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pProbabilistic reasoning under uncertainty

� uncertainty

− result of partial observability and/or nondeterminism,

− sentences cannot be decided exactly,

− an agent can only have a degree of belief in them,

� probability

− the main tool for dealing with degrees of belief,

− fully specified probabilistic model

∗ world = atomic event = sample point,

− every question about a domain can be answered with the full model,

− the full joint distribution is the most common full model

∗ for n discrete variables: Pr(O1,O2, . . .On).
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pProbabilistic reasoning under uncertainty

� what questions do we answer?

− event = sum of atomic events

∗ propositions in the absence of any other information,

∗ unconditonal or prior probability,

− dealing with evidence

∗ conditonal or posterior probability,

∗ this will later be called inference.

Notation (binary random variables):

A . . . random variable, a . . . A = True, ¬a . . . A = False,

Pr(A,B) . . . joint probability distribution (a table),

Pr(a, b) = Pr(A = True,B = True) . . . probability of a particular event

(a single item in table Pr(A,B)).
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pInference with the full joint model

� every question about the domain can be answered

− marginalization (summing out) to obtain prior probabilities

Pr(X) =
∑
y∈Y

Pr(X,y) (X and Y are sets of variables)

− normalization follows to obtain conditional probabilities

∗ it either directly follows the definition of conditional probability

Pr(X|Y) =
Pr(X,Y)

Pr(Y)

∗ or it works with a normalization constant α,

∗ it avoids Pr(Y) enumeration

Pr(X|Y) = αPr(X,Y), α is set so that
∑
x∈X

Pr(x|Y) = 1.
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pInference with the full joint model – example

� admission to graduate schools with respect to branch of study and gender

− real data available, the full joint model can easily be constructed,

Branch
Men Women

Applicants Admitted Applicants Admitted

Engineering 1385 865 133 90

Humanities 1205 327 1702 451

(E)ngineering (M)an (A)dmitted f(E,M,A) Pr(E,M,A)

T T T 865 19.5%

T T F 520 11.8%

T F T 90 2.0%

T F F 43 1.0%

F T T 327 7.4%

F T F 878 19.8%

F F T 451 10.2%

F F F 1251 28.3%

Total 4425 100%
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pInference with the full joint model – example

� what is the probability of admission?

� the marginalization task

Pr(a) =
∑
E,M

Pr(E,M, a) =

= Pr(e,m, a) + Pr(e,¬m, a) + Pr(¬e,m, a) + Pr(¬e,¬m, a) = .392
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pInference with the full joint model – example

� what is the probability of admission given gender?

� marginalization followed by normalization, the direct way used for men

Pr(a|m) =
Pr(a,m)

Pr(m)
=

∑
E Pr(E,m, a)∑

E,A Pr(E,m,A)
=

=
Pr(e,m, a) + Pr(¬e,m, a)

Pr(e,m, a) + Pr(e,m,¬a) + Pr(¬e,m, a) + Pr(¬e,m,¬a)
= .46

� the α trick way used for women, α = 2.41, Pr(a|¬m) = 0.29,

Pr(A|¬m) = αPr(A,¬m) = α[Pr(e,¬m,A) + Pr(¬e,¬m,A)] =

= α[〈.02, .01〉 + 〈.102, .283〉] = α[〈.122, .293〉] = 〈.29, .71〉

� the university could be (and actually was) sued for bias against women!!!
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pPros and cons of the full joint distribution model

� universality makes an asset of this model

− identical and trivial model structure for all problems,

− for a sufficient sample size its learning converges

∗ model learning means to estimate (joint) probabilities,

� intractable for real problems

− 2n − 1 probabilities for n propositions,

− infeasible for experts nor empirical settings based on data,

− even if probs were known, still exponential in memory and inference time

∗ obvious for a joint continuous distribution function,

− curse of dimensionality

∗ volume of the space increases fast, the available data become sparse,

� impenetrable for real tasks

− model gives no explicit knowledge about the domain.
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pThe ways to simplify and better organize the model?

� utilize the domain knowledge (or discover it)

− relationship between the random variables?

− ex.: gender influences branch of study, it influences admission rate,

− probabilistic model is enriched with structured knowledge representation,

� graphical probabilistic representation

− relations posed in terms of directed graph

∗ connected means related (edge unconditionally, path conditionally),

− interpretation in probabilistic context?

∗ structured and simplified representation of the joint distribution,

∗ edges removed when (conditional) independence is employed,

� advantages

− fewer parameters needed, less data needed for learning,

− relationships become obvious.
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pThe simplified graphical model – admission example

� still 7 parameters (probability values) in the fully connected graph

− simplification available, gender and admission conditionally independent,

− the edge Man → Admitted removed, only 5 parameters then,

� branch of study is a confounder in gender-admission relationship,

� any joint probability can be approximated by the simplified model

(and thus any other probability)

Pr(e,m, a) = Pr(m)× Pr(e|m)× Pr(a|e,m) = .195 the full model

Pr(e,m, a) = Pr(m)× Pr(e|m)× Pr(a|e) = .197 the simplified model
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p(Conditional) independence

� definition: A and B are conditionally independent (CI) given C if:

− Pr(A,B|C) = Pr(A|C)× Pr(B|C), ∀A,B,C, Pr(C) 6= 0

− denoted as A ⊥⊥ B|C (conditional dependence A>>B|C)

− (classical independence between A and B: Pr(A,B) = Pr(A)× Pr(B))

� some observations make other observations uninteresting

− under assumption of CI it holds:

Pr(B|C) = Pr(B|A,C) and Pr(A|C) = Pr(A|B,C),

− observing C, knowledge of A becomes redundant for knowing B,

− observing C, knowledge of B becomes redundant for knowing A,

� compare with the general formula taking no assumptions

− Pr(A,B|C) = Pr(A|C)× Pr(B|A,C) = Pr(B|C)× Pr(A|B,C)
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p(Conditional) independence

� Example 1:

− heart attack rate (H) grows with ice cream sales (I),

− variables H and I are dependent: Pr(h|i) > Pr(h),

− both grow only because of temperature (T),

− when conditioned by T, H and I become independent:

Pr(H|I, T ) = Pr(H|T ).
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p(Conditional) independence

� Example 2:

− educated grandparents (PhDg) often have educated grandchildren (PhD):

Pr(phd|phdg) > Pr(phd)

− parents’ education level (PhDp) makes grandparents unimportant:

Pr(PhD|PhDp, PhDg) = Pr(PhD|PhDp)
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p(Conditional) independence

� Example 3:

− both radiation exposure (R) and smoking (S)

can cause cancer (C)

− R and S are obviously independent variables:

Pr(R, S) = Pr(R)× Pr(S)

− R and S become seemingly dependent knowing C!

