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1 A General Framework

1.1 Percepts and Actions

Agent Environment

Percepts

Actions

Figure 1: The basic situation under study.

• Discrete time
k = 1, 2, . . .

• Percepts
∀k : xk ∈ X

• Actions
∀k : yk ∈ Y

X and Y are finite.

A history is a sequence of alternating percepts and actions, i.e,

x1, y1, x2, y2, . . . , xk, yk

and is denoted as xy≤k. Similarly, xy<k = x1, y1, x2, y2, . . . , xk−1, yk−1. There
is a probability distribution µ on histories

µ(xy≤k) = µ(x1)µ(y1|x1)µ(x2|x1, y1) . . . µ(xk|xy<k)µ(yk|xk, xy<k) (1)

After the initial ‘kick-off’ x1 from the environment distributed according to
µ(x1), any percept xk generated by the environment at time k depends on the
entire preceding history xy<k according to

µ(xk|xy<k) (2)

Actions yk are determined by agent’s decision policy which also depends on
the history as well as the current percept and are distributed according to
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µ(yk|xk, xy<k). We will assume that the policy is deterministic. Thus we iden-
tify the policy with function π : (X × Y )∗ ×X → Y , so

yk = π(xy<k, xk) (3)

This means that µ(yk|xy<k, xk) = 1 for yk = π(xy<k, xk) and 0 otherwise.

The following diagram illustrates the influences between the introduced vari-
ables.

y1

x1

y2

x2

y3

x3

Figure 2: Influence diagram for actions yk and percepts xk for 1 ≤ k ≤ 3 with
full lines indicating deterministic influences (via π) and dashed lines showing
probabilistic influences (via µ).

While we have yet to define what goals the agent should achieve through in-
teraction with the environment, obviously some histories will be “better” than
others in terms of the goal achievement. To maximize the probability (1) of
good histories, the agent cannot influence the conditional probability (2), which
is inherent to the environment, but it can follow a good policy (3). However,
the effect of actions proposed by the policy depends on (2) which is generally
not known to the agent. So the agent needs to recognize the environment by
experimenting with it. This is formally reflected by (3) where action yk depends
not only on the current percept xk but also on the history xy<k. So the agent
will generally make different decisions yk 6= yk′ for k > k′ even if xk = xk′

because the experience xy<k at time k is larger than experience xy<k′ at time
k′. This is our first reflection of learning.

How does the agent know how well it is doing? This information comes from
the environment through a specially distinguished part of the percepts, called
rewards. The remaining part of each percept contains observations. Formally,
X = O ×R, ok ∈ O, rk ∈ R ⊂ <, so

xk = (ok, rk) (4)
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Since X is assumed finite, it follows that rewards have their finite minimum and
maximum.

The probability of xk in (2) can be written in terms of the marginals µO and
µR

µ(xk|xy<k) = µ(ok, rk|xy<k) =

µO(ok|rk, xy<k)µR(rk|xy<k) = µR(rk|ok, xy<k)µO(ok|xy<k)

which also makes it clear that ok and rk are in general not assumed mutually
independent, even if conditioned on xy<k.

1.2 Nonsequential Cases

Scenarios where current percepts depend on the history of previous percepts and
actions are called sequential. The framework described so far is maximally gen-
eral in that dependence is assumed on the entire history from k = 1 on. On the
other extreme are nonsequential scenarios. Here, observations are independent
of the history as well as the current reward, i.e.

µO(ok|rk, xy<k) = µO(ok) (5)

and thus o1, o2, . . . are mutually independent random variables sampled from
the same distribution µO (they are “i.i.d.”).

Rewards in the nonsequential case are assumed to depend only the immediately
preceding observation and the action taken on it, i.e.

µR(rk|ok, xy<k) = µR(rk|ok−1, yk−1) (6)

however, since yk−1 is functionally determined by the history xy<k−1 and per-
cept xk−1 = (ok−1, rk−1) through (3), we may rewrite (6) as

µR(rk|ok−1, rk−1, xy<k−1) (7)

which makes it clear that reward rk depends on previous rewards, and thus
rewards r1, r2, . . . are not i.i.d.. This is natural since if they were, it would
mean the agent never improves its performance.

1.3 Batch Learning

We will also consider a specific yet important nonsequential case called batch
learning consisting of two phases switching right after time K
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y1

o1

r1

y2

o2

r2

y3

o3

r3

Figure 3: Influence diagram for actions yk, observations ok, and rewards rk for
1 ≤ k ≤ 3 with full lines indicating deterministic influences (via π) and dashed
lines showing probabilistic influences (via µ) in the nonsequential case.

• the learning (training, exploration) phase at k = 1, 2, . . .K

• the action (testing, exploitation) phase taking place in k = K+1,K+2, . . .

In the action phase, the agent no longer changes its decision making policy, so

if k, k′ > K and xk = xk′ then yk = yk′ (8)

and ignores rewards. So the action proposed by the policy depends only on
the current observation and the history only up to time K. So for k > K, (3)
changes here into

yk = π(xy≤K , ok) (9)

and (6, 7) change into

µR(rk|ok−1, yk−1) = µR(rk|ok−1, xy≤K) (10)

because due to (9), yk−1 is determined by ok−1 and xy≤K . The observation
ok−1 does not depend on rewards due to (5). So reward rk does not depend on
previous rewards rk′ , k > k′ > K. Another way to say this is that rewards in
the action phase are conditionally independent of each other, given the learning
phase history:

µR(rk, rk′ |xy<K) = µR(rk|xy<K)µR(rk′ |xy<K) (11)

The following figure illustrates the batch-learning situation.
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xy≤K = o1, r1, y1, o2, r2, y2, . . . , oK , rK , yK

yK+1

oK+1

rK+1

yK+2

oK+2

rK+2

yK+3

oK+3

rK+3

Figure 4: Influence diagram for actions yk, observations ok, and rewards rk in the
action phase (k > K) of batch learning with full lines indicating deterministic
influences (via π) and dashed lines showing probabilistic influences (via µ). The
top row indicates the influence of the learning phase on the agent’s decisions in
the action phase.

