wainwright’05]



Markov Random Fields



• Definitions 
• Examples in Computer Vision 
• Overview on MAP problem, one technique in detail 
• Marginals problem — variational approach in detail

54

Goals
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Random Field

(Book: Lauritezen S.L.,“Graphical Models”, 1996)

• Collection of discrete random variables

X1,X2, . . .Xn

, X

i

2 D

Definition

p : D

n ! R is a random field if p(x) > 0 8x ,
P

x

p(x) = 1.

• Non-negativity is important for existence of conditional probabilities and other good reasons.

Practically not a limitation.

Definition

Random field p is a Markov random field if it satisfies some conditional independence (Markov)

properties.



• Undirected Graphical Model

• Graph G = (V ,E )

• Set of nodes V ; random variables Xi , i 2 V

• Set of edges E

• Local Markov Property w.r.t. G :

• Given the neighbors of Xi , it is independent of the rest:

p(Xi |XV ı) = p(Xi |XN(i)), 8i 2 V

• Pairwise Markov Property w.r.t. G :

• Absent edge (i , j) in G i↵ Xi and Xj are conditionally independent given the rest of variables.

Theorem (Lauritzen 96)

Local and Pairwise Markov Properties are equivalent.

Definition

MRF w.r.t. graph G is a random field satisfying Markov property w.r.t. G

56

MRF w.r.t. a Graph

i N(i)



Definition

p is a Gibbs Random field if it factors as p(x) =
Q

c⇢S fc(xc),

• Here we do not need c to be a clique in some graph

• Knowing factorization is more than knowing conditional independencies

• The factorization is what matters for the representation tractability and inference 57

MRF factorization
• Conditional independencies help to structure and simplify the distribution

Theorem (Hammersley-Cli↵ord,1971)

MRF p w.r.t. graph G factors over cliques of G: p(x) =
Q

c2C fc(xc),

• C is the set of cliques – maximal fully connected subgraphs
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Two-class Segmentation

Input Image binary segmentation

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Segmentation

Image

MRF Model

p(X)

same neighbors are more probable

Observations: p(y | x) =
Q

i p(yi | xi )

Prior: p(x) =

Q
ij exp(��|xi � xj |)

Samples from the prior for varied lambda: 



59

Conditional Random Field

hidden variables x

observed variables y

Discriminative, no model of p(y)

MRF p(x,y) CRF p(x|y)

Generative: p(y) =
P

x

p(x , y)

can be learned unsupervised more flexible for recognition

• xi , i 2 V - hidden random variables (segmentation)

• yj , j 2 V

0
- observed random variables (Image)

Definition (La↵erty et al. 01)

p(x | y) is a conditional random field if it satisfies Markov properties w.r.t. x given y .

Recognition is the same: argmin
x

p(x , y) = argmin
x

p(x | y)
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Two-class Segmentation

Input Image binary segmentation

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Segmentation

Image

CRF Model

p(X|y) is an MRF

p(X)

CRF model: p(y | x) =
Q

i gi(y | xi )

gi(y|xi) - could be a logistic model, decision tree, boosted classifier, 
etc.



MAP of MRF — Energy Minimization
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MAP of MRF

• Given the model p(x) =

Q
c2S

g

c

(x

c

) find the most probable state:

max

x

p(x)

• Joint maximization in all variables

• Take negative logarithm:

min

x

X

c2S

� log g

c

(x

c

) = min

x

E (x)

• Partially separable minimization problem, called Energy minimization

• Belongs to discrete optimization domain (combinatorial optimization, graph theory, ILP,

relaxations, etc.)

• Many optimization techniques specifically suitable for computer vision



• NP-hard (includes MAX-CUT, vertex packing, etc.) 
• Two large groups of methods used in CV: 

• minimum cut (graph cuts) 
• LP relaxation / message passing 

• There are much more
63

Pairwise Energy Minimization

min
x

X

i2V
f

i

(x
i

) +
X

ij2E
f

ij

(x
i

, x

j

)

V - set of nodes

E - set of edges

(V, E) - graph

x = (xi | i 2 V) - labeling

2/21

Intro Plots References

Discrete Optimization - MRF Model

Discrete label x
i

for each pixel i , Energy: min
x

P
i

f

i

(x
i

) +
P
ij

f

ij

(x
i

, x
j

)

x2x1

fi(xi)

fij(xi, xj)

For a chain or a tree can be solved using dynamic programming.

A. Shekhovtsov Parallel Dual Block Optimization for Energy Minimization

Common scenario: only pairwise interactions:



• NP-hard (includes MAX-CUT, vertex packing, etc.) 
• Two large groups of methods used in CV: 

• minimum cut (graph cuts) 
• LP relaxation / message passing 

• There are much more
64

Pairwise Energy Minimization

min
x

X

i2V
f

i

(x
i

) +
X

ij2E
f

ij

(x
i

, x

j

)

V - set of nodes

E - set of edges

(V, E) - graph

x = (xi | i 2 V) - labeling

Common scenario: only pairwise interactions:
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Introduction The Problem Algorithm References

Energy Minimization

Example: Potts Model for Object Class Segmentation

V - set of pixels; E ⇢ V ⇥ V neighboring pixels;

Xs = {1, . . .K} – class label;

Ef (x) =
P

s2V fs(xs) +
P

st2E �st [[xs 6= xt ]].