Pr(r|s, c) < Pr(r|c) or Pr(r|s,¬c) < Pr(r|¬c)

� Summary

− Ad 1 and 2) conditional independence

the intermediate variable explains dependency between the ultimate ones,

− Ad 3) independence

the intermediate variable introduces spurious dependency.
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pConnection types

� Nomenclature

− parent p and child/son c – a directed edge from p to c,

− ancestor a and descendant d – a directed path from a to d,

� three connection types

− diverging

∗ terminal nodes dependent,

∗ dependence disappears when (surely) knowing middle node,

∗ crime-rate ← daytime → energy consumption

(and Ex. 1 – heart attacks).

∗ intermediate variable (daytime) explains dependence,
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pConnection types

� linear (serial)

− terminal nodes dependent,

− dependence disappears when (surely) knowing middle node,

− Simpson’s paradox: gender → branch of study → admission

(and Ex. 2 – PhD),

− intermediate variable (branch of study) explains dependence,

� converging

− terminal nodes independent,

− spurious dependence introduced with knowledge of middle node,

− temperature → ice cream sales ← salesperson skills

(and Ex. 3 – radiation exposure),

� analogy e.g. with partial correlations.
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pD-separation

� uses connections to determine CI between sets of nodes

− linear and diverging con. transmit information not given middle node,

− converging con. transmits information given middle node/its descendant,

� two node sets X and Y are d-separated by a node set Z iff

− all undirected paths between any node pair x ∈ X and y ∈ Y blocked

∗ there is a linear or diverging node z ∈ Z on the path, or

∗ there is a converging node w /∈ Z, none of its descendants is in Z,

� d-separation is equivalent of CI between X and Y given Z,

� a tool of abstraction

− generalizes from 3 to multiple nodes when studying information flow.
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pD-separation – example, car diagnosis BN [Russel: AIMA]

� Gas, Start, Go ⊥⊥ Bat,Rad|Ign

� sets are d-separated

� no open path for any pair of nodes

− Gas x Battery, Gas x Radio etc.

− all paths blocked by linear node

� Gas>>Ign,Bat, Rad|Go

� sets are not d-separated

� node Goes opens one path at least

− Starts connects Gas and Ignition

− observed descendant of converging node
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pGraphical probabilistic models

� exploit both probability theory and graph theory,

� graph = qualitative part of model

− nodes represent events / random variables,

− edges represent dependencies between them,

− CI can be seen in graph.

� probability = quantitative part of model

− local information about node and its neighbors,

− the strength of dependency, way of inference,

� different graph types (directed/undirected edges, constraints), probability encoding and focus

− Bayesian networks – causal and probabilistic processes,

− Markov networks – images, hidden causes,

− data flows – deterministic computations,

− influence diagrams – decision processes.
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pBayesian networks (BNs)

� What is a Bayesian network (also Bayes or belief or causal network)?

− directed acyclic graph – DAG,

− nodes represent random variables (typically discrete),

− edges represent direct dependence,

− nodes annotated by probabilities (tables, distributions)

∗ node conditioned by conjunction of all its parents,

∗ Pr(Oj+1|O1, . . . ,Oj) = Pr(Oj+1|parents(Oj+1))

∗ root nodes annotated by prior distributions,

∗ internal nodes conditioned by their parent variables,

∗ other (potential) dependencies ignored,

� Network interpretation?

− concised representation of probability distribution given CI relations,

− qualitative constituent = graph,

− quantitative constituent = a set of conditional probability tables (CPTs).
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pBayesian networks

� sacrifice accuracy and completeness – focus on fundamental relationships,

� reduce complexity of representation and subsequent inference,

� full probability model

− can be deduced by the gradual decomposition (factorization):

Pr(O1, . . . Obsvarn) = Pr(O1)× Pr(O2, . . . ,On|O1) =

= Pr(O1)× Pr(O2|O1)× Pr(O3, . . . ,On|O1,O2) = · · · =
= Pr(O1)× Pr(O2|O1)× Pr(O3|O1,O2)× · · · × Pr(On|O1, . . . ,On−1)

� BNs simplify the model:

− Pr(O1, . . . ,On) = Pr(O1|parents(O1))× · · · × Pr(On|parents(On))

− i.e., the other (possible) dependencies are ignored.
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pBayesian networks – semantics

� the previous numeric BN definition implies certain CI relationships

− each node is CI of its other predecessors in the node ordering given its parents,

� the numeric definition matches the topological meaning of d-separation

− each node is d-separated from its non-descendants given its parents.
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pUltimate Bayesian networks

� näıve inference assuming

− A) variable independence, then empty graph, no edges,

∗ no relationship among variables, they are completely independent,

∗ Pr(O1,O2, . . . ,On) = Pr(O1)× Pr(O2)× · · · × Pr(On)

∗ uses marginal probs only – linear complexity in the number of variables,

− B) CI of variables given diagnosis, n− 1 of edges only,

∗ used in classification, see the next slide,

� fully connected graph assuming direct dependence of all variables

− no assumptions, same size/complexity as the full joint distribution model,

− the direction of edges and consequent topological sort of variables selects one of the possible

joint probability factorizations,

� reasonable models lie in between

− sparse enough to be efficient,

− complex enough to capture the true dependencies.
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pNäıve Bayes classifier

� a special case of Bayesian network

− based on purely diagnostic reasoning,

− assumes CI variables O1,. . . , Ok given the diagnosis D,

− the target variable is determined in advance.

Pr(D|O1, . . .Ok) =
Pr(O1, . . .Ok|D)× Pr(D)

Pr(O1, . . .Ok)
Pr(O1, . . .Ok|D) = Pr(O1|D)× Pr(O2|D)× · · · × Pr(Ok|D)
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pMarkov equivalence classes

� DAG classes that define identical CI relationships

− represent identical joint distribution,

� Markov equivalence class is made by directed acyclic graphs which

− have the identical skeleton

∗ fully match when edge directions removed,

− contain the same set of immoralities

∗ 3 node subgraphs such that: X → Z and Y → Z, no XY arc,

∗ ie. the same sets of uncoupled parents (without an edge between them),

� indistinguishable graphs when learning from data,

� ex.: 2 distinct equivalence classes (first O2 ⊥⊥ O3|O1, second O2 ⊥⊥ O3|∅)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pMarkov equivalence classes

� let us consider all 25 directed acyclic graphs with 3 labeled nodes

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�

B4M36SMU



pMarkov equivalence classes

� they make 11 Markov equivalence classes altogether

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pCharacteristics of qualitative model