We have observed that rewards rk, r
′
k (for any k, k′ > K) are mutually indepen-

dent given the learning phase xy<K . Note that they are also sampled from the
same distribution. This may seem to contradict (10) which stipulates that rk
depends on the observation ok−1 whereas rk′ depends on ok′−1. However, by
(5), ok−1 and ok′−1 are sampled from the same distribution µO. So we can ex-
press the distribution of rk (∀k > K) without conditioning on the observations
by marginalizing them away from the equation as follows

µR(rk|xy≤K) =
∑

ok−1∈O
µO(ok−1)µR(rk|ok−1, xy≤K) (12)

So rewards in the action phase indeed are i.i.d. according to the above distri-
bution conditioned only on the history of the learning phase.

1.4 Rewards and Goals

It has been obvious that the agent’s goal is to maximize rewards. Here we
formalize this goal. Since rewards come at each point of the history, we want
the agent to maximize their sum up to a finite time horizon m ∈ N

r1 + r2 + . . .+ rm
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or, more generally, maximize the discounted sum

∞∑
k=1

rkγk

where ∀k : γk ≥ 0 and
∑∞

i=1 γi < ∞. The latter condition guarantees that the
sum above converges, which is because the rk’s are bounded by a constant (c.f.
Section 1.1).

But since rewards are probabilistic, the agent should choose a sequence y≤m of
actions leading to a high expected cumulative reward∑

r≤m

µR(r≤m|y≤m)(r1 + r2 + . . .+ rm)

or, in the discounted case

lim
m→∞

∑
r≤m

µR(r≤m|y≤m)

m∑
k=1

rkγk

where the first sum in both cases goes over all possible reward sequences r≤m
(since R and m are finite, there is a finite number of them).

However, for the specific case of batch learning, we establish a more appropriate
learning goal. First, we do not care about maximizing rewards in the learning
phase as the purpose of this phase is to probe the environment even at the price
of possibly poor rewards. Second, in the action phase after time K, the rewards
rk, k > K are sampled independently from the same distribution (12) so we can
simply maximize their expectation with respect to this distribution∑

rk∈R
µR(rk|xy≤K)rk (13)

It is again obvious from the formula that the expected reward only depends on
the learning phase history xy≤K , after which the agent no longer changes its
action policy. Note also that the batch learning scenario allowed us to define an
objective (13) without the need to choose the parameters m or γk (k = 1, 2, . . .)
needed in the sequential scenario.

1.5 Environment States

With the exception of the non-sequential scenario, our framework has been very
general in that percepts xk generally depend on entire histories xy<k. In the real
world, many histories may be equivalent, i.e. leading to the same probabilities
of xk conditioned on action yk−1. This can be formalized through the notion
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of environment state. Intuitively, the state acts as the environment’s ‘memory’
carrying all the information from the history, which is important for generating
percepts. To formalize this, we will assume there is a set Se of all possible
states, and instead of 2, we will prescribe that percepts at time k only depend
on the state sek ∈ Se at that time, i.e. they are generated according to

µ(xk|sek) (14)

But how are the states determined? We will first explore a principle, which—in
a sense–will turn out to be maximally general. In particular, assume that the
initial state se1 is fixed to an ‘empty’ (or ‘dummy’) value se1 = s∗ such that

µ(x1|s∗) = µ(x1) (15)

so the first percept is generated just as in (1). Afterwards, any state sek (k > 1)
is established probabilistically by the preceding state, the last percept, and the
last agent’s action through the following state update distribution

Se(sek|sek−1, xk−1, yk−1) (16)

We said earlier that this principle was ‘maximally general.’ To say this more
precisely, for any environment generating percepts by (2), we can set up Se and
Se such that

µ(xk|sek) = µ(xk|xy<k) (17)

Indeed, if we allow Se to be infinite, then there could simply exist a distinct
state for each possible history (there is an infinite number of possible histories for
unbounded k). Then we can instantiate the distribution (16) to the functional
dependence

sek = sek−1 ‖ (xk−1, yk−1) (18)

where ‖ denotes concatenation. As a result, sek will simply collect the entire
history and in (17), sek would be just a different name for xy<k.

However, we will make an important assumption, which will significantly sim-
plify the framework, that the number of possible states is bounded by a finite
constant Se

max ∈ N which does not depend on k

|Se| < Se
max (19)

In practical tasks, there will be far fewer states than possible histories.

Moreover, we can afford an additional simplifying assumption which will further
lessen the generality of the framework, while keeping it able to encompass the
learning scenarios we are going to elaborate. In particular, we will assume
quite naturally that the influence between environment states and the emitted
percepts are single-directional in the sense that the percepts depend on states
by (14) but not vice versa, so we remove xk−1 from (16)

Se(sek|sek−1, xk−1, yk−1) = Se(sek|sek−1, yk−1) (20)
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As we have discussed already, the finiteness of Se means that the environment
has a ‘finite memory.’ Thus, from a current state se, one cannot in general iden-
tify the entire preceding history of states and actions. However, the framework
as defined can still model environments that remember a bounded number of
previous states and actions. We will demonstrate this through an example with
a one-step memory.