Image Ground Truth

(MSRC object class segmentation)

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency

Example: Semantic Segmentation
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Complexity of Energy Minimization

Overview in [Li et al. “Complexity of Discrete Energy Minimization Problems”, 2016]

f (x) = f (x⇤)

f (x)  Cf (x⇤)

Cannot guarantee

f (x)  P(n)f (x

⇤
)

Directly used in 
applications 

or as subproblem solvers

also used in applications 
but rely on “good ” data
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As Integer Linear Program

i j

µi (k) µj(k 0)

0

0

0

1

0

0

0

1

µij(k , k 0)

• Energy minimization: min

x

P
i

f

i

(x

i

) +

P
ij

f

ij

(x

i

, x
j

)

• For each i encode x

i

with µ
i

(k) 2 {0, 1}, k – label

• For each ij encode (x

i

, x
j

) with µ
ij

(k , k 0
) 2 {0, 1}

• The objective linearizes

• µ need to respect constraints

min

µ

X

i

X

k

E

f

i

(k)µ
i

(k) +

X

ij

X

k,k0

E

f

ji

(k , k 0
)µ

i,j(k , k
0
)

µ � 0; µ 2 {0, 1}I
P

k

µ
i

(k) = 1

P
k,k0 µ

ij

(k , k 0
) = 1

P
k

0 µ
ij

(k , k 0
) = µ

i

(k)

P
k

µ
ij

(k , k 0
) = µ

j

(k

0
)



• Consider a class C of problems specified by unrestricted graph structure and pairwise 
potentials from some set F.
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The Power of Basic LP Relaxation

Theorem (Thapper and Zivny 2012, Kolmogorov 2013)

(Roughly) Class C has a polynomial time algorithm i↵ the Basic LP relaxation is tight for C .

• This means LP relaxation is a rather universal tool 
• It is also tight for many practical individual instances or provides a good approximation

Theorem (Prusa, Werner, 2017)

LP Relaxation of MAP MRF is as hard as any linear program. (Already for Potts model with 3 labels

on a planar graph).

• It means it is very unlikely to come up with an algorithm better than O(n3.5L) 
• Many approximate methods developed in Computer Vision



• Problem history: 30+ years 
• Active research for better algorithms: 

• theoretical (Orlin’12: O(mn) algorithm), parallel algorithms 
• practical, esp. in computer vision 69

Minimum s-t Cut
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Reduction to Minimum s-t Cut
• Let x

i

2 {0, 1}
• Energy minimization: min

x

P
i2V f

i

(x

i

) +

P
ij2E fij(xi , xj)

• Expand as polynomial:

f

i

(x

i

) = f

i

(1)x

i

+ f

i

(0)(1� x

i

) = c0 + c

i

x

i

;

f

ij

(x

i

, x
j

) = . . . = c

0
0 + c

0
i

x

i

+ c

00
j

x

j

+ c

ij

x

i

(1� x

j

).

• Minimum cut: min

S⇢V

P
ij2(S,V\S) cij

2 Background on Energy Minimization

u v

fu(1)
fuv(1, 1)

fu(0)

fv(1)

fv(0)
fuv(0, 0)

fuv(1, 0) fuv(0, 1)
  

 u v

cu cv
cuv

 

u v

c1u c1 v

cu 0 cv 0

1 - source

0 - sink

cuv
cvu

(a) (b) (c)

Figure 2 Equivalent mincut representation for energy minimization with binary variables. (a)
Energy terms for pixels u, v and pair uv œ E . (b) Equivalent transformation of the energy
allowing to rewrite it in the form (38). (c) Cut-cost representation of the energy function.
The cut shown in red is (A, V\A) with A = {1, u}. It corresponds to the labeling xuv = (1, 0)
and has the cost cu0

+ cuv + c
1v equivalent (up to a constant) to the respective energy cost.

Expression (36) is a quadratic polynomial in binary variables x. Functions of the form
BV ‘æ R are known as pseudo-Boolean and their minimization (or maximization) are
the subject of pseudo-Boolean optimization (BorosHammer02 ). In this work, we will
discuss several methods which are based on the results developed in pseudo-Boolean
optimization or are generalizing them in a certain way.

2.3.1 Roof Dual (QPBO)

In the case of two labels, the necessary condition of optimality of the LP relaxation,
described in §2.2.5 is also su�cient.

Theorem 6. Let fÏ be an arc-consistent equivalent of energy f with two labels. Then
there is an optimal relaxed labeling with components in {0, 1

2 , 1} (half-integral) satisfy-
ing complementary slackness.

This result was observed independently by Hammer-84-roof-duality; Schlesinger00;
Kolmogorov-05-opt. See also (Werner-PAMI07 ).

In pseudo-Boolean optimization it was shown that several approaches, including the
dual in the form (20), lead to the same lower bound, called the roof dual (Hammer-84-roof-duality;
BorosHammer02 ). This dual problem can be converted to maxflow on a specially
constructed graph with a double number of vertices (Boros:TR91-maxflow ) and
thus can be solved by e�cient maxflow algorithms. It was found to be a powerful
method for quadratic pseudo-Boolean optimization and was also enhanced by probing

(Boros:TR06-probe; Rother:CVPR07 ). Kolmogorov-Rother-07-QBPO-pami
and Rother:CVPR07 proposed a review, an e�cient implementations and further
improvements. After them, Quadratic Pseudo-Boolean Optimization, abbreviated as
QPBO(-P), refers to this particular e�cient method (resp. with probing). Kolmogorov10-bisub
gives an alternative interpretation of this method via a submodular lower bound.