� correctness

− Pr(Oj+1|O1, . . .Oj) = Pr(Oj+1|parents(Oj+1)) holds in reality,

− each network node is CI of its ancestor given its parents,

� efficiency

− there are no redundant edges,

− actual CI relations described by the minimum number of edges,

∗ extra edges do not violate correctness,

∗ but slow down computations and make the model difficult to read,

� causality

− edge directions agree with actual cause-effect relationships,

� consequences

− graphs from the same M. class have the same correctness and efficiency,

− fully connected DAG always correct, but very likely inefficient.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pCharacteristics of qualitative model – example

� The Surprise Candy Company makes candy in two flavors: 70% are strawberry flavor and

30% are anchovy flavor. Each new piece of candy starts out with a round shape; as it moves

along the production line, a machine randomly selects a certain percentage to be trimmed

into a square; then, each piece is wrapped in a wrapper whose color is chosen randomly to be

red or brown. 80% of the strawberry candies are round and 80% have a red wrapper, while

90% of the anchovy candies are square and 90% have a brown wrapper. All candies are sold

individually in sealed, identical, black boxes.

Russell, Norvig: Artificial Intelligence: A Modern Approach.
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pCharacteristics of qualitative model – example

� The Surprise Candy Company

� Wrap ⊥⊥ Shape|�

� contradicts reality.

� no indep. relationship,

� thus no unrealistic one.

� Wrap ⊥⊥ Shape|Flavor

� complies with reality.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pSummary – BN structure

� probability

− a rigorous tool for uncertainty modeling,

− each atomic event is described by the joint probability distribution,

− queries answered by enumeration of atomic events

∗ (summing, sometimes with final division),

� needs to be simplified in non-trivial domains

− reason: curse of dimensionality,

− solution: independence and conditional independence

− tool: GPM = graph (quality) + conditional probability tables/functions (quantity).

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�

B4M36SMU



pBayesian networks – fundamental tasks

� inference – reasoning, deduction

− from observed events assumes on probability of other events,

− observations (E – a set of evidence variables, e – a particular event),

− target variables (Q – a set of query variables, Q – a particular query variable),

− Pr(Q|e), resp. Pr(Q ∈ Q|e) to be found,

− network is known (both graph and CPTs),

� learning network parameters from data

− network structure (graph) is given,

− “only” quantitative parameters (CPTs) to be optimized,

� learning network structure from data

− propose an optimal network structure

∗ which edges of the fully connected graph shall be employed?,

− too many arcs → complicated model,

− too few arcs → inaccurate model.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pProbabilistic network – inference by enumeration

� Let us observe the following events:

− no barking heard,

− the door light is on.

� What is the prob of family being out?

− searching for Pr(fo|lo,¬hb).

� Will observation influence the target event?

− light on supports departure hypothesis,

− no barking suggests dog inside,

− the dog is in house when it is

∗ rather healthy,

∗ the family is at home.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pProbabilistic network – inference by enumeration

� inference by enumeration

− conditional probs calculated by summing the elements of joint probability table,

� how to find the joint probabilities (the table is not given)?

− BN definition suggests:

Pr(FO,BP,DO,LO,HB) =

= Pr(FO)Pr(BP )Pr(DO|FO,BP )Pr(LO|FO)Pr(HB|DO)

� answer to the question?

− conditional probability definition suggests:

Pr(fo|lo,¬hb) = Pr(fo,lo,¬hb)
Pr(lo,¬hb)

− by joint prob marginalization we get:

Pr(fo, lo,¬hb) =
∑

BP,DO Pr(fo,BP,DO, lo,¬hb)
Pr(fo, lo,¬hb) = Pr(fo, bp, do, lo,¬hb) + Pr(fo, bp,¬do, lo,¬hb)+
+Pr(fo,¬bp, do, lo,¬hb)+Pr(fo,¬bp,¬do, lo,¬hb) = .15× .01× .99× .6× .3+ .15×
.01× .01× .6× .99 + .15× .99× .9× .6× .3 + .15× .99× .1× .6× .99 = .033

Pr(lo,¬hb) = Pr(fo, lo,¬hb) + Pr(¬fo, lo,¬hb) = .066

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pProbabilistic network – inference by enumeration

− after substitution:

Pr(fo|lo,¬hb) = Pr(fo,lo,¬hb)
Pr(lo,¬hb) = .033

.066 = 0.5

− posterior probability Pr(fo|lo,¬hb) higher than prior Pr(fo) = 0.15.

� can we assume on complexity?

− instead of 25 − 1=31 probs (either conditional or joint) 10 needed only,

− however, joint probs enumerated to answer the query

∗ inference remains a NP-hard problem,

− moving summations left-to-right makes a difference, but not a principal one

∗ see the evaluation tree on the next slide,

Pr(fo, lo,¬hb) =
∑
BP,DO

Pr(fo,BP,DO, lo,¬hb) =

= Pr(fo)
∑
BP

Pr(BP )
∑
DO

Pr(DO|fo,BP )Pr(lo|fo)Pr(¬hb|DO)

− inference by enumeration is an intelligible, but inefficient procedure,

− solution: minimize recomputations, special network types or approximate inference.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pInference by enumeration – evaluation tree

� Complexity: time O(n2d), memory O(n)

− n . . . the number of variables, e . . . the number of evidence variables, d=n-e,

� resource of inefficiency: recomputations (Pr(lo|fo)× Pr(¬hb|DO) for each BP value)

− variable ordering makes a difference – Pr(lo|fo) shall be moved forward.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pInference by enumeration – straightforward improvements

� variable elimination procedure

1. pre-computes factors to remove the inefficiency shown in the previous slide

− factors serve for recycling the earlier computed intermediate results,

− some variables are eliminated by summing them out,

∑
P f1 × · · · × fk = f1 × · · · × fi ×

∑
P fi+1 × · · · × fk = f1 × · · · × fi × fP̄ ,

assumes that f1, . . . , fi do not depend on P ,

when multiplying factors, the pointwise product is computed

f1(x1, ..., xj, y1, ..., yk)× f2(y1, ..., yk, z1, ..., zl) = f (x1, ..., xj, y1, ..., yk, z1, ..., zl)

eventual enumeration over O1 variable, which takes all (two) possible values

fŌ1
(O2, . . . ,Ok) =

∑
O1
f1(O1,O2, . . . ,Ok),

− execution efficiency is influenced by the variable ordering when computing,

(finding the best order is NP-hard problem, can be optimized heuristically too),

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pInference by enumeration – straightforward improvements

� variable elimination procedure

2. does not consider variables irrelevant to the query

− all the leaves that are neither query nor evidence variable,

− the rule can be applied recursively.