Consider an environment with states Se and update distribution Se, and assume
that the current state sek does not allow to infer the previous state sek−1 or action
yk−1. Then we can always define an extended (yet still finite) set of states as

Se
ext = Se × Se × Y (21)

(with the latter two factors acting as memory) and an extended update distri-
bution

Seext
{

(sek, oldsek, oldyk) |
(
sek−1, oldsek−1, oldyk−1

)
, yk−1

}
(22)

such that

• sek is distributed according to Se(sek|sek−1, yk−1)

• oldsek = sek−1 and oldyk = oldyk−1, both with probability 1.

So the three components of the extended state correspond, respectively, to the
original state at current time k, the same at the previous time k − 1 and the
agent’s actions at time k − 1.

We will often model environments with a natural (interpretable) set of states Se,
producing percepts that depend not only on the current state but also on the
state and agent’s action one-step back in history. We have just seen that such a
situation can still be modeled with the simple assumption (14) by extending Se

towards a state set with a memory as in the above example. However, this leads
to some cumbersome notation as in (22). We will avoid these complications by
keeping the original state set Se rather than extending it with memory for sek−1
and yk−1. Instead, we will add the latter two explicitly to the conditional part
of (14), thus obtaining

µ(xk|sek, sek−1, yk−1) (23)

Regarding the two components of percepts, the observations will depend only
on the current state (and not on the previous one) and the last agent’s action

µ(ok|sek, sek−1, yk−1) = µo(ok|sek, yk−1) (24)

and the reward will depend on the previous state (and not on the current one)
and the action taken immediately on it

µ(rk|sek, sek−1, yk−1) = µr(rk|sek−1, yk−1) (25)
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The formulation (23)–(25) is convenient for interpretability and to avoid the
complex notation such as in (22). One should however keep in mind that with
a suitable definition of the state variable, it is possible to avoid the variables
sek−1, yk−1 in the conditional part and adhere to the simple prescription (14).

1.6 Agent States

A reasoning similar to the previous section applies to the agent, whose actions
generally depend on the entire history as in (3). Again, many histories can lead
to the same mapping from percepts to actions, for example because the agent
has built the same hypothesis about the environment throughout the different
histories. So analogically to the environmental states, we introduce the notion
of agent’s state sa ∈ Sa and postulate that

|Sa| < Sa
max (26)

for some constant Sa
max ∈ N .

We adopt a counterpart of (14), meaning that the action will be determined by
the agent’s state, again through a functional prescription

yk = π(sak) (27)

The current action thus does not depend explicitly on the current percept xk.
This is because the latter can be simply stored as a part of the state equipped
with memory as can be shown through a reasoning very similar to that in the
previous section. However, the dependence on the current percept, and specif-
ically on its observation part, will be so typical that we will make it explicit.
Again, this will save us notational complications entailed by the need to mem-
orize percepts within states. We will thus use the formula

yk = π(sak, ok) (28)

Regarding the update rule, analogically to (20) we will assume that the state is
updated (deterministically) given the previous one and the current percept.

sak = Sa(sak−1, xk) (29)

This seems not fully analogical to (20) as the current percept, rather than the
previous one is taken into account. This is due to our setting of the agent-
environment communication, in which yk−1 is the last action taken before the
environment updates its state, whereas xk is the last percept received by the
agent for its state update.

The formalization using environment states and agent hypotheses results in the
agent and environment structures depicted in Fig. 5. The diagram of variable
influences is shown in Fig. 6.
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Agent

sa

Sa

π

k − 1

Environment

se

Se

µ

k − 1

k − 1

x

y

Figure 5: The state-based scheme of agent-environment interaction according
to (14), (20), (27), and (29). Full and dashed lines denote functional and prob-
abilistic influences, respectively. The k − 1 nodes denote a one-step time lag.
Note that we have introduced further dependencies through (23), (28), and (??),
which are not shown in the picture. These dependencies can be avoided through
a reformulation of the state variable and the state update function.

1.7 Nonsequential and Batch Cases with States and Hy-
potheses

Just like in the framework using entire histories, also with the formulation based
on states and hypotheses the situation simplifies a lot in the nonsequential case.
Here, the environment has no memory at all so the conditioning factors in (20)
and states are updated by i.i.d. sampling from the marginal distribution

Se(sek) (30)

Furthermore, observations ok no longer depend on agent’s last action as in (24)
so they are sampled from

µo(ok|sek) (31)

Since sek’s are i.i.d., the ok’s are also i.i.d.

Rewards, given by (25), are however still generally non-i.i.d. as they depend on
the agent’s actions, which in turn depend on the evolving agent’s hypothesis.
Fig. 7 shows the complete set of influences in the nonsequential case.

A further simplification comes in the special batch-learning scenario of the non-
sequential case. While in the learning phase of the latter, the agent uses the
update rule (29) or (??), in the action phase it no longer updates its state, so

sak = saK ,∀k ≥ K (32)

This is illustrated in Fig. 8. Special attention is needed regarding the variables
at timeK. Reward rK (part of percept xK) is the last training reward, according
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sa1

y1

x1

se1

sa2

y2

x2

se2

sa3

y3

x3

se3

Figure 6: Influence diagram for states sa, actions yk and percepts xk for 1 ≤ k ≤
3 with full lines indicating deterministic influences (via π and Sa) and dashed
lines showing probabilistic influences (via µ and Se). See caption to Fig. 5 for
further relevant remarks.

to which the last update is conducted towards the final hK . Observation oK
(another part of percept xK) is, however, the first testing observation.