For our purposes, we will assume that QPBO finds the arc-consistent equivalent fÏ.
Let us introduce a function QPBO(f) = {Os | s œ V}, where Os = argmini fÏ

s (i). It will
be proven in §3.2 that any minimizer x of Ef satisfies xs œ Os for all s œ V.

For multi-label problems, the QPBO method can be used to fuse two given label-
ings (Lempitsky-09-fusion ), restricting thus the search space to a binary choice in
every pixel. In §2.7, we review QPBO fusion in the context of the expansion-move
algorithm.

16

• Solvable in polynomial time if cuv >=0
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Segmentation as Mincut
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Exercise

Recall the segmentation model: fij(xi , xj) = �|xi � xj |, xixj 2 {0, 1}
Derive cij such that fij expresses as

c0 + axi + bxj + cijxi (1� xj)
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Applications of min-cut

(More with further extensions)
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Just few more…
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Example: Joint Segmentation and Parameter Estimation

Image FG / BG brush• Input:

• Output: 
• Complete segmentation

Rother, Kolmogorov, Blake: “GrabCut” — Interactive Foreground Extraction using Iterated Graph Cuts
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Probabilistic Models Bayesian Decision Theory Maximum Likelihood Bayesian Estimation Expectation Maximization

Graphical Model

Segmentation

Color cluster

Color

Generative model (bottom-up in the picture)

Segmentation u : ⌦ ! {0, 1}
Assignment of pixels to color clusters k : ⌦ ! {1, . . . ,K}
Image I : ⌦ ! R3 – color drawn from Gaussian cluster k

Absence of edges between variables correspond to conditional
independencies.

79 / 85

Model

• Markov random field (generative) model:

• Segmentation x : ⌦ ! {0, 1}
• Model: p(x) - neighboring pixels are more likely to take the same

segment

• Color clusters: k : ⌦ ! {1, . . .K}
• Model: p(k |x) - conditionally independent for all pixels

• Image: I : ⌦ ! R3
- color drawn from a color cluster

• Model: p(I |k) - conditionally independent for all pixels

BG

FG

Gaussian Mixture



• Given appearance model find best segmentation (min-cut) 
• Given segmentation refit the appearance model 

• Problem: fitting a Gaussian mixture is not closed form, may oscillate or get stuck  
• Solution: Expectation Maximization algorithm

77

Method
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Stereo as Mincut

A C G T

A

G

T

A

Sequence Alignment problem (bioinformatics), Needleman–Wunsch algorithm (1970) 
Also good for scan-line stereo!

Shortest Path Minimum Cut — extends to surfaces

Hard to construct directly (one CV paper did)
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Many other Problems Solvable with Min-cut

Multi-class segmentation for a hierarchy 
of nested candidate regions  

[Lempitsky et al. A Pylon Model for Semantic Segmentation, 2011]…

fi,j(xi , xj) = V (xi � xj), convex

Moregenerally , submodular

. . . Class of

graph-cut representable problems
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Optimized Crossover
x

y

x

y

Current best solution

Proposal solution

Crossover (fusion problem)

Local Search in some combinatorial locality
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Expansion Move

x

y

x

y

Current best solution

Proposal solution

Crossover (fusion problem)

Minimum Cut

[Boykov, Veksler, and Zabih: "Fast Approximate Energy Minimization via Graph Cuts", 1999]
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Space of Possible Expansion of One Label



Semi-metric fij(↵,�):

• fij(↵,�) = 0 i↵ ↵ = �

• fij(↵,�) = fij(�,↵) � 0

• fij(↵,�)  fij(↵, �) + fij(�,�)

Theorem (Boykov, Veksler, Zabich, 1999)

For semi-metric problems, the expansion-move algorithm finds a solution with an approximation ratio:

2c = 2c max

ij

max↵ 6=� fij(↵,�)

min↵ 6=� fij(↵,�)

• Start with initial solution x 
• For each label a 

• Consider the Expansion-Move to a: 
• xi stays or switches to a -> reduce to graph cut and solve  

• Iterate until x stops changing

83

Expansion Move

“robust” potentials: 
outliers not over penalized
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Applications of graph cuts

A general and fast technique

In 2011 received  
Helmholtz Prize (Test of Time) Award



MRF Marginals — Mean Field Approximation
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Computing Marginals

Posterior of the states given image

�ji (xj , xi ) ⌘ �ij(xi , xj)p(x | y) / exp

⇣X

i

��i (xi , yi )�
X

(i,j)

�ij(xi , xj)
⌘

Want to estimate marginals p(xi | y)

p(x

i

| y) = E
XV\{i}

⇥
p(x | y)

⇤
/

X

xV\{i}

exp

⇣X

i

��
i

(x

i

, y
i

)�
X

(i,j)

�
ij

(x

i

, x
j

)

⌘
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Example of Marginal Probabilities
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Factorized Approximation of the Posterior

MRF Mean Field

Posterior of the states given image
Want to estimate marginals p(Xi | I )

Approximation of the posterior

(assume posterior distribution is 
concentrated around one configuration)

p(x

i

| y) =/
X

xV\{i}

exp

⇣X

i

��
i

(x

i

, y
i

)�
X

(i,j)

�
ij

(x

i

, x
j

)

⌘
q(x) =

Y

i

qi (xi )
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KL Divergence
Let p(X ) and q(X ) be two probability distributions.