� example: Pr(lo|do)

− what is prob that the door light is shining if the dog

is in the garden?

− we will enumerate Pr(LO, do), since:

Pr(lo|do) = Pr(lo,do)
Pr(do) = Pr(lo,do)

Pr(lo,do)+Pr(¬lo,do)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pInference by enumeration – variable elimination

� HB is irrelevant to the particular query, why?∑
HB Pr(HB|do) = 1

Pr(LO, do) =
∑

FO,BP,HB

Pr(FO)Pr(BP )Pr(do|FO,BP )Pr(LO|FO)Pr(HB|do) =

=
∑
FO

Pr(FO)Pr(LO|FO)
∑
BP

Pr(BP )Pr(do|FO,BP )
∑
HB

Pr(HB|do)

� after omitting the last invariant, factorization may take place

Pr(LO, do) =
∑
FO

Pr(FO)Pr(LO|FO)
∑
BP

Pr(BP )Pr(do|FO,BP ) =

=
∑
FO

Pr(FO)Pr(LO|FO)fBP (do|FO) =
∑
FO

fBP,do(FO)Pr(LO|FO) =

= fFO,BP ,do(LO)

� having the last factor (a table of two elements), one can read

Pr(lo|do) =
fFO,BP ,do(lo)

fFO,BP ,do(lo)+fFO,BP ,do(¬lo)
= 0.0941

0.0941+0.3017 = 0.0941
0.3958 = 0.24

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pVariable elimination – factor computations

� factors are enumerated from CPTs by summing out variables

− sum out BP: CPT (DO) & CPT (BP )→ fBP (do|FO)

− reformulate into: CPT (FO) & fBP (do|FO)→ fBP,do(FO)

− sum out FO: fBP,do(FO) & CPT (LO)→ fFO,BP ,do(LO)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pVariable elimination – factor computations

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pInference by enumeration – comparison of the number of operations

� let us take the last example

− namely the total number of sums and products in Pr(LO, do),

− (the final Pr(lo|do) enumeration is identical for all procedures),

� näıve enumeration, no evaluation tree

− 4 products (5 vars) ×24 (# atomic events on unevidenced variables) + 24 − 2 sums,

− in total 78 operations,

� using evaluation tree and a proper reordering of variables

− takes the ordering

Pr(LO, do) =
∑

FO Pr(FO)Pr(LO|FO)
∑

BP Pr(BP )Pr(do|FO,BP )
∑

HB Pr(HB|do)
− in total 38 operations,

� with variable elimination on top of that

− in total 14 operations (6 in Tab1, 2 in Tab2, 6 in Tab3).

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pVariable elimination – efficiency in general

� Given by the network structure and the variable ordering

− exponential in the size of the largest clique in the induced graph,

− somewhere between linear and NP-hard,

� induced graph

− undirected graph, the edge exists if two variables both appear in some intermediate factor

induced by the given variable ordering,

HB ≺ BP ≺ LO ≺ FO ≺ DO DO ≺ FO ≺ LO ≺ HB ≺ BP

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pVariable elimination – variable ordering

� minimize the number of fill edges in induced graph

− edges introduced in the elimination step,

� NP-hard problem in general

− greedy local methods often find near-optimal solution,

− min-fill heuristic

∗ vertex cost is the number of edges added to the graph due to its elimination,

− always take the node that minimizes the heuristic, no backtrack.

� Step 1:

Pr(FO, . . . , HB) = fFO(FO)fBP (BP )fDO(DO,FO,BP )fLO(LO,FO)fHB(HB,DO)

var intermediate factor min-fill

FO fFO(FO)fDO(DO,FO,BP )fLO(LO,FO) 3

BP fBP (BP )fDO(DO,FO,BP ) 1

DO fDO(DO,FO,BP )fHB(HB,DO) 3

LO fLO(LO,FO) 0

HB fHB(HB,DO) 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pSemantics of factors

� Factors

− multidimensional arrays (the same as CPTs),

− often correspond to marginal or conditional probabilities,

− initialized with CPTs,

− some intermediate factors differ from any probability in the network

∗ eliminate X from the left network,

∗ the resulting factor does not agree with any prob in the left network,

∗ it gives a conditional prob in the right network.

f (A,B,C) =
∑

X Pr(X)Pr(A|X)Pr(C|B,X) Pr(A,C|B)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pApproximate inference by stochastic sampling

� a general Monte-Carlo method, samples from the joint prob distribution,

� estimates the target conditional probability (query) from a sample set,

� the joint prob distribution is not explicitly given, its factorization is available only (network),

� the most straightforward is direct forward sampling

1. topologically sort the network nodes

− for every edge it holds that parent comes before its children in the ordering,

2. instantiate variables along the topological ordering

− take Pr(Oj|parents(Oj)), randomly sample Oj,
3. repeat step 2 for all the samples (the sample size M is given a priori),

� from samples to probabilities?

− Pr(q|e) ≈ N(q,e)
N(e)

− samples that contradict evidence not used,

− forward sampling gets inefficient if Pr(e) is small.
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pImproved stochastic sampling

� rejection sampling

− rejects partially generated samples as soon as they violate the evidence event e,

− sample generation may stop early → slight improvement,

� likelihood weighting

− avoids necessity to reject samples,

− the values of E fixed, the rest of variables sampled only,

− however, not all events are equally probable, samples must be weighted,

− the weight equals to the likelihood of the event given the evidence,

� Gibbs sampling

− the previous methods are importance sampling,

− GS is a Markov chain method – the next state depends purely on the current state,

∗ state = sample, generates dependent samples!

∗ as it is a Monte-Carlo method as well → MCMC,

− efficient sampling method namely when some of BN variable states are known

∗ it again samples nonevidence variables only, the samples never rejected.
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pRejection sampling – example

� FAMILY example, estimate Pr(fo|lo,¬hb)
1. topologically sort the network nodes

− e.g., 〈FO,BP, LO,DO,HB〉 (or 〈BP,FO,DO,HB,LO〉, etc.)

2. instantiate variables along the topological ordering

− Pr(FO)→ ¬fo, Pr(BP )→ ¬bp,

Pr(LO|¬fo)→ lo, Pr(DO|¬fo,¬bp)→ ¬do, Pr(HB|¬do)→ ¬hb
− sample agrees with the evidence e = lo ∧ ¬hb, no rejection needed,

3. generate 1000 samples, repeat step 2,

� let N(fo, lo,¬hb) is 491 (the number of samples

with the given values of three variables under con-

sideration),

� in rejection sampling N(e) necessarily equals M ,

− Pr(fo|lo,¬hb) ≈ N(q,e)
N(e) = 491

1000 = 0.491

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pLikelihood weighting – details

� sampling process:

∀ samples pm = {O1 = om1 , . . .On = omn }, m ∈ {1, . . . ,M}

1. wm ← 1 (initialize the sample weight)

2. ∀j ∈ {1, . . . , n} (instantiate variables along the topological ordering)

− if Oj ∈ E then take omj from e and wm ← wm × Pr(Oj|parents(Oj)),

− otherwise randomly sample omj from Pr(Oj|parents(Oj)),

� from samples to probabilities?