For k > K, yk−1 is fully determined by ok−1 and saK through (28) in which
sak−1 = saK . So we can rewrite (25) into

µr(rk|sek−1, ok−1, saK) (33)

and further express

µr(rk|saK) =
∑

sek−1∈Se

∑
ok−1∈O

µr(rk|saK , sek−1, ok−1)µO(ok−1|sek−1)Se(sek−1) (34)

where µO and Se, i.e. (31) and (30), are independent of k. So in the testing
phase, rewards rk are i.i.d. according to the distribution µr(rk|saK) depending
only on the final state saK of training. This is analogical to the state-free formu-
lation (12). Similarly to (13), an agent operating in the batch-learning scenario
with states will be assessed by the expected reward in the testing phase∑

rk∈R
µR(rk|saK)rk (35)

so in the training phase, it should reach a state saK maximizing this quantity.
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h1

y1

o1

r1

se1

h2

y2

o2

r2

se2

h3

y3

o3

r3

se3

Figure 7: Influence diagram for hypothesis hk, actions yk, observations ok, and
rewards rk for 1 ≤ k ≤ 3 with full lines corresponding to deterministic influences
(via π and H) and dashed lines showing probabilistic influences (via µ and Se)
in the nonsequential case.

1.8 Prior Knowledge

• Implicit: the setting of Sa (“hard bias”) and Sa (“soft bias”)

• Explicit: the setting of sa1 (“background knowledge”)

1.9 Hypothesis Representations

See Fig. 9.

1.10 Learning Scenarios

1. on-line concept learning

2. batch concept learning
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saK

yK+1

oK+1

rK+1

seK+1

yK+2

oK+2

rK+2

seK+2

yK+2

oK+2

rK+2

seK+2

Figure 8: Influence diagram for actions yk, observations ok, states sek, and re-
wards rk in the action phase (k > K) of batch learning with full lines indicating
deterministic influences (via π) and dashed lines showing probabilistic influ-
ences (via µ). The top row indicates the influence of the agent’s last state in
the training phase on the action phase. The dependence of rK+1 on seK and yK
is not shown.

3. query-based and active learning (not covered here)

4. reinforcement learning

5. universal learning (not covered here)

2 On-line Concept Learning

We first motivate the on-line concept learning scenario with an example, in
which the agent is an artificial scientist. The agent conducts repeated experi-
ments with a living cell, which represents the environment. In each experiment,
it observes two proteins of interest in the cell. More specifically, the agent de-
tects whether the proteins are present in the cell at all, and it also determines
whether they are in an active state (a special spatial conformation of a protein).
The agent suspects that these proteins (both or only one of them) initiate apop-
tosis (cellular suicide). After each observation of the proteins, it tries to predict
whether the cell will die or not. If the prediction is incorrect, the agent receives
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H = look-up tables
π = find max value

H = propositional-logic theories
π = propositional resolution

H = relational-logic theories
π = first-order resolution

H = graphical probability models
π = probabilistic inference

H = graphical relational models
π = statistical-relational inference

H = Turing machine tape
π = Turing machine

Figure 9: Hypothesis representations and their corresponding policy classes
(interpreters) considered in this course. Arrow directions indicate increasing
expressiveness.

a negative reward. This can be for example a cut-down on the agent’s salary by
the boss of the lab who is not happy with wrong biological predictions, in which
case the boss would be a part of the environment. However, we will simply
model such a reward with the number -1 for wrong predictions and with 0 for
correct predictions.

Table 2 illustrates a history of such agent-environment interaction, in which
the agent eventually learns that apoptosis is induced if and only if protein 1
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experiment apoptosis prot. 1 prot. 1 prot. 2 prot. 2 apoptosis

number initiated present active present active prediction reward

k sek o1k o2k o3k o4k yk rk
1 0 0 0 0 0 0 0
2 0 0 0 1 0 1 -1
3 0 1 0 0 0 1 -1
4 1 1 0 0 0 0 -1
5 0 1 0 1 1 0 0
6 1 1 1 1 0 1 0
7 1 1 1 0 0 1 0
8 0 1 0 1 1 0 0

(etc.)

Table 1: A concept learning experiment.

is present and it is in the active form. From time k = 5 on, the agent makes
correct predictions and is no longer punished with negative reward.

In the sequel, we will see how to model the illustrated scenario in our frameworks
and we will see examples of agents able to learn as the agent-scientist has in the
story above.

As Table 2 already indicated, the unknown variable guessed by the agent corre-
sponds to the unknown state of the environment se. The variable is binary so
we set

Se = { 0, 1 } (36)

We will accommodate (36) as a general assumption in the forthcoming text,
unless we specify otherwise. This is because the binary setting is the simplest
non-trivial one, to which richer state sets can usually be reduced.

The central assumption of concept learning is that the state sek is fully deter-
mined by the observation ok = (o1k, o

2
k, . . .). In other words, an observation o

generated by state 0 cannot be generated by state 1 and vice versa. In terms of
the probability notation, this means that

µO(o|0)µO(o|1) = 0 (37)

i.e., at most one of the probabilities is non-zero. Note that although the state
is determined by the observation, the agent does not know how until it learns
such knowledge.

The set of observations which can be generated from state 1 is called the concept
C (of the environment)

C = { o ∈ O | µO(o|1) > 0 } (38)
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and the observations coming from this concept are positive observations (or,
‘examples’) of it, while the remaining observations are termed negative. Since
the environment states are partitioned into two classes (positive and negative),
the agent’s guessing is an act of classification and the concept learning task is
a special case of what is commonly termed classification learning.

As we have indicated already, the agent guesses the current state through its
decision variable y ∈ Y . It is thus natural to set

Y = Se = { 0, 1 } (39)

Whenever the agent makes an incorrect guess yk 6= sek, it will receive a unit nega-
tive reward−1 at the next time instant, so we instantiate (25), i.e., µR(rk+1|sek, yk)
to assign probability 1 to rk+1 such that

rk+1 =

{
0 if sek = yk

−1 otherwise
(40)

Note that now the rewards are determined functionally rather than probabilis-
tically, except for the first reward r1, which is immaterial and is still sampled
from the marginal µR(r1).

