

Monte Carlo Tree Search

(and a bit of MDP)

Branislav Bošanský

PUI 2017/2018

MDP – VI/PI improvements

- value iteration is very simple
 - updates all states during each iteration
 - curse of dimensionality (huge state space)
 - asynchronous VI
 - select a single state to be updated in each iteration separately
 - each state must be updated infinitely often to guarantee convergence
 - lower memory requirements

Q: Can we use some heuristics to improve the convergence?

MDP – VI/PI heuristics

- initial values can be assigned better
 - we can use a heuristic function instead of 0

- Q: Can you think of any heuristic function?
 - e.g., remember FFReplan/Robust FF?
 - we can use a single run of a planner on the determinized version

Q:What if the values V are initialized incorrectly?

MDP – VI/PI with priority

- initialize V and a priority queue q
- select state s from the top of q and perform a Bellman backup
- add all possible predecessors of s to q
- repeat until convergence
 - priorities: changes in utility, position in the graph, ...

- but, values are still updated regardless on the current values
- consider a typical probabilistic planning problem
 - finite-horizon MDP with some goal states

MDPs – Find and Revise

- we can further combine selective updates with heuristic search
 - starts with admissible $V(s) \ge V^*(s)$ for all states
 - select next state s' that is:
 - reachable from s_0 using current greedy policy π_V , and
 - residual $r(s') > \varepsilon$
 - update s'
 - repeat until such states exist

MDPs – Real-Time Dynamic Programