
Monte Carlo Tree Search

(and a bit of MDP)

Branislav Bošanský

PUI 2017/2018

MDP –VI/PI improvements

 value iteration is very simple

 updates all states during each iteration

 curse of dimensionality (huge state space)

 asynchronous VI

 select a single state to be updated in each iteration separately

 each state must be updated infinitely often to guarantee convergence

 lower memory requirements

 Q: Can we use some heuristics to improve the

convergence?

MDP –VI/PI heuristics

 initial values can be assigned better

 we can use a heuristic function instead of 0

 Q: Can you think of any heuristic function?

 e.g., remember FFReplan/Robust FF?

 we can use a single run of a planner on the determinized version

 Q: What if the values V are initialized incorrectly?

MDP –VI/PI with priority

 initialize 𝑉 and a priority queue 𝑞

 select state 𝑠 from the top of 𝑞 and perform a Bellman backup

 add all possible predecessors of 𝑠 to 𝑞

 repeat until convergence

 priorities: changes in utility, position in the graph, …

 but, values are still updated regardless on the current values

 consider a typical probabilistic planning problem

 finite-horizon MDP with some goal states

MDPs – Find and Revise

 we can further combine selective updates with heuristic search

 starts with admissible 𝑉 𝑠 ≥ 𝑉∗(𝑠) for all states

 select next state 𝑠′ that is:

 reachable from 𝑠0 using current greedy policy 𝜋𝑉, and

 residual 𝑟 𝑠′ > 𝜀

 update 𝑠′

 repeat until such states exist

MDPs – Real-Time Dynamic Programming

 updates the values only on the path from the starting state to the

goal

 during one iteration updates one rollout/trial:

 start with s = 𝑠0

 evaluate all actions using Bellman’s Q-functions 𝑄(𝑠, 𝑎)

 select action that maximizes current value: argmax 𝑎∈𝐴𝑄(𝑠, 𝑎)

 set 𝑉 𝑠 ← 𝑄 𝑠, 𝑎

 get resulting state 𝑠′

 if 𝑠′ is not goal, then 𝑠 ← 𝑠′ and go to step 2

 can be further improved with labeling (LRTDP) to identify solved

states

MDPs – Using Monte Carlo Methods

 Monte Carlo Simulation: a technique that can be used to solve a

mathematical or statistical problem using repeated sampling to

determine the properties of some phenomenon (or behavior)

 Monte-Carlo Planning: compute a good policy for an MDP by

interacting with an MDP simulator

 when simulator of a planning domain is available

or can be learned from data

 even if not described

as a MDP

 queries has to be cheap

(relatively)

MDPs – Using Monte Carlo Methods

 sequential decision problem (over a single state)

 𝑘 ≥ 2 stochastic actions (arms 𝑎𝑖)

 each parameterized with an unknown probability distribution 𝜈𝑖

 each with a stored expectation 𝜇𝑖

 if executed (pulled) rewarded at

random from 𝜈𝑖

 objective

 get maximal reward after N pulls

 minimize regret for pulling wrong arm(s)

MCTS – UCB1

 UCB1 arm selection:

 select arm 𝑎𝑖 maximizing UCB1 formula:

𝜇𝑖 + 𝑐
ln 𝑛

𝑛𝑖

and update 𝜇𝑖

 𝑛 – times the state is visited; 𝑛𝑖 – times the action is visited

 𝜇𝑖 – average reward from the previous plays

 exploration factor 𝑐 ensures to evaluate actions that are evaluated

rarely

Upper Confidence Bounds

MCTS – from UCB1 to UCT

 UCB1 applied on trees – UCT

a1 a2 a3 a4 ak

MCTS – from UCB1 to UCT

MCTS – UCT
Example

a

b

c

Random simulation results:
1. 2
2. 3
3. 1
4. 1
5. …

Questions (assume lexicographic tie braking):
1. Which action will be selected in the first iteration?
2. Which action will be selected in the fourth iteration?
3. Which action will be selected in the fifth iteration?

https://goo.gl/PQxm31

MCTS – UCT
Example

a

b

c

Random simulation results:
1. 2
2. 3
3. 1
4. 1
5. …

Questions (assume lexicographic tie braking):
1. Which action will be selected in the first iteration? a
2. Which action will be selected in the fourth iteration? b
3. Which action will be selected in the fifth iteration? a

https://goo.gl/PQxm31

MCTS – PROST

 Vanilla UCT does not work very well in practice

 huge branching factor

 long (infinite) horizon

 very difficult to find the correct plan by random rollouts

 these issues were addressed by PROST

 search depth limitation

 pruning out unreasonable actions

 heuristic value initialization

IPPC 2011 winner

MCTS – PROST

 PROST – search depth limitation

 we can limit search depth to L instead of solving to full depth

 we need to do that if we have an infinite horizon

 there can be a problem in re-using statistics from previous searches with

limited depth (an optimal plan for horizon L does not have to be optimal

for the full problem)