− evidence holds in all samples (by definition),

− weighted averaging is applied to find Pr(Q =?Oi|e)

Pr(oi|e) ≈
∑M

m=1w
mδ(omi , oi)∑M

m=1w
m

δ(i, j) =

{
1 for i = j

0 for i 6= j

� nevertheless, samples may have very low weights

− turns out inefficient in large networks with evidences occuring late in the ordering.
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pLikelihood weighting – example

� let us approximate Pr(fo|lo,¬hb) (its exact value computed earlier is 0.5),

p1 p2 p3 . . .

FO F F T

BP F F F

LO T T T
DO F T T

HB F F F

w .0495 .015 .18

FO1: Pr(fo) = .15→ ¬fo sampled

BP 1: Pr(bp) = .01→ ¬bp sampled

LO1: evidence → lo ∧ w1 = Pr(lo|¬fo) = .05

DO1: Pr(do|¬fo,¬bp) = .3→ ¬do sampled

HB1: evidence → ¬hb ∧ w1 = .05× Pr(¬hb|¬do) = .0495

FO2: Pr(fo) = .15→ ¬fo sampled

BP 2: Pr(bp) = .01→ ¬bp sampled

LO2: evidence → lo ∧ w1 = Pr(lo|¬fo) = .05

DO2: Pr(do|¬fo,¬bp) = .3→ do sampled

HB2: evidence → ¬hb ∧ w2 = .05× Pr(¬hb|do) = .015

� a very rough estimate having 3 samples only

Pr(fo|lo,¬hb) ≈ .18

.0495 + .015 + .18
= .74
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pGibbs sampling

� sampling process:

∀ samples om = {O1 = om1 , . . .On = omn }, m ∈ {1, . . . ,M}

1. fix states of all observed variables from E (in all samples),

2. the other variables initialized in o0 randomly,

3. generate om from om−1 (∀Oi 6∈ E)

− om1 ← Pr(O1|om−1
2 , . . . , om−1

n ),

− om2 ← Pr(O2|om1 , om−1
3 , . . . , om−1

n ),

− . . . ,

− omn ← Pr(On|om1 , . . . , omn−1),

4. repeat step 3 for m ∈ {1, . . . ,M},

ignore samples at the beginning (burn-in period).
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pGibbs sampling

� probs Pr(Oi|O1, . . .Oi−1Oi+1, . . .On) = Pr(Oi|P \ Oi) not explicitly given . . .

− to enumerate them, only their BN neighborhood needs to be known

Pr(Oi|O \ Oi) ∝ Pr(Oi|parents(Oi))
∏

∀Oj ,Oi∈parents(Oj)

Pr(Oj|parents(Oj))

− the neighborhood is called Markov blanket (MB),

− MB covers the node, its parents, its children and their parents,

− MB(Oi) is the minimum set of nodes that d-separates Oi from the rest of the network.

� from samples to probabilities?

− evidence holds in all samples (by definition),

− averaging ∀m is applied to find Pr(Q|e)

Pr(oi|e) ≈
∑M

m=1 δ(o
m
i , oi)

M
δ(i, j) =

{
1 for i = j

0 for i 6= j
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pGibbs sampling – example

� let us approximate Pr(fo|lo,¬hb) (its exact value computed earlier is 0.5),

o0 o1 o2 . . .

FO T F F
BP T F F
LO T T T
DO F F F

HB F F F

o0: random init of unevidenced variables

FO1: Pr∗(fo) ∝ Pr(fo)× Pr(lo|fo)× Pr(¬do|fo, bp)

Pr∗(¬fo) ∝ Pr(¬fo)× Pr(lo|¬fo)× Pr(¬do|¬fo, bp)

Pr∗(fo) ∝ .15× .6× .01 = 9× 10−4 → ×α1
FO = .41

Pr∗(¬fo) ∝ .85× .05× .03 = 1.275× 10−3 → ×α1
FO = .59

α1
FO = 1

Pr∗(fo)+Pr∗(¬fo) = 460

BP 1: Pr∗(bp) ∝ Pr(bp)× Pr(¬do|¬fo, bp) = .01× .03 = .0003

Pr∗(¬bp) ∝ Pr(¬bp)× Pr(¬do|¬fo,¬bp) = .99× .7 = 0.693

α1
BP = 1

Pr∗(bp)+Pr∗(¬bp) = 1.44→ Pr∗(bp) = 4× 10−4

DO1: by analogy, |MB(DO)| = 5

FO2: BP value was switched, substitution is Pr(DO|FO,¬bp)

Pr∗(fo) = .21 Pr∗(¬fo) = .79

BP 2: the same probs as is sample 1
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pGibbs sampling – example

� BN Matlab Toolbox, aproximation of Pr(fo|lo,¬hb),

� gibbs sampling inf engine, three independent runs with 100 samples.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pSummary – inference

� independence and conditional independence remarkably simplify prob model

− still, BN inference remains generally NP-hard wrt the number of nodes,

− inference complexity grows with the number of network edges

∗ näıve Bayes model – linear complexity,

∗ exponential in the size of maximal clique of induced graph,

− inference complexity can be reduced by constraining model structure

∗ special network types (singly connected), e.g. trees – one parent only,

− inference time can be shorten when exact answer not required

∗ approximate inference, typically (but not only) stochastic sampling.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�

B4M36SMU



pLearning Bayesian networks from data

� Motivation for learning from data

− knowledge is hard to obtain × data of sufficient size often at hand,

� structure of training data

− frequency table is commonly sufficient,

− incomplete data make learning harder,

� parameter learning

− easier (sub)task,

− MLE algorithm (+ EM for incomplete data),

− data quantity – demonstration of requirements,

� structure learning

− more difficult task,

− structure selection criteria? likelihood, MAP score, BIC,

− näıve approach, K2 and MCMC algorithms,

− illustrative examples.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pLearning Bayesian networks from data

� format of training data?