In a more general setting, the unit punishment −1 could be replaced by a value
L(sek, yk) (called loss) which could be different for the two different cases of
sek 6= yk possible in the present binary setting. Of course, in richer than binary
settings, more different mistake kinds exist. We will not bother here with such
generalizations.

The agent’s guesses are given by the policy (28) and at any time k they induce
a subset of observations analogical to the unknown concept C

C(sak) = { o ∈ O | π(sak, o) = 1 } (41)

C(sak) is the agent’s concept or the hypothesized concept. Note that we distin-
guish the concept C inherent to the environment for the agent’s concept C(sak)
at time k only by indicating the latter to be a function of the agent’s state sak. To
maximize rewards, the agent should evolve its state sak so that it hypothesized
concept co-incides with the target concept C, i.e. from some k on,

C(sak) = C (42)

If this is the case, the agent has identified the target concept.

A crucial question is how the agent’s state should be updated so that the guessing
accuracy improves. A simple idea would be to let the agent remember a finite
number of past observations and their true classes. When a new observation
comes, the agent would look up the most similar observation in this memory
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and guess the class associated with it. Here, similarity could be for example
determined by the Hamming distance on the binary observation tuples.

We thus let the state act as a memory for a finite number m of observations
and their true classes.

sak =
[(
ok−m+1, s

e
k−m+1

)
, . . . ,

(
ok−1, s

e
k−1
)
, (ok, yk)

]
(43)

The true class sek of observation ok can be determined at time k + 1 in the
obvious way, given the guess yk made for ok and the reward rk+1 received for
that guess. At time k the agent does not know rk+1 so for the newest observation
it just stores its own guess yk made according to the class of the most similar
observation among ok−m+1, . . . ok−1. In the state update step, the previous
guess is replaced by the actual true state and the less recent item is discarded
from sak.

The similarity based approach just explained assumes that similar observations
tend to have the same classes. Whether or not such an assumption is justified,
the approach hardly merits to be called learning as it rests in plain memo-
rization of observations. We would prefer an agent capable of generalizing the
observation towards a theory, or hypothesis prescribing how observations deter-
mine environment states. Such a hypothesis can, for example, take the form of
a set of logical rules, an equation, or a program in a programming language.

First consider that the agent state is fully defined by the agent’s current hy-
pothesis, which we denote hk, so

sak = hk (44)

Then the decision policy (28) becomes

yk = π(hk, ok) (45)

and it is then natural to view π as an interpreter (a logical inference mechanism,
an equation solver, a program interpreter, etc.) of hk, while ok play the role of
input data for hk, according to which the decision is made. Simlarly, (41) can
be rewritten into

C(hk) = { o ∈ O | π(hk, o) = 1 } (46)

and the equality (47) is rephrased as

C(hk) = C (47)

As can be expected, the state update function (29) should change the last hy-
pothesis hk−1 towards the current one hk whenever a wrong guess yk−1 was
made (recall that due to (40) such a wrong guess is indicated to the agent by
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rk = −1). The change should lead to a correction of the hypothesis so that the
same mistake does not happen again. To conduct such an update step at time
k, we need to known what the previous, wrongly classified observation ok−1
was. Since ok−1 is not an argument in (29), we need to memorize it within the
agent state. This means we cannot get rid completely of a memory component
of the agent state. So instead of (44) we rather consider the state to be a tuple
consisting of the memorized previous observation and the current hypothesis

sak = (ok, hk) (48)

The update rule (29) then takes the more specific form

Sa(sak−1, xk) = Sa
(

(ok−1, hk−1) , (ok, rk)
)

= (ok, hk) (49)

where hk is determined from hk−1, ok−1, and rk in a way depending on the
particular learning strategy. We will visit some strategies in the coming sections.

While we needed the memorized observation ok stored as part of the agent’s
state, this was just for the purposed of updating the hypothesis. To produce
the decision yk, the memorized observation is not needed so in the remainder
of this chapter, we will still use the notation (45)-(47) including hk rather than
sak = (ok, hk) as an argument.

For simplicity, we also will assume the observations to have binary components
(as in the running example in Table 2), so, in general, they will n-tuples (n ∈ N)
from

O = { 0, 1 }n (50)

2.1 Generalizing Agent

Recall the example from Table 2 and observe that the components of each
observation ok (columns 2-4) correspond to logical propositions such as “Protein
1 is present” and “Protein 1 is active”, which we can denote p1, . . . p4 (one
for each of the four observation columns), as customary in propositional logic.
Given (50), the values o1k, . . . , o

4
k carry the logical (truth) values assigned to

these respective propositions at time k.

An idea then suggests itself, that the agent’s hypothesis hk would be a proposi-
tional logic formula built with truth-valued variables p1, . . . p4. Its truth value
for the assignment o1k, . . . o

4
k to the variables would determine the decision yk.

For example, the hypothesis that apoptosis initiates if and only if protein 1 is
present and it is active would be written as

hk = p1 ∧ p2 (51)
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If hk is a logical conjunction, then the decision policy (45) then takes the more
specific form

yk = π(hk, ok) =

{
1 if ok |= hk

0 otherwise
(52)

where ok |= hk means hk is true given the truth-value assignments oi to variables
pi, 1 ≤ i ≤ n. More precisely, we say that positive (negative, respectively) literal
pi (¬pj) is consistent with observation ok if oik = 1 (oik = 0). Then, ok |= hk
holds if and only if all literals of conjunction hk are consistent with ok.

Let us design an agent that learns an unknown conjunction such as the above.
The plan is to start with the most specific hypothesis (a conjunction of all
literals, i.e. all propositional variables as well as their negations) and then
successively delete all literals inconsistent with the received observations. So
the initial hypothesis is gradually generalized towards the correct one.