Definition

Kullback–Leibler divergence (1951) of p and q is

KL(p(X )kq(X )) =

X

x2X
p(x) log

p(x)

q(x)

In the definition above 0 log

0
0 = 0 log

0
q

= 0 and p log p0 = 1.

For continuous variables:

KL(p(X )kq(X )) =

Z
p(x) log

p(x)

q(x)

dx

The expected number of extra bits required to code samples from p using a code optimized for q 
The amount of information lost when q is used to approximate p
Non-negative, KL(p||q) = 0 iff p = q



1 2 3 4 5
-2

2

4

6
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Non-negativity of KL

y(x1) y(x2)

y

P
x

p(x)y(x)

� log(y1)

Assume p(x) > 0, q(x) > 0,
P

x

p(x) = 1,
P

x

q(x) = 1

Statement:
P

x

p(x) log p(x)
q(x) � 0

Proof

Denote y(x) = q(x)
p(x) , the inequality reads:

P
x

p(x)(� log y(x)) � 0

Observe that log is a convex function, apply Jensen’s inequality:
P

x

p(x)(� log y(x)) � � log
P

x

p(x)y(x) = � log 1 = 0

From strictly convexity: equality iff all y(x) are equal



• This gives rise to two families of variational methods
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Asymmetry
Minimizing forward KL divergence:

Well on average in the expectation over p

Minimizing reverse KL divergence:

Well on average in the expectation over q —  
concentrating around a mode of p

p - bimodal
q - Gaussian

min

q
KL(qkp)

⇣Z
q(x) log

q(x)

p(x)

dx

⌘

Example:

min

q
KL(pkq)

⇣Z
p(x) log

p(x)

q(x)

dx

⌘
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Reverse KL — Mean Field

KL(qkp) =
X

x

q(x) log

q(x)

p(x)

= �
X

x

q(x) log p(x) +

X

x

q(x) log q(x)

-EntropyCross-entropy / Evidence

Entropy of independent variables is additive:

Cross-entropy decouples over pairwise terms:
X

x

q(x) log p(x) = �
X

x

Y

i

0

q

i

0
(x

i

0
)(

X

i

�
i

(x

i

) +

X

ij

�
ij

(x

i

, x
j

))

= �
X

i

X

x

i

�
i

(x

i

)q

i

(x

i

)�
X

ij

X

x

i

,x
j

�
ij

(x

i

, x
j

)q

i

(x

i

)q

j

(x

j

)

X

x

q(x) log q(x) =
X

x

Y

i

0

q
i

0
(x

i

0
)

X

i

log q
i

(x
i

) =

X

x

X

i

Y

i

0

q
i

0
(x

i

0
) log q

i

(x
i

)

=

X

i

X

x

Y

i

0

q
i

0
(x

i

0
) log q

i

(x
i

) =

X

i

X

x

i

q
i

(x
i

) log q
i

(x
i

) =

X

i

�H(q
i

).



93

Mean Field

Algorithms:  
sequential coordinate-wise minimization (convergent) 
parallel coordinate-wise (may oscilate)

Non-convex 
because of qiqj 
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Fully Connected (Dense) CRFs

[Kraehenbuehl and Koltun: Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials, 2012]

Potentials of the form: �ij(xi , xj) = ⇢(xi , xj)
P

m wmk
m
(fi � fj),

f -some features ! bilateral filtering

Assume potentials have the following structure: �
ij

(x

i

, x
j

) = ⇢(x
i

, x
j

)k(i � j)

log q

i

(x

i

) = �
i

(x

i

) +

X

j 6=i

X

x

j

q

j

(x

j

)⇢(x
i

, x
j

)k(i � j)� �0

Parallel update can be implemented e�ciently:

• For all labels l :

• s(j) :=

P
l

0 q
j

(l

0
)⇢(l , l 0)

• log q

0
i

(l) := �
i

(l) +

P
j 6=i

s(j)k(i � j) = �
i

(l) + s ⇤ k � s(i)k(0)

• Renormalize all q

0
i

Convergence with some assumptions, better algorithms than parallel coordinate-descent, other relaxations
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[Kraehenbuehl and Koltun: Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials, 2012]
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Forward KL

-Entropy of p Cross-entropy

When minimizing in q, H(p) does not matter

Turns out that we need to know marginals p(Xi). But then: 

KL(pkq) =
X

x

p(x) log

p(x)

q(x)

=

X

x

p(x) log p(x)�
X

x

p(x) log q(x)

�Ep(X ) log q(X )

X

x

p(x) log q(x) =

X

x
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X

i

log q

i
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i
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i

X

x1,...,xi ,...,xn

p(x) log q

i

(x

i

) =

X

i

X

x

i

p(x

i

) log q

i

(x

i

)

Cross-entropy simplifies using factorization of q:

min
q

�
X

i

X

x

i

p(x
i

)q
i

(x
i

)

s.t.
X

i

q

i

= 1

) qi (xi ) = p(xi )

