
SMU ILP: Learning from Entailment

In this tutorial, we will focus on a different setting of ILP, the setting of
learning from entailment. In this setting, the aim is to learn a theory T such
that the theory entails all positive examples and no negative ones, i.e.

T ` o ∀o ∈ O+,

T 0 o ∀o ∈ O−.

For this tutorial and the homework assignment, we will assume that the
input data do not contain noise.

Logic

This section contains definitions of FOL terms which are necessary for this
tutorial. It is expected that the reader is familiar with the similar section from
the previous tutorial. Note that for simplicity of notation, this tutorial considers
constant symbols to be function symbols of arity 0.

The core term of this tutorial is θ-subsumption. We say that γ1 θ-subsumes
γ2, γ1 ⊆θ γ2, iff there exists a substitution θ such that γ1θ ⊆ γ2 in the sense of
literals. For example, for γ1 = p(X,Y) and γ2 = p(a, Z) there holds that γ1 ⊆θ
γ2. To check this by the definition, firstly find a substitution, e.g. θ = {X 7→
a, Y 7→ Z}, and check the sets of literals, e.g. γ1θ = {p(a, Z)} ⊆ {p(a, Z)} = γ2.
Note here that the = relation is a little bit overloaded, meaning that a clause
is the same as set of literals it contains. On the contrary, γ2 6⊆θ γ1. But in
general, it may happen that two clauses are subsume-equivalent, i.e. γi ≈θ γj
iff γi ⊆θ γj and γj ⊆θ γi. Similarly to ⊆θ relation, we may define relation ⊂θ
which expresses that a clause strictly θ-subsumes another clause.

We say that γ1 entails γ2, γ1 ` γ21, iff every model of γ1 is also a model
of γ2. We may use entailment as a measurement of generality in the space
of clauses, i.e. if γ1 is more general than γ2 if γ1 ` γ2. However, to check
whether one clause entails another is computationally expensive. Fortunately,
the undecidable entailment operator can be approximated by the NP-complete
θ-subsumption, i.e. (γ1 ⊆θ γ2) =⇒ (γ1 ` γ2). The opposite does not apply
because of self-resolving clauses; these are clauses containing the same predicate
symbol in both head and body of a clause, i.e. with different negation sings. In

1Note that in other literature you may find the same functionality symbolized by |= oper-
ator.

1

FOL setting, having and predicate in a clause with both positive and negative
sing does not necessary result in a tautology. In the case when we restrict to non-
self-resolving clauses only, the θ-subsumption becames equal to the entailment.

Clause Reduction

There may exist two or more clauses which are subsume-equivalent, e.g. γ1 ≈θ
γ2 ≈θ γ3 These clauses are tight up together by one thing – they have
the same semantic meaning. For the computation complexity of clauses space
traversal, it would be great to visit only one representative (canonical-like) in-
stead of all possible clauses of one ≈θ-class. For this task, we may traverse only
the space of reduced clauses. We say that a clause γ is reduced iff there is no γ′

such that γ′ ≈θ γ and |γ′| < |γ|. In other words, the reduced clause of a clause
γ is in the same subsume-equivalence class as γ, but has the lowest number of
literals.

If a clause after deleting one of its literals is in the same θ-subsume equiva-
lence class, then the shorther one can be used instead of the original one. We
may compute a reduced clause of a clause by applying this strategy in sequence
on every literal of the original clause. See the following pseudocode for this
algorithm which expects a clause γ as input and returns reduction of this clause:

γ′ ← γ
forall l ∈ γ do

if γ ⊆θ (γ′ \ {l}) then
γ′ ← γ′ \ {l}

end

end
return γ′

LGG

A set of all possible atoms, extended by special symbols ⊥ and > (false and
true), partially ordered by θ-subsumption, forms a complete lattice in which
the greatest lower bound (glb) and the least general generalization (lgg) exist
for each two pair of atoms [1]. The ⊥ symbol is a result of lgg in the case
that the input atoms are not compatible, e.g. lgg(p(X), q(Y)); > has the same
meaning for glb. We may in fact extend the definition and operate with a
lattice over literals, not only atoms, as it can be straightforwardly seen that
lgg(¬p(X), p(X)) is equal to ⊥2. So, within this lattice, glb corresponds to
unification of two literals and lgg corresponds to the exactly opposite operation,
therefore it is sometimes referred as anti-unification.

2Lgg can be defined in multiple ways. In some of them, lgg for these two literals is
undefined.

2

So, to formally define lgg of two clauses:

LGG(γ1, γ2) = γ

s.t. γ ⊆θ γ1
γ ⊆θ γ2
∀γ′s.t.γ′ ⊆θ γ1 ∧ γ′ ⊆θ γ2 : γ′ ⊆θ γ

The only missing part is the declarative description of the computation al-
gorithm of an lgg of two clauses:

LGG(γ1, γ2) =
∨

l1∈γ1,l2∈γ2
samePredNeg(l1,l2)

LGG(l1, l2)

LGG(p(t1, t2, . . .), p(t
′
1, t
′
2, . . .)) = p(LGG(t1, t

′
1), LGG(t2, t

′
2), . . .)