− sample set D contains M samples = concurrent observations of all the variables,

− FAMILY example: dm = {FOm, BPm, LOm, DOm, HBm}, m = 1 . . .M ,

− no missing values concerned yet for simplicity,

� frequency table (hypercube) provides sufficient statistics (representation)

− gives the number of samples with particular configuration (frequency over sample space),

− 25 entries N({fo, bp, do, lo, hb}), . . . , N({¬fo,¬bp,¬do,¬lo,¬hb}),

− representation close to the joint probability distribution.

d1 = {fo1,¬bo1,¬lo1, do1,¬hb1}
d2 = {¬fo2,¬bo2,¬lo2, do2, hb2}
. . .

dM = {¬foM , boM ,¬loM , doM , hbM}
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pLearning Bayesian network parameters from data

� likelihood review: 1D Gaussian mean estimation (variance assumed to be known)

Duda,Hart,Stork: Pattern Classification

a set of observations (points)

candidate probabilistic models (dashed)

likelihood as a function of the mean

prob of the observations given the model

the mean value θ̂ maximizes likelihood

log likelihood

the same best value θ̂

easier to handle (underflow)
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pLearning Bayesian network parameters from data

� network structure is known, we search for CPTs in the individual nodes,

� maximum likelihood estimate (MLE) of unknown parameters Θ

− FAMILY example

L(Θ : D) =

M∏
m=1

Pr(dm : Θ) =

M∏
m=1

Pr(FOm, BPm, LOm, DOm, HBm : Θ) =

=

M∏
m=1

Pr(FOm : Θ)Pr(BPm : Θ)Pr(LOm|FOm : Θ) . . . P r(HBm|DOm : Θ)

− for general Bayesian network

L(Θ : D) =

M∏
m=1

Pr(dm : Θ) =

M∏
m=1

Pr(O1mO2m, . . .Onm : Θ) =

=

n∏
j=1

M∏
m=1

Pr(Oj|parents(Oj) : Θj) =

n∏
j=1

Lj(Θj : D)

� under the assumption of independence of parameters, likelihood can be decomposed

− contribution of each network node Lj(Θj : D) is determined (maximized) independently.
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pLearning Bayesian network parameters from data

� the optimization task: Θ̂j = arg max
Θ

Lj(Θj : D) is solved for each node,

� let us demonstrate for FO node, where ΘFO = {Pr(fo)}

− let N(fo) be the number of samples, where FOj = TRUE

− LFO is maximized by putting its first derivative equal to 0

LFO(ΘFO : D) =

M∏
m=1

Pr(FO : ΘFO) = Pr(fo)N(fo)(1− Pr(fo))M−N(fo)

∂LFO(Pr(fo) : D)

∂ Pr(fo)
= 0→ Pr(fo) =

N(fo)

M

� the generalized formula for ML parameter estimation is intuitively obvious

θ̂Oj |parents(Oj) =
N(Oj, parents(Oj))
N(parents(Oj))

≈ Pr(Oj|parents(Pj))

� however, this estimate is imprecise/impossible for sparse/incomplete data

− sparse data → Dirichlet priors and maximum a posteriori (MAP) probability method,

− missing data → Monte-Carlo sampling, or

→ EM optimization of multimodal likelihood function.
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pParameter learning from a small number of observations

� ill-posed problem

− overfitting, division by zero or zero probabilities learned,

� regularization

− introducing additional information in order to resolve an ill-posed problem,

− Bayesian learning makes use of prior probability

Pr(Θ|D) =
Pr(D|Θ)× Pr(Θ)

Pr(D)
⇔ posterior =

likelihood× prior

prob of data

� MAP estimate of parameters: θ̂oj |parents(Oj) =
N(oj ,parents(Oj))+α−1

N(parents(Oj))+α+β−2.
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pParameter learning from incomplete data

� missing values completely at random

− the simplest option – independent of variable states, no hidden parameters used,

� it is not advisable to ignore the missing values

− loses existing observations as well,

� MLE combined with EM algorithm:

1. initialize network parameters (typically using available training data or randomly),

2. E step: take the existing network and compute the missing values (inference),

3. M step: modify the network parameters according to the current complete observations,

use MLE,

4. repeat steps 2 and 3

(a) for the given prior number of iterations (in this experiment 10),

(b) until convergence of MLE criterion (log L change between consecutive steps < 0.001).
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pParameter learning from incomplete data – example

� consider a linear connection A→ B → C,

� learn network parameters, the samples shown in the table below are available,

� use the EM algorithm to learn with missing values (?).

s1 s2 s3 s4

A F T T T

B T F T ?

C T F T F
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pParameter learning from incomplete data – example

� consider a linear connection A→ B → C,

� learn network parameters, the samples shown in the table below are available,

� use the EM algorithm to learn with missing values (?).

s1 s2 s3 s4

A F T T T

B T F T ?

C T F T F

init: Pr(a) = 3
4, Pr(b|a) = 1

2, Pr(b|¬a) = 1, Pr(c|b) = 1, Pr(c|¬b) = 0,

E1: Pr(B4 = T ) = Pr(b|a,¬c) = Pr(a,b,¬c)
Pr(a,¬c) = 3

4
1
20/(3

4
1
20 + 3

4
1
21) = 0→ estimated F,

M1: Pr(a) = 3
4, Pr(b|a) = 1

3, Pr(b|¬a) = 1, Pr(c|b) = 1, Pr(c|¬b) = 0,

E2: Pr(B4 = T ) = Pr(b|a,¬c) = Pr(a,b,¬c)
Pr(a,¬c) = 3

4
1
30/(3

4
1
30 + 3

4
2
31) = 0→ estimated F,

M2: necessarily the same result as in M1, converged, STOP.
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pParameter learning from data – illustration of convergence

1. take existing (original) network and generate training data (a sample set)

� FAMILY network, consider different M values (sample set sizes),

� in which way to generate the data?

− no evidence, thus forward sampling, see inference

− Gibbs sampling is also possible,

2. randomize quantitative network parameters

� the network structure is preserved,

� the original CPTs lost,

3. parameter values are learned from training data

� complete observations – maximum likelihood estimate (MLE),

� incomplete observations – combination of MLE and EM algorithm,

4. compare the original and learned CPTs for different sample set sizes M

� why is it easier to estimate Pr(fo) than Pr(do|fo, bp)? see graphs . . .

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pParameter learning from data – complete observations

� What is the probability that family is out?

− Pr(fo) = ?

� all samples can be used . . .

− Pr(fo) =
∑M
m=1 δ(FO

m,fo)
M

� What is the dog out prob given fo and bp?

− Pr(do|fo, bp) = ?

� Condition is met only in 1.5 0/00 of samples.

− Pr(fo) = 0.15, Pr(bp) = 0.01,

− FO and BP independent variables.
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pParameter learning from data – incomplete observations (50% loss)

� What is the probability that family is out?