Forward divergence was the “right one” but we did not get a simplification
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Mean Field as Approximation and Forward KL

Terms from the original distribution terms from current estimate

p

q
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0
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j2N (i)
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, x
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⌘

The iterative algorithm can be understood as follows. At each iteration

• Approximate p(x) ⇡ p̂(x) = p(xi |xV \{i})q(xV \{i})

• Minimize KL(p̂kq)

Note, the second step e�ciently means q

i

:= p̂(x

i

) =

P
xN(i)

p(x

i

|xN (i))q(xN (i))



Graphical Models as Neural Networks

Materials: Arnab et al. “Conditional Random Fields Meet Deep Neural Networks for Semantic 
Segmentation”, 2018
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Semantic Segmentation

Pixels/ locations Classifier for each pixel Enforce consistence 
with CRF 
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Gradual “Neuralization” of CRF approaches
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FCN + Mean Field CRF

Mean Field Iteration

Mean Field CRF inference as common CNN operations

Conditional random fields as recurrent neural, networks (Zheng et al., 2015)
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Another Example: CRF with Learned Potential Structure

Improved results compared to DenseCRF, based on Gibbs sampling (training and test time)
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CNN+CRF Stereo
Knöbelreiter et  al. End-to-End Training of Hybrid CNN+CRF Models for Stereo, 2017
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Effect of Joint Training
Unary CNN Unary CNN + CRF Full Joint

3 
lay

er
7 

lay
er

24.67

17.83

4.25

3.11

3.84

2.69

5 iterations of DMM 



• CRF could improve the results 
• But also, we practically implemented it with CNN-like elements 
• It means that in fact we have designed specialized CNN layers with a special structure 

• allowing for more spatial interactions 
• enforcing clustering of neighboring predictions 
• adjusting to image edges 

• Does it matter that these layers were derived from MAP CRF? 

• Further Topics 
• Deep Boltzman machine, Deep Bayesian network
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Discussion



Bayesian Networks
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Directed Graphical Model (Bayesian Network)

• Directed Acyclic Graph

• Graph G = (V ,E )

• Set of nodes V ; random variables Xi , i 2 V

• Set of directed edges E ⇢ V ⇥ V

• There are no directed loops in G

• Parents of i is the set Pa(i) = {j 2 V | (j , i) 2 E}

Definition

Bayesian network w.r.t. graph G is a random field that factorizes as

p(X ) =

Y

i2V

p(Xi |XPa(i))

X1

X2 X3

X4 X5

p(X2 |X1)

p(X1)

Edges encode “direct dependencies”



• Logistic conditional probabilities: 
• the probability model that has linear discriminant function 
• can be also derived assuming the factorization 

• Same conditional probabilities in: 
• restricted Bolzman machine, deep Bolzman machine, deep Bayesian network
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Sigmoid Belief Network
X1

X2

X3

X4

X5

Y …

• As considered by Neal (1992) 
• Binary variables 
• Conditional probabilities using logistic model:

p(Y |X ) =
Y

j

p(Yj |X )

p(Yj=1 |X ) =
1

1 + exp(�
P

i wiXi )



The optimal Bayesian classifier is given by

p(K = 1|x)
p(K = 0|x) 7 ✓

Equivalently, with log-odds:

f (x) := log p(K = 1|x)� log p(K = 0|x) 7 ⌘

What is the form of conditional distribution p(K |X ) such that f (x) is linear: f (x) = w

T
x?

• X - observed feature vector 
• K in {0,1} - hidden class label (face / not face)
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Logistic Function from Linear Discriminants
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Sigmoid Belief Network from Factorization
Consider a joint model p(X ,Y ) = p(Y |X )p(X )

Conditional distribution p(Y |X ) is strongly conditionally independent if it factors as:

p(y | x) = 1

Z (x)

Y

i,j

gij(xi , yj)

p(y | x) = 1

Z (x)

exp

X

i,j

uij(xi , yj) =
Y

j

1

Zj(x)
exp

X

i

uij(xi , yj) =
Y

j

p(yj | x)

Any function uij(xi , yj) of binary variables can be written as uij(xi , yj) = yjWijxj + bjyj + cixi + d

Terms cixi + d cancel in the normalization of p(Y |X )

p(Y

j

= 1 | x) = 1
Z

j

(x) exp(
P

i

W

ij

x

j

+ b

j

), p(Y

j

= 0 | x) = 1
Z

j

(x) exp(0) =
1

Z

j

(x)

p(Yj = 1 | x) = 1

1 + exp{�(

P
i Wijxj + bj)}



• Global conditional independencies — Markov Blanket 
• Local conditional independencies — Moral Graph 
• Optimal approximations by trees — Chow-Liu trees 

• Other names for BN: 
• belief network,  
• directed graphical model 
• (probabilistic network, causal network, knowledge map)
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Further Topics



Neural Networks as Graphical Models

 Materials: Shekhovtosv, Flach, Busta: “Feed-forward Uncertainty Propagation in Belief and Neural 
Networks”, 2018
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Recall: Sigmoid Belief Network

p(Y |X ) =
Y

j

p(Yj |X )

p(Yj=1 |X ) =
1

1 + exp(�
P

i wiXi )

Assume input X0 = x0 is given,

Model: p(X

n,X n�1, . . . ,X 1 | x0)
First level posterior: p(X

1
= 1 | x0) = S(W 1

x

0
)

Second level posterior: p(X

2
= 1 | x0) =

P
x

1 p(X
2
= 1 | x1)p(x1 | x0)

. . .