In the present example, the agent has the initial hypothesis

h1 = p1 ∧ ¬p1 ∧ p2 ∧ ¬p2 ∧ p3 ∧ ¬p3 ∧ p4 ∧ ¬p4 (53)

This is the most specific hypothesis as it conjoins all possible conditions (lit-
erals). At the same time, this conjunction can of course never be true as it is
self-contradictory. However, the agent’s strategy is to successively remove from
it all the literals that are inconsistent with the coming observations.

After the first percept has been received, i.e. for k > 1, the update rule (49)
determines hk according to

hk =

{
hk−1 if rk = 0

delete(hk−1, ok−1) otherwise
(54)

where

delete

∧
i∈I

pi
∧
j∈J
¬pj , (o1, o2, . . . , on)

 = (55)

∧
i ∈ I
oi = 1

pi
∧
i ∈ I
oj = 0

¬pj

So the delete function keeps exactly those literals from hk−1 which are consistent
with ok−1.

How do we know that through such an update rule the agent will indeed improve
its guessing so that eventually it will only be receiving non-negative rewards?
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First, we need to assume that there indeed exists a ‘correct’ conjunction h∗. It
is correct in the sense that if hk = h∗, then (47) holds. In other words,

π(h∗, ok) = sek, ∀ok ∈ O (56)

To resolve the question, we need a few lemmas.

Lemma 2.1. sek = 1 if and only if all literals of h∗ are consistent with ok.

The above lemma follows directly from (52) and (56).

Lemma 2.2. Whenever delete(hk−1, ok−1) is called, sek−1 6= yk−1, and if sek−1 =
0, then all literals of hk−1 are consistent with ok−1.

Proof. To see why Lemma 2.2 is true, note that according to (54), rk 6= 0 when
delete is called. Due to (40), this means that sek−1 6= yk−1. So if sek−1 = 0 then
yk−1 = 1, but then due to (52), ok−1 |= hk−1 and so all literals of φk−1 are
indeed consistent with ok−1.

Lemma 2.3. delete(hk−1, ok−1) never removes a literal l ∈ hk−1 which is also
in h∗.

Proof. Assume for contradiction that it does remove a literal l ∈ h∗. First as-
sume sek−1 = 0. By Lemma 2.2, all literals of hk−1 are consistent with ok−1. But
because delete(hk−1, ok−1) keeps all literals of hk−1 consistent with ok−1, it does
not delete l, which is a contradiction. Now consider sek−1 = 1. Then by Lemma
2.1 all literals of h∗ including l must be consistent with ok−1. Again, since delete
keeps all consistent literals, it does not delete l, which is a contradiction.

The starting hypothesis (53) of the designed agent is set to contain all possible
literals, so h1 ⊇ h∗, where the inclusion is with respect to the sets of literals in
h1 and h∗. Furthermore, due to Lemma 2.3, we have

hk ⊇ h∗, ∀k ∈ N (57)

Given the above, the agent makes mistakes only on positive examples, and
the mistakes are corrected by removing at least one inconsistent literal, as the
following lemma formalizes.

Lemma 2.4. Assuming (53), whenever delete(hk−1, ok−1) is called, sek−1 = 1,
and the function deletes at least one literal from hk−1.

Proof. Due to Lemma 2.2, sek−1 6= yk−1. If sek−1 = 0 and yk−1 = 1 then by the
same lemma, all literals of hk−1 are consistent with ok−1. According to Lemma
2.1, sek−1 = 0 means that there is a literal in h∗ inconsistent with ok−1. But
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due to (57), this inconsistent literal would also be contained in hk−1, which is a
contradiction. So we know that sek−1 = 1 and yk−1 = 0. According to (52), this
means that hk−1 contains a literal inconsistent with ok−1. Since delete, by (55),
keeps exactly all consistent literals, the inconsistent literal is removed.

Theorem 2.5. The separating agent makes at most 2n mistakes, i.e. the cu-
mulative reward is

m∑
k=1

rk ≥ −2n (58)

for an arbitrary horizon m ∈ N .

Proof. Since the first agent’s conjunction has 2n literals by (53) and upon each
mistake, at least one literal is removed from from the conjunction by Lemma
2.4, the maximum number of mistakes is 2n.

While the agent’s strategy has been designed to learn conjunctions, it can be
also made to learn disjunctions due to the equality

¬ (p1 ∨ p2 ∨ . . . ∨ pn) = ¬p1 ∧ ¬p2 ∧ . . . ∧ ¬pn (59)

So the only required change is that the agent replaces observations ok with
ok = (1− o1k, 1− o2k, . . . , 1− onk ) and its actions yk with 1− yk.

Other logical classes can also be reduced to conjunction and disjunction learning.
Consider e.g. s-CNF (s ∈ N). These are conjunctions of s-clauses. An s-clause
is a disjunction of at most s-literals. There is a finite number of s-clauses so
the agent can simply establish one new propositional variable for each possible
s-clause a learn a conjunction with these new variables. This reduction would
even be efficient if s is a small constant. Indeed, if n is the number of original
variables, then the number of possible clauses is

(
2n
s

)
, i.e., the number of s-

combinations of literals chosen from the set of n variables and their n negations.
This number grows exponentially with s and polynomially with n. A similar
reduction can be used to learn s-DNF.

2.2 The Subsumption Relation

It is instructive to view the generalization process as a path in the subsumption
lattice of conjunctions shown for two propositional symbols in Fig. 10. A lattice
is a partially ordered set where each two elements have their unique least upper
bound and the greatest lower bound. The subsumption order is given by the
subset relation

h1 ⊆ h2 (60)
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This means that conjunction h1 precedes conjunction h2 if the latter contains
all literals of the former.