− Pr(fo) = ?

� Incomplete data = less information

− considerably longer computational time,

− the final estimate “a bit less exact only”.

� What is the dog out prob given fo and bp?

− Pr(do|fo, bp) = ?

� Incomplete data = less information

− comparison is inconclusive.
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pStructure learning – näıve approach

� two steps sufficient to construct the network:

1. define a sort of n variables,

2. gradually find subsets of variables that satisfy CI relationship

Pr(Oj+1|O1, . . .Oj) = Pr(Oj+1|parents(Oj+1)), parents(Oj+1) ⊆ {O1, . . .Oj},

� find a network for each of the variable sorts, take the smallest network,

� the algorithm illustrated on a simple three variable example:

1. select a permutation π: π(O1) = 1, π(O2) = 2 a π(O3) = 3,

2. gradually build a network, add nodes one by one, CI test underlies the local decision.
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pStructure learning – näıve approach

� two steps sufficient to construct the network:

1. define a sort of n variables,

2. gradually find subsets of variables that satisfy CI relationship

Pr(Oj+1|O1, . . .Oj) = Pr(Oj+1|parents(Oj+1)), parents(Oj+1) ⊆ {O1, . . .Oj},

� find a network for each of the variable sorts, take the smallest network,

� the algorithm illustrated on a simple three variable example:

1. select a permutation π: π(O1) = 1, π(O2) = 2 a π(O3) = 3,

2. gradually build a network, add nodes one by one, CI test underlies the local decision.

� cannot be implemented in this easy form:

− variable ordering influences the resulting network

∗ improper ordering → redundant edges up to fully connected graph,

∗ however, n! distinct permutations cannot be checked,

− independence tests also non-trivial

∗ for binary variables definitely O(2n) operations per single permutation,

∗ among others, Pr(On|O1, . . .On−1) needs to be enumerated.
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pStructure learning – näıve approach
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pScore-based structure learning – likelihood and Bayesian score

� score-based learning, maximizes an evaluation function

− the function quantifies how well a structure matches the data,

� straightforward likelihood function selects the fully connected network

− the more parameters, the better match with data,

− results in overfitting – improper when comparing structures of different size,

logL(G : D) = log

M∏
m=1

Pr(dm : G) = −M
n∑
i=1

H(Oi|parents(Oi)G)

� evaluation function often based on Bayesian score that stems from posterior probability

Pr(G|D) =
Pr(D|G)Pr(G)

Pr(D)
→ logPr(G|D) = logPr(D|G) + logPr(G) + c

− unlike MLE, it integrates over all parametrizations of given structure

Pr(D|G) =

∫
Pr(D|G,ΘG)× Pr(ΘG|G)dΘ

− MLE concerns solely the best parametrization

L(G : D) = Pr(D|G, Θ̂G)
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pScore-based structure learning – BIC

� Bayesian Information Criterion (BIC)

− represents another frequent evaluation function,

− a heuristic criterion, easier to compute than the Bayesian one,

− a MDL principle analogy – the best model is both compact and accurate,

− let us have: qi . . . the number of unique instantiations of Oi parents,

ri . . . the number of distinct Oi values,

− then, a network has: K =
∑n

i=1 qi(ri − 1) independent parameters,

BIC = −K
2

log2M + log2L(G : D) = −K
2

log2M −M
n∑
i=1

H(Oi|parents(Oi)G)

− first addend: network complexity penalty (K ↑ BIC ↓),

− second addend: network likelihood

(mutual information between nodes and their parents ↑ H(|) ↓ BIC ↑),
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pConditional entropy

� information entropy H(X)

− a measure of the uncertainty in a random variable,

− the average number of bits per value needed to encode it,

− H(X) = −
∑

x∈X Pr(x) log2 Pr(x)

� conditional (information) entropy H(Y |X)

− ucertainty in a random variable Y given that the value of random variable X is known,

− X ⊥⊥ Y ⇒ H(Y |X) = H(Y )

− H(Y |X) =
∑

x∈X Pr(x)H(Y |x) = −
∑

x∈X Pr(x)
∑

y∈Y Pr(y|x) log2 Pr(y|x)

� how to enumerate conditional entropy?

− Nij . . . the number of samples, where parents(Oi) take the j-th instantiation of values,

− Nijk . . . the number of samples, where Oi takes the k-th value and parents(Oi) the j-th

instantiation of values,

H(Oi|parents(Oi)G) = −
qi∑
j=1

ri∑
k=1

Nij

M

Nijk

Nij
log2

Nijk

Nij
= −

qi∑
j=1

ri∑
k=1

Nijk

M
log2

Nijk

Nij
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pScore-based structure learning

� however, no evaluation function can be applied to all 2n
2

candidate graphs

(simple upper bound),

� heuristics and metaheuristics known for difficult tasks need to be employed

− metaheuristic example – local search

∗ it starts with a given network (empty, expert’s, random),

∗ it construct all the “near” networks, evaluates them and goes to the best of them,

∗ it repeats the previous step if the local change increases score, otherwise it stops,

− auxiliary heuristics examples

∗ definition of “near” network,

∗ how to avoid getting stuck in local minima or on plateaux

· random restarts, simulated annealing, TABU search.
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pStructure learning – K2 algorithm

� Cooper and Herskovitz (1992), it approaches the näıve approach mentioned above,

� advantage

− complexity is O(M,u2, n2, r), u ≤ n→ O(M,n4, r)

∗ M . . . the number of samples, n . . . the number of variables,

∗ r . . . max number of distinct variable values, u . . . max number of parents,

� disadvantages

− topological sort of network variables π must be given/known,

− greedy search results in locally optimal solution.

� it expresses the prob Pr(G,D) as the following function

g(Oi, parents(Oi)) =

qi∏
j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏
k=1

Nijk!

− qi . . . number of unique instantiations of parents(Oi), ri . . . number of distinct Oi values,

− Nij . . . number of samples, where parents(Oi) take j-th instantiation of values,

− Nijk . . . number of samples, where Oi takes k-th value and parents(Oi) j-th instantiation

of values,

− separable criterion – it can be computed node by node.
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pStructure learning – K2 algorithm

� algorithm K2 (π,u,D):

for i=1:n % follow the topological sort of variables π

parents(Oπi)= ∅ % in the beginning, the set of parents is always empty

Gold=g(Oπi,parents(Oπi)) % initialize the node value

while |parents(Oπi)|≤ u % the number of parents must not exceed u

j∗ = arg max
j=1...i−1Oπj /∈parents(Oπi)

g(Oπi, parents(Oπi) ∪ Oπj)

% Oπ∗j is the parent maximizing the value of g

% the parent must have a lower topological index -- by definition

% omit the candidates already belonging to the set of parents

Gnew=g(Oπi,parents(Oπi) ∪ Oπ∗j)
if Gnew > Gold then

Gold = Gnew

parents(Oπi)=parents(Oπi ∪ Oπ∗j)
else

STOP % the node value cannot be further improved, stop its processing
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pK2 – locality of greedy search, illustration

� let us have binary variables O1, O2, O3, let π={1,2,3} and D is given in the table

O1 O2 O3

F F F

F F F

F T T

F T T

T F T

T F T

T T F

T T F

g(O2, ∅) = 4!4!
9! = 4!