Network output: p(X

n | x0) = E
X

1,X 2,...Xn�1
p(X

n,X n�1, . . . ,X 1 | x0)

X1

X2

X3

X4

X5

Y …



• Sigmoid output is often interpreted as probability  
(e.g. part detectors, hierarchy of logistic models) 

• NNs do not compute the expectation (substitute it inside)
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In Sigmoid NNs Expectations Replaced

NNNN
0 1

0 1

0 1

E[output]?

• Use cases for computing the expectation:  
• Improve stability (robustness) of neural networks 
• Training networks with binary activations / weights



• Is this difference important?
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Sigmoid NN as Approximation
For two consecutive layers X ,Y

Apply the first order Taylor approximation for the moments of functions of random variables:

p(Y = 1 | x0) = E
X⇠P(X | x0)[S(wT

X )] ⇡ S(E
X

[w

T
X ]) = S(wT

E

X

[X ])

Note that for Bernoulli variables E

Y

[Y ] = p(Y=1 | x0).
We obtained standard NN propagation rules where activations are the ”means”



• For example, composition of parts: 

• If X1=1 with probability 0.3 and X2=1 with 
probability 0.2 what is the probability that 
booth are present: X1&X2?
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Example: Logic Gates

X1 =1 if seeing “car mirror” 
X2 =1 if seeing “car stop light” 

Parameters a, b are set such that:  S(a(1+1) +b)>0.95, S(a(0+0) +b)<0.05 

Let us fit logistic model

p(Y=1 |X ) = S(a(X1 + X2) + b)

And compare EXS(a(X1 + X2) + b)

with AP1 = S(aEX [X1 + X2] + b)

Logistic model is ok, but NN severely underestimates the probability of X1 AND X2.  
Similarly, for X1 OR X2, NN overestimates the probabilities.
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Could it Be One of the Reasons for Instability?

Houdini: Fooling Deep Structured 
Prediction Models,  Cisse et al.  Cisse 
2017

The other reasons could be: 
Lack of regularization (overfitting)? 
CNN structure?

CNNs are sensitive to random noise 
and to adversarial attacks  
(structured noise optimized to compromise 
a given network)



• Uncertain input may be: 
• Sensor noise (noisy image, lidar, computational sensors, etc.) 
• an input from other networks
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Uncertain / Missing Inputs

NN E[output]?

A circle denotes  
an uncertain value

What is the average output  
when input is random with 
the given uncertainty?



• Known1 to improve generalization of NNs 
• Usually sampled at training time and replaced with means at test time
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Networks with Dropout

NNNN

Zi ⇠ Bernoulli(0.3)

Dropout

⇥Z1

⇥Z2

⇥Z3

E[output]?

[1] Srivastava et al. (2014) Dropout: A Simple Way to Prevent Neural Networks from Overfitting 
[2] Wang, S. and Manning, C. (2013). Fast dropout training. In ICML

• Another case for statistical treatment
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Equivalence of Injected Noise and Probabilistic Models

Z ⇠ logistic

Z ⇠ normal

In dropout training objective we have something like:

EZ

h
log softmax(W

n
ReLU(W

n�1
ReLU(. . .W 1

x

0 . . . )Zn�2)Zn�1))

EZ [[x + Z � 0]]

More generally, let Y = f (X ,Z )

Then c.d.f. of Y given X , FY (y |X ) = EZ [[f (X ,Z )  y ]]

We can in principle reconstruct p(Y |X )

[[x � 0]]



• All neurons are random variables 
• Feed-forward network = directed graphical model
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X 0

…

X 1 X 2 X d

p(X 1 |X 0) p(X 2 |X 1)

X k = WX k�1

X k = f (X k�1 + Z ), Z ⇠ N (0, 1)

Infer: p(X k
i |X 0)

NN as Bayesian / Belief Network



• Goal: if we take into account all stochastic components, we should be able: 
• in classification: compute better likelihoods (confidence estimates) 
• in regression: output with uncertainty
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Output Uncertainty

Several methods exist, but not widely used and many open research questions

Sampling techniques [Some paper]

Something like this:



• Also supporting: sigmoid, softmax, max-poolig, maxOut, dropout, …
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Feed-forward Uncertainty Propagation
General diagram for all layers

µ0

µ0 ⌥ 3�0

(µi ,�2
i )

Layer

µ0 = E[Y ] = wTE[X ] = wTµ,

�02 =
X

ij

wiwjCov[X ] ⇡
X

i

w2
i �

2
i ,

values of X . When we deal with statistics over a
dataset, the variances should be assumed large. A
more suitable approximation used in [16] computes
expectations

µ

0
= E[f(X)] =

Z
f(x)p(x)dx, (4a)

�

02
=

Z
f

2
(x)p(x)dx� E[f(X)]