Recall from logic that a formula h1 entails another formula h2 if any model of
h1 is also a model of h2. We denote this as

h1 ` h2 (61)

It is obvious that h1 ⊆ h2 implies h2 ` h1 if h1 and h2 are conjunctions. How-
ever, the inverse implication does not hold. For example (observe Fig. 10), we
have both p1 ∧ ¬p1 ` p2 ∧ ¬p2 and p2 ∧ ¬p2 ` p1 ∧ ¬p1 simply because both of
the formulas are non-satisfiable and thus neither has a model. However, they do
not share any literal so the subset relation does not hold either way. Neverthe-
less, for satisfiable conjunctions (i.e., conjunctions other than ‘contradictions’)
h1, h2, h1 ⊆ h2 is equivalent to h2 ` h1.

While so far, we considered subsumption only conjunctions, the literal subset
relation (60) is obviously defined as well for disjunctions, i.e. clauses. However,
the relationship to logical entailment becomes inverted. More precisely, for two
clauses h1, h2, h1 ⊆ h2 implies h1 ` h2. Just like in the case of conjunctions,
we cannot claim equivalence between the two latter relations. For example p1 ∨
¬p1 ` p2∨¬p2. Again, the problem is with the atoms included both as a positive
and a negative literals. While in conjunctions they produced contradictions,
their presence in clauses make the latter tautologies, i.e. formulas true in any
interpretation. But analogically to conjunctions, h1 ⊆ h2 is equivalent to h2 `
h1 if h1, h2 are not tautologies.

Contradictory conjunctions and tautological clauses have one property in com-
mon. They contain a positive literal as well as the negation of the same literal.
Clauses, which have this property, are called self-resolving.1

2.3 Separating agent

In Section 2.1 we have designed he generalization agent able to learn a conjunc-
tion while making only a finite number of mistakes. We have also seen that
through efficient conversions, such an agent can also learn disjunction, s-DNF’s
and s-CNF’s.

As an alternative example of a learning agent, we will demonstrate one using a
different strategy to achieve the same goal. This time, the agent’s hypothesis hk
will be represented by non-logical means. In particular, hk define a hyperplane in
the O = { 0, 1 }n space (50) so C(hk) (46) will include exactly those observations
lying above the hyperplane.

1As the adjective self-resolving originates from the resolution principle, which is applied
on clauses and not on conjunctions, it is usually not associated with conjunctions.
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∅

p1 ¬p1 p2 ¬p2

p1¬p1 p1p2 p1¬p2 ¬p1p2 ¬p1¬p2 p2¬p2

p1¬p1p2 p1¬p1¬p2 p1p2¬p2 ¬p1p2¬p2

p1¬p1p2¬p2

Figure 10: Subsumption lattice for conjunctions. The conjunction symbols ∧
are omitted for brevity. The curved arrows show how the agent generalizes its
initial conjunction in two steps following the successive observations (1, 0) and
(1, 1) carrying the respective truth values for p1 and p2. All conjunctions below
the dashed line are non-satisfiable.

Formally, hk is an n-tuple of integer values bounded by some constant q ∈ N ,
i.e. hk ∈ [0, 1, . . . , q]n, so

hk = [h1k, h
2
k, . . . , h

n
k ] (62)

The agent’s decision policy (45) is given by a threshold function applied on a
dot product

yk = π(hk, ok) =

{
1 if hk · ok > n/2

0 otherwise
(63)

The initial hypothesis is
h1 = (1, 1, . . . 1) (64)

And the update rule (49) is instantiated according to

hk =


hk−1 if rk = 0

update(2, hk−1, ok−1) if hk−1 · ok−1 ≤ n/2
update(0, hk−1, ok−1) if hk−1 · ok−1 > n/2

(65)

wherein the function update is defined such that for hk = update(α, hk−1, ok−1)
and each i = 1, 2, . . . n,

hik =

{
α · hik−1 if oik−1 = 1

hik−1 otherwise
(66)
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This agent, which can be considered an integer counterpart of the popular per-
ceptron algorithm, learns a hyperplane. On the other hand, the generalization
agent from the previous section was designed to learn logical formulas, namely
conjunctions, disjunctions, s-DNF’s, and s-CNF’s. So how can we compare the
two agents?

Assume that the target concept C corresponds to a disjunction c consisting of
s literals made out of the variables p1, . . . pn. That is to say, µO(o|1) > 0 if and
only if o |= c. It is well known that disjunctions are linearly separable, so for a
sufficiently large q, there is a hyperplane h∗ such that (56) holds. This means,
that the agent can identify a target disjunction through its hypothesis, although
the latter is a hyperplane rather than a disjunction. The theorem below states
that is does so with a finite number of mistakes.

Theorem 2.6. The agent makes at most 2+2s lg n mistakes, i.e. the cumulative
reward is

m∑
k=1

rk ≥ −2− 2s lg n (67)

for any horizon m ∈ N .

(proof omitted)

Just like the generalizing agent designed to learn conjunctions could easily be
modified to learn disjunctions, s-CNF’s, and s-DNF’s, also the separating agent
can be altered to learn conjunctions as well as the latter two classes by means
of the same reduction principles. So the two agents can in principle learn the
same concept classes. The difference is in the mistake bound. The latter agent
performs better when the number of variables n is larger than the number of
relevant variables s.

2.4 Hypothesis and Concept Classes

So far we have designed two exemplary learning agents, each with a different set
o hypotheses h it could express. We shall call the set of all hypotheses an agent
can express its hypothesis class denoted with the letter H and we will assume
H to be finite. For the generalizing agent, H consisted of all conjunctions made
of at most n variables. For the separating agent, H was the set of (q-bounded)
n-tuples of integers.