 PROST - pruning out unreasonable actions

 we can heuristically identify unnecessary actions that do not yield any

positive reward

 compare to a NOOP action

IPPC 2011 winner

MCTS – PROST

 PROST – initialization of values

 vanilla UCT first evaluates an action, if this action has not been evaluated

before in state s

 in case of a large branching factor, our search tree is very shallow

 we can set some heuristic values to actions/children

 we can set an artificial number of iterations

 we can set the values using some relaxation/determinization of the

problem

 Q-value initialization based on most probable outcome

 the algorithm performs an iterative deepening search and checks

whether the values are informative (𝐼(𝑠, 𝑎) > 𝐼(𝑠, 𝑎∅))

IPPC 2011 winner

MCTS – PROST
IPPC 2011 winner

MCTS – Online planning

 Anytime algorithm

 A typical use case for MCTS-like approach is online planning – i.e.

selecting the best action in the current situation in a limited time

 This corresponds to a simple regret – we do not want to regret not

selecting a different action in the current state

 However, UCB1 optimizes the cumulative regret (selecting the best

arm over all attempts)

 But these attempts are fictitious in our case!

 While MAB approach works in practice, it does not exactly

correspond to the online planning

MCTS – BRUE

 There are two conflicting tasks

 selecting the best action in state s (reaching s’)

 exploring and finding the best continuation after s’ is reached

 In order to satisfy Task 2 – we need to select the best action

sufficiently often

 To do that, we need to know the optimal continuation

 BRUE algorithm uses two different action selection methods

 the action in the selection phase is selected uniformly

 the action in the update phase is selected using greedy strategy

MCTS – BRUE

MCTS – BRUE

Trial-based Heuristic Tree Search (THTS)

 a common framework based on five ingredients:

 heuristic function

 backup function

 action selection

 outcome selection

 trial length

 subsuming: MCTS, UCT, FIND-and-REVISE, AO* (AND/OR graph

solver), Real-Time Dynamic Programming (RTDP), various heuristic

functions (e.g., iterative deepening search)

 providing: MaxUCT, UCT*, …

 UCT* in PROST 2014 is currently best performing IPPC planner

Trial-based Heuristic Tree Search (THTS)

Trial-based Heuristic Tree Search (THTS)

 maintains explicit tree of alternating decision and chance nodes

 selection phase

 alternating visitDecisionNode and visitChanceNode

 selection by selectAction and selectOutcome

 tree traversing (down)

 expansion phase

 when unvisited node encountered

 add child node for each action

 heuristics used to initialize

the estimates

 allows selection phase for new nodes

Trial-based Heuristic Tree Search (THTS)

 selection and expansion phases alternate until the trial length

 backup phase (backupDecisionNode & backupChanceNode)

 all selected nodes are updated in reverse order

 when another selected, but not yet visited  selection phase

 a trial ends when the backup is called on the root node

 tree backing (up)

 the process is repeated until the

timeout T allows for another trial

 highest expectation action is returned

greedyAction

Trial-based Heuristic Tree Search (THTS)

 Heuristic function

 action value initialization (Q-value)

ℎ: 𝑆 × 𝐴 ↦ ℝ

 state value initialization (V-value)

ℎ: 𝑆 ↦ ℝ

 Action selection

 UCB1, 𝝐-greedy, …

 Outcome selection

 Monte Carlo sampling; outcome based on biggest potential impact

Trial-based Heuristic Tree Search (THTS)

 optimal policy derived from the Bellman optimality equation:

𝑉∗ 𝑠 = ൝
0 if 𝑠 is terminal
max
a∈𝐴

𝑄∗ 𝑎, 𝑠 otherwise

𝑄∗ 𝑎, 𝑠 = 𝑅 𝑎, 𝑠 +෍
𝑠′∈𝑆

𝑃 𝑠′|𝑎, 𝑠 ⋅ 𝑉∗(𝑠′)

 Full Bellman backup ~ Bellman optimality equation, k trials

 Monte Carlo backup

𝑉𝑘 𝑠 = ൞

0 if 𝑠 is terminal
σ𝑎∈𝐴𝑛𝑎,𝑠 ⋅ 𝑄

𝑘 𝑎, 𝑠

𝑛𝑠
otherwise

𝑄𝑘 𝑎, 𝑠 = 𝑅 𝑎, 𝑠 +
σ𝑠′∈𝑆 𝑛𝑠′ ⋅ 𝑉

𝑘 𝑠′

𝑛𝑎,𝑠

Backup

MaxUCT

 backup function

 action-value by Monte Carlo backup (𝑄𝑘 𝑠)

 state-value by Full Bellman backup (𝑉∗ 𝑠)

 action selection  UCB1

 outcome selection  Monte Carlo sampling (MDP based)

 heuristic function  N/A

 trial length  UCT (horizon length, i.e. to leafs)

UCT*

 backup function

 Partial Bellman backup

(weighted proportionally to subtree probability)

 action selection  UCB1

 outcome selection  Monte Carlo sampling (MDP based)

 heuristic function  Iterative Deepening Search (depth: 15)

 trial length  explicit tree length +1

(only initialized new nodes using heuristics)

 resembles classical heuristic Breadth-First-Search (rather than UCT

Depth-First-Search)

UCT*

References

• Keller & Eyerich “PROST: Probabilistic Planning Based on UCT”

ICAPS 2012

• Feldman & Domshlak “Simple Regret Optimization in Online

Planning for Markov Decision Processes” JAIR 2014

• Keller & Helmert “Trial-based Heuristic Tree Search for Finite

Horizon MDPs” ICAPS 2013