2
, (4b)

assuming that X is normally distributed: X ⇠

N (µ,�

2
). This assumption is plausible when X is

a linear combination X = w

T
Z + a, in which Z

i

are independent and weights are random. Empiri-
cally, this is a good approximation in many cases in
practice1. This method is not a general one as it re-
quires to compute integrals analytically, but for many
cases of practical interest it is tractable. In particu-
lar it is the case for sigmoid f(x) = 1/(1 + e

�x

)

and ReLU(x) = max(0, x) non-linearities and for
max(x1, x2), which can be used to implement max-
pooling and max-out, see [16, Table 2]. Let us il-
lustrate the case for ReLU. Both integrals (4) can
be taken (e.g., [16, §C.3]) and the result can be ex-
pressed as

µ

0
= µ�(a) + ��(a) (5a)

�

02
= �

2
R(a), (5b)

where a = µ/�, � is the pdf of the standard
normal distribution, � is its cdf and R(a) =

a�(a)+ (a

2
+1)�(a)� (a�(a)+�(a))

2. We see
that both integrals express though functions of a sin-
gle variable a. Even though they involve a non
closed-form function �, they can be accurately ap-
proximated. Fig. 1 illustrates this solution.

Invariances It is straightforward to see that linear
propagating equations (3) satisfy the properties that
µ

0 is linear and �

02 is 2-homogenous and therefore
the scale-bias invariance holds.

2.1. Efficiency

To compute statistics of all hidden units, the ap-
proximation can be applied layer-by-layer, propagat-
ing mean and variance. Let us consider a deep NN
where normalization (1) is applied. The quantity

X

i

� µ

i

�

i

, (6)

1There are variants of central limit theorem for non-
i.i.d. and even weakly dependent variables https://en.

wikipedia.org/wiki/Central_limit_theorem.
See [18, Figs 2, 3] for experimental illustration of related
assumptions in a network with dropout noise.

Figure 1: Propagation of uncertainty through ReLU
(red). The black curve shows an example of input X: a
normal pdf with mean µ = 3, � = 1 and support µ± 3�,
amplified in value for visibility. The expectation of ReLU
vs. the mean µ is shown as a blue curve. The std �

0 of
ReLU is illustrated via the set µ0

± 3�

0 shown as shaded
area. When the input � is different from 1 the plot in co-
ordinates µ0

/� vs. µ/� stays the same.

where µ, �2 are statistics of X , has zero mean and
unit variance. It implies that the computation of
statistics in a normalized network decouples as fol-
lows:
• Start from the dataset statistics (µ0

,�

0
), which can

be estimated prior to learning. They are commonly
used for the initial data whitening transform. If such
a whitening transform has been already applied we
may assume (µ

0
,�

0
) = (0, 1). Propagate the mo-

ments until the first normalization layer.
• Propagate from one normalization layer to the next
one assuming the input statistics are (0, 1).
The computation thus decouples in block of layers
delimited by the normalization layers and the result
of the normalization of such a block depends on the
parameters only inside the block but not on any other
parameters or data. Consider a network composed
of blocks of the form (linear(W

k

), norm(sk, bk),
activation). Then the statistics for the normaliza-
tion in block k will depend only on parameters W k,
s

k�1, bk�1.
Further on, to compute the normalization in a con-

volutional NN we do not need to work with spatial
dimensions. The normalized input statistics (0, 1)

are the same over spatial dimensions and channels.
The scale-bias parameters s, b are the same over spa-
tial dimensions but not over channels. A convolu-
tional filter W

i,j,k

(per output channel) with i running
over input channels and j, k over spatial dimensions,

ReLU: Y = max(X , 0)

(µ0
j ,�

02
j )

Linear: Y = wTX

X ⇠ N (µ,�2)

Assume X ⇠ N (µ,�2)
µ0 =

R1
�1 p(X )f (X )dx

�0 =
R1
�1 p(X )f (X )2dx � µ02



• Expectations are always smooth
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Different Coordinate-wise Functions



• AP1: take clean image and propagate with standard rules 
• MC: take several samples of noise and collect statistics from propagating image+noise  
• AP2: propagating mean and variance
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SoftmaxNN
Input:  

image + noise

posterior class 
probability

outputs of the last linear layer

Propagation Methods: Example

Under noisy input, estimates may differ 
If the output variance is low - standard method is Ok, 
Bit if it is high we would not know about it
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Experiments on CIFAR-10



• Currently only for shallow networks, working on improving it
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Better Stability

Gaussian Noise Adversarial (gradient sign)



• Problem:  
compute expectations of neurons (mean and variance) over the dataset 

• Used for: (same as in Batch Normalization) 
• initialization (start in a non-saturated regime) 
• normalization (a reparametrization better conditioning gradient descent)
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Statistics over the Dataset

(µ,�2)
NNNN

Poor initialization: all inputs to a neuron are in a saturated part 



• Shekhovtsov and Flach: Neural Network Normalization using Analytic Variance Propagation
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Statistics for Normalization

Our method

no normalization
Batch Normalization

X � µ1

�1
W1 ⇤ X

Linear Norm Nonlinear Linear

W2 ⇤ Xf (X )

Input batch Norm

…

(µ0,�
2
0) (0, 1)

Affine

s1X + b1
X � µ2

�2

(0, 1)

Variance Propagation
Standard propagationdataset statistics normalized neurons 

 statistics



• Can give a better generalization than standard dropout and trains faster 
• Related work: Wang and Manning “Fast dropout training”
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standard
dropout(0.2)

analytic dropout
analytic dropout + normalization

dropout(0.3)

Analytic Dropout

(BN performs better in this plot)



• Lots of things to improve in NNs understanding them as probabilistic models 
• uncertain inputs, stability of NNs under perturbations 
• uncertain outputs for regression 
• initialization and normalization 
• improving training with dropout and other noisy regularizers 
• generative models 
• better learning models
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Take Away Message



Variational Bayesian Learning
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Maximum Likelihood

Let x be an input and y the prediction or class label we want to recognize.