Considering (46), each hypothesis class induces a set of concepts

C(H) = { C(h) | h ∈ H } (68)

called a concept class.
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The two agents exemplified so far used their update rules specifically designed
for their respective hypothesis classes. Can we design a more general learning
agent which could work with an arbitrary hypothesis class H?

Assume that H is rich enough to contain a hypothesis h matching the unknown
target concept C(h) = C (38). This assumption can be written as

C ∈ C(H) (69)

Under such an assumption, since H is finite, the agent can always try succes-
sively each element h ∈ H, discarding it as soon as a mistake is made (negative
reward received) using that hypothesis. In the worst case, the last hypothe-
sis remaining will match the target concept. This means that the maximum
number of mistakes made before identifying the target concept is

|H| − 1 (70)

This is a first indication of a dilemma we are going to face repeatedly in different
forms. In particular, given that C is unknown, the agent should posses a large
hypothesis space to maximize chances that (69) is satisfied. On the other hand,
a large hypothesis space entails a large number of mistakes made according to
(70).

2.5 Version Space Agent

The general mistake bound (70) can be readily improved to lg |C| using the
version space strategy. Informally, its main idea is that on each observation, the
agent discards all hypotheses from the hypothesis class which are inconsistent
with the observation.

Before formalizing the principle, we will explain it by contrasting it to the
generalization agent from Section 2.1. At each time k, hypothesis hk of the latter
agent was a conjunction. On the other hand, if we were to learn conjunctions
with a version-space agent, the hypothesis hk would be a set of conjunctions.
At each update step, hk+1 would be obtained from hk by removing from it all
conjunctions inconsistent with ok.

In general, we assume that the agent disposes of a finite set V of versions and at
each time k, hk ⊆ V . The elements of V may be conjunctions, disjunctions, or
other entities. The only assumption is that from each version v ∈ V a decision
v(o) ∈ { 0, 1 } can be drawn for any observation o ∈ O. So, for example, if
our versions v happen to be logical formulas, the decision can be determined
according to the relation o |= v. This would be similar to the policy-level
prescription we used in (52). However, the decision policy for the version space
agent is based on the entire set of versions present in hk.
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In particular, decisions are determined by voting among all versions in hk

yk = π(hk, ok) =

{
1 if | { v ∈ hk | v(ok) = 1 } | > |hk|/2
0 otherwise

(71)

The hypothesis contains all versions

h1 = V (72)

and in the hypothesis update step, the agent deletes from its version set all
versions inconsistent with the last observation, i.e.

hk =
{
v ∈ hk

∣∣ v(ok−1) = sek−1
}

(73)

where sek−1 is determined as sek−1 = |yk−1 − rk−1| (check that this is true) and
yk−1 = π(Vk−1, ok−1).

Assume that V is rich enough so that it contains a version v coinciding with the
target concept C. More precisely, v ∈ V is such that

C = { o ∈ O | v(o) = 1 } (74)

Then the following theorem holds.

Theorem 2.7. The agent makes at most lg |V | mistakes, i.e. the cumulative
reward is

m∑
k=1

rk ≥ − lg |V | (75)

for any horizon m ∈ N .

Proof. To see why the theorem holds note that the agent decides by the majority
of current versions. So if a mistake is made, at least half of the versions are
deleted. In the worst case, the last remaining version is correct.

Once again, a dilemma is observed in that V should be large enough so that a v ∈
V exists satisfying (74). However, the size |V | also increases the mistake bound
(75). The latter mistake bound is logarithmic, which is certainly a significant
improvement over (70) good but the computational demands for storing hk
(containing a potentially large number of versions) can be prohibitive.

2.6 The Mistake Bound Learning Model

The linear mistake bounds we obtained for the generalizing and separating
agents indicate that these agents are indeed able to learn well the conjunc-
tive and disjunctive concepts but also other kinds of concepts (namely, s-DNF
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and s-CNF) that can be reduced to the latter. We will now generalize the notion
of ‘good on-line learning.’ We say that an agent learns concept class C on-line
if it makes at most p(n) of mistakes in the on-line scenario with any concept
from C, where p is a polynomial and n is the size of observations. With our
setting (50), the size of observations is the number n of binary values making
up the observations.

By Theorem 2.7, the version-space algorithm has a mistake bound lg |V | as long
as V contains a version v coinciding with the target concept C, that is, (74)
holds. If further more |V | is at most exponential in n, the agent necessarily
learns C on-line, because the mistake bound lg |V | is then polynomial.

The condition ‘at most exponential’ above seems rather permissive. But note
that |V | may easily be super-exponential. The extreme example of the latter is
the space V so rich that for any possible concept C ∈ 2O, it has version v that
matches C, again in the sense of equation (74). Since |O| = | { 0, 1 }n | = 2n, we
have |V | ≥ |2O| = 22

n

, so |V | is super-exponential.

Furthermore, we refine the definition into a stricter form. An agent that learns
concept class C on-line is said to learn it efficiently if it spends at most poly-
nomial time (in n) between the receipt of a percept and the generation of the
next action.

What about a lower bound on mistakes? The latter can be established using
the notion called VC-dimension of a hypothesis class. We say that a set of
observations O′ ⊆ O is shattered by hypothesis class H if

{O′ ∩ C(h) | h ∈ H } = 2O
′

(76)

which means that the set of observations can be partitioned in all possible ways
into two classes by the hypotheses from H.

The Vapnik-Chervonenkis Dimension (or VC-dimension) of H, written VC(H),
is the cardinality of the largest set O′ ⊆ O that is shattered by H.

Theorem 2.8. No upper bound on the number of mistakes made by an agent in
the concept-learning scenario using hypothesis space H is smaller than VC(H).

Proof. This is because for any sequence of agent’s decisions y1, y2, . . . , yVC(H)

there exists a h ∈ H according to which all these decisions are wrong.
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