9×8×7×6×5 = 1
630

g(O2, {O1}) = (2!2!
5! )2 = ( 1

180)2 =
1

32400

K2: STOP, no edge from O1 to O2

g(O3, ∅) = g(O2, ∅) = 1
630

g(O3, {O1}) = (2!2!
5! )2 = ( 1

180)2 =
1

32400

g(O3, {O2}) = g(O3, {O1})
K2: STOP, no edge to O3, however

g(O3, {O1O2}) = (2!
3!)

4 = (1
3)4 = 1

81

� minor improvements

− apply K2 and K2Reverse and take the better solution

∗ K2Reverse starts with the fully connected graph and greedily deletes edges,

∗ solves the particular problem shown above, but not a general solution,

− randomly restart the algorithm (various node orderings and initial graphs).
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pStructure learning – MCMC approach

� MCMC = Markov chain Monte-Carlo (for meaning see Gibbs sampling),

� applies Metropolis-Hastings (MH) algorithm to search the candidate graph/network space

1. take an initial graph G

− user-defined/informed, random, empty with no edges,

2. evaluate the graph P (G)

− use samples, apply criteria such as BIC or Bayesian,

3. generate a “neighbor” S of the given graph G

− insert/remove an edge, change edge direction,

− check the graph acyclicity constraint,

− prob of transition from G to S is function of Q(G,S),

4. evaluate the neighbor graph P (S),

5. accept or reject the transition to S

− generate α from U(0,1) (uniform distribution),

− if α < P (S)Q(G,S)
P (G)Q(S,G) then accept the transition G→ S,

6. repeat steps 3–5 until convergence or the given number of iterations.
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pStructure learning – MCMC approach

� graph frequency helps to assume on graph posterior probability

− a sequence beginning is ignored for random inits,

� the sequence of graphs can be used both for

− point estimation – e.g., only the network with the highest score is concerned (MAP),

− Bayesian estimation – all the networks concerned and weighted by their score,

� convergence (frequency proportional to the real score)

− theoretically converges in polynomial time wrt size of graph space,

− practically difficult for domains with more than 10 variables.
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pStructure learning – 3DAG example

� initialization:

− a 3-node trial network taken,

− 16 samples generated,

− the network “forgotten”,

� learning: (complete search, 11 graphs),

− score a member of each Markov equivalence class

∗ complete search through a set of 11 graphs/classes,

− apply 3 distinct criteria to identify the best model

∗ max likelihood, Bayesian MAP and BIC.
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pStructure learning – 3DAG example

� G1 gradually evaluated by three criteria:

− likelihood: ML parameters first Pr(o1) = Pr(o2) = 9
16, Pr(o3) = 1

8

lnL(G1 : D) =

16∑
m=1

Pr(dm : G1) =

= 2 ln
( 7

16

9

16

1

8

)
+ 3 ln

( 9

16

9

16

7

8

)
+ 10 ln

( 9

16

7

16

7

8

)
+ ln

( 7

16

7

16

7

8

)
= −27.96

− the identical likelihood value can also be reached through conditional entropy

lnL(G1 : D) = −M
3∑
i=1

H(Oi|parents(Oi)G1) =

= −16
[
−2
( 9

16
ln

9

16
+

7

16
ln

7

16

)
−
(1

8
ln

1

8
+

7

8
ln

7

8

)]
= −27.96
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pStructure learning – 3DAG example

� G1 gradually evaluated by three criteria:

− BIC – subtract the complexity penalty from the value of network likelihood

BIC(G1 : D) = −K
2

lnM + lnL(G1 : D) = −3

2
ln 16− 27.96 = −32.12

− Bayesian score

lnPr(D|G1) = ln

3∏
i=1

g(Oi, parents(Oi)G1) =

3∑
i=1

qi∑
j=1

ri∑
k=1

ln
(ri − 1)!

(Nij + ri − 1)!
Nijk! =

= 2(− ln 17! + ln 9! + ln 7!)− ln 17! + ln 2! + ln 14! = −31.98

Natural logarithm is applied to match Matlab BN Toolbox.

Logarithm base change does not change ordering of model evaluations.
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pStructure learning – 3DAG example

� none of three criteria identified the correct graph class

− MLE overfits the sample set as expected,

− BIC and MAP suffer from insufficient data (a too small sample set).
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pSummary – learning from data

� Estimation of (quantitative) BN parameters

− relatively easy for large and complete data

∗ ML and MAP estimates agree,

∗ MAP preferable when a prior distribution exists,

− gets more difficult with small or incomplete sample sets

∗ prior knowledge resp. iterative EM refinement (parameters ↔ observations),

� BN structure discovery as score-based learning

− several scores to evaluate how well a structure matches the data

∗ likelihood, resp. log likelihood (two ways to compute available) → bad idea, overfits,

∗ Bayesian score, BIC based on likelihood,

∗ other options – among others local CI tests,

− the space of candidate structures is huge

∗ the space cannot be exhaustively searched, i.e., the scores computed for all candidates,

∗ consequently, even the näıve approach cannot be considered,

∗ K2 – a greedy, locally optimal search,

∗ MCMC – a stochastic search similar to simulated annealing.
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pRecommended reading, lecture resources

� Russell, Norvig: AI: A Modern Approach

− namely uncertainty (chap. 13) and probabilistic reasoning (chap. 14),

− Norvig’s videos on probabilistic inference:

∗ http://www.youtube.com/watch?v=q5DHnmHtVmc&feature=plcp,

� Bishop: Pattern Recognition and Machine Learning.

− Chapter 8: Graphical models,

� Charniak: Bayesian Networks without Tears

− popular, AI magazine, 14 pages,

� Koller: Probabilistic Graphica Models.

− book: http://pgm.stanford.edu/, chapter II, inference, variable elimination,

− Coursera video lectures: https://www.coursera.org/course/pgm,

� Murphy: A Brief Introduction to Graphical Models and Bayesian Networks.

− tutorial: http://www.cs.ubc.ca/~murphyk/Bayes/bayes.html.
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