Consider a conditional model p(y | x ; ✓) parametrized by ✓.

Let D = {(x t , y t
) | t = 1, . . .T} be a set of training samples.

Recall the maximum likelihood approach:

• Training: find the maximum conditional likelihood estimate of ✓:

ˆ✓ = argmax

✓

Y

t

p(y

t | x t ; ✓)

• Testing: recognize new input x using

ˆ✓:

y = argmax

y
p(y | x ; ˆ✓)

• The confidence is given by the posterior p(y | x ; ˆ✓)
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Bayesian Learning
Bayesian approach

• Consider ✓ as a random variable, with a priori distribution p(✓)

• The conditional model becomes p(y | x , ✓)

• Training: the posterior estimate of ✓ given D is:

p(✓ |D) =

p(D | ✓)p(✓)
p(D)

=

Q
t p(y

t |x t , ✓)p(✓)p⇤(x)
p(D)

,

where p

⇤
(x) is the true distribution of inputs, which we will not be estimating and assume that x

is independent of ✓.

• Up to normalization: p(✓ |D) /
Q

t p(y
t |x t , ✓)p(✓). Can compute for a given ✓ using all the

data.

• Testing: given x , integrate out ✓:

p(y | x) =
Z

p(y | x , ✓)p(✓ |D)d✓ — in general intractable
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Example: Uniform Distribution

• Let p(x ; ✓) be a uniform distribution in [0, ✓].

• Want to estimate ✓.

• Suppose we know a priori ✓ 2 [0, 10], choose p(✓) uniform in [0, 10].

Given a sample D = {x1, x2, . . . xn}, compute Bayesian estimate of p(✓ | D):

p(✓ | D) /
nY

i=1

p(xi | ✓)p(✓) =
nY

i=1

1

✓
[[xi  ✓]]p(✓).
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Example: Uniform Distribution
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• Proposition: compute approximation to p(✓ |D) by a simpler distribution q(✓).

• Let for example ✓ 2 Rd and

q(✓) =
dY

i=1

pN (✓i ; ✓̂, �̂
2)

• For each coordinate of ✓ we would like to estimate mean and variance.

• Recall the mean field approach:

min
q

KL(q(✓)kp(✓ |D))

• Only this time ✓ is continuous.
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p(✓ |D)

q(✓)

Sensible if expect the posterior to be concentrated 
around some point
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Having q, The Bayesian posterior is approximated using distribution q in place of p(✓ |D):

p(y | x ,D) ⇡
Z

p(y | x , ✓)q(✓)d✓.
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When we choose q to be the delta-function at

ˆ✓ (fix a tiny �̂) and the prior p(✓) as N (0,�2
0 I ), the

variational optimization becomes, up to constants,

min

✓̂
[�

X

t

log p(y

t | x t , ˆ✓)] + kˆ✓k2

2�2
0

,

I.e., we recover the maximum likelihood, with a weight regularization.

Solving the variational problem. Expand KL:

KL(q(✓)kp(✓ |D)) = E✓⇠q(✓) log
q(✓)

p(✓ |D)

= E✓⇠q(✓) log
q(✓)Q

t p(y
t | x t , ✓)p(✓)/p(D)

= E✓⇠q(✓)

h
�

X

t

log p(y

t | x t , ✓)
i
+ KL(q(✓)kp(✓)) + log p(D).

Special case I:

log likelihood, expected over parameters,  
data evidence 

data-independent  
regularization
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KL(q(✓)kp(✓ |D)) = E✓⇠q(✓)

h
�

X

t

log p(y

t | x t , ✓)
i
+ KL(q(✓)kp(✓)) + log p(D).

argmin
q

KL(q(✓)kp(✓ |D)) = argmin
q

�|D|E✓⇠q

(x,y)⇠D

h
� log p(y | x , ✓)

i
+ KL(q(✓)kp(✓))

Special case II: q(✓) = q(✓ |�) is Gaussian with parameters �

• KL(q(✓)kp(✓)) is closed form for several types of priors p(✓)

• Gradient in q of the data evidence expresses as:

@

@�
E✓⇠q

(x,y)⇠D

h
� log p(y | x , ✓)

i
= E✓⇠q

(x,y)⇠D

h
� @

@�
log p(y | x , ✓)

i

A stochastic estimate of the gradient an be made from few samples of the data  
 and parameters — means we can apply SGD
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Stochastic gradient in q:

• pick a random training sample (x

t , y t
) (or a batch)

• sample parameters ✓ from current posterior: ✓ ⇠ q(✓)

• Evaluate usual log likelihood log p(y

t | x t , ✓)

• add regularizer

• back propagate and perform a gradient descent step in parameters of q

Looks similar to training with dropout, doesn’t it?
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