LGG(f(t1, . . .), f
′(t′1, . . .)) =

{
X ′ f 6= f ′

f(LGG(t1, t
′
1), . . .) otherwise

LGG(f(. . .), X) = X ′

LGG(X,Y) = X ′

where p stands for a predicate symbol, f stands for a function (or a constant)
symbol, and X ′ stands for a variable. However, it is important to note that
each pair of terms (t1, t2) is anti-unified with exactly one variable, where t1
is a term from l1 and t2 is a term from l2. The samePredNeg is a function
which returns true iff both of its arguments have the same negation sign and
the same predicate; i.e. it is just different notation for the selection process as
stated in the lectures. Recall from [3] that lgg is a symmetric, commutative,
and associative operator.

LGG with Taxonomical Information

Consider the following case when one is asked to compute lgg of

γ1 = animal(dog),

γ2 = animal(mammal).

The standard lgg of these would be animal(X). However, in some specific
cases a user may know some taxonomical information about the constants of the
domain, e.g. the relationship that a dog is a mammal. It is noticeable that lgg
enhanced with this taxonomical information would produce animal(mammal)
as it is the least common ancestor in the extended lattice. To formally incorpo-
rate this extension to the lgg computation scheme, add two more rules:

3

LGG(f(t1, . . .), f
′(t′1, . . .)) =

f ′ isa(f, f ′)
f isa(f ′, f)
X f 6= f ′

f(LGG(t1, t
′
1), . . .) otherwise

Exercise

• list all pairs s.t. γ1 ⊆θ γ2 from the following clauses

(a) p(X)

(b) q(Y) ∨ p(Y)

(c) p(a) ∨ p(b) ∨ p(Z)

(d) q(a)

(e) q(X) ∨ p(Z) ∨ q(Z)

• compute unification and anti-unification of γ1 = p(a, x, f(X)) and γ2 =
p(Y, f(b), f(f(b))), [2]

• compute lgg of γ1 = e(X,Z) ∨ ¬e(X,Y) ∨ ¬e(Y,Z) and γ2 = ¬e(X,Y) ∨
¬e(Z, Y) ∨m(Z)

• reduce the clause obtained earlier

• reduce p(X,Y) ∨ p(a, b) ∨m(B) ∨m(Y)

Homework Assignment

Download and unzip the archive for this tutorial/assignment. If you haven’t
installed the necessary SW, see readme for instructions. If you haven’t gone
trough the notebook from the previous tutorial, minlog, see that for the basic
functionality of the library. In any case, see notebook minlogHW for getting
into touch with the new functionalities of the library needed for this task.

Implement class LGGResolver in file lggAgent.py, which represents an on-
line learning agent in the setting of learning from entailment. Recall that this
setting differs a little bit from the lecture; an observation with class (pos/neg)
is given instead of using a time delayed reward. Also recall that for this task,
we assume that the data do not contain noise. The agent may be instantiated
with variable taxonomical set to a set of literals corresponding to a taxonomy of
the form isa(car, vehicle). It is always ensured that literals in the set describe a
forest, i.e. set of rooted oriented trees. In the case that taxonomical is not None,
agent run lgg enhanced by the given taxonomical information as described earlier
in this document. By default, no taxonomy is provided, e.g. taxonomical=None.

Implement method seeObservation(sample,reduceClause). The first param-
eter is just a sample, i.e. an observation the agent gets from the environment in
the form of a clause with a class (pos/neg). The agent updates his hypothesis by

4

computing lgg upon his current hypothesis and the sample given iff the sample’s
class is positive but the sample is not θ-subsumed by the agent’s hypothesis.
The second parameter is simply a boolean stating whether the agent stores only
non-reduced clauses in his mind.

Implement your solution into the file lggAgent.py ; do not change other files.
Use file hw.py to run agent. In case of any issue with the provided library,
especially an issue concerning installation, post your issue to the SMU forum,
so that other students with the same issue can find issue-related solutions easily.

Create two pairs of clauses and compute their lgg by hand; see the following
section for more details.

Grading

You can obtain up to 12 points from this assignment; see the following list with
possible gains:

• 5 points: implement the on-line lgg-learning agent without the reduction
step (called by seeObservation(sample))

• 3 points: implement the reduction step (called by seeObservation(sample,reduceClause=True))

• 2 points: implement the lgg enhanced by taxonomical information

• 1 points*: create two clauses and compute their lgg (without the reduction
step) such that the final clause is a reduced one

• 1 points*: create two clauses and compute their lgg (without the reduction
step) such that the final clause is not a reduced one

However, you need to obtain at least 6 points in order to get the solution
accepted. Considering the manual computation, i.e. *, cases:

• an assignment of the anti-unification process (pair of terms to a variable)
must be present

• plain input-output of your implementation, e.g. with different variable
names, etc., will not be accepted

• do not use clauses from the lectures, tutorials, and trivial ones

• select reasonable short clauses

Format of the submitted solution is up to you (PDF, txt). However, in the
case that your logic notation differs from the tutorial’s one, you must define
notation used in the solution.

Submit your solution containing

• source codes, i.e. lggAgent.py

5

• a PDF or a plain text file containing clauses and their lggs (the last two
possibilites in table of points)

by Monday, May 14 to brute system.
Cooperation with other colleagues is strictly prohibited.

References

[1] Luc De Raedt. Logical and relational learning. Springer Science & Business
Media, 2008.

[2] Shan-Hwei Nienhuys-Cheng and Ronald De Wolf. Foundations of inductive
logic programming. Vol. 1228. Springer Science & Business Media, 1997.

[3] Filip Želený and Jǐŕı Kléma. SMU textbook. 2017.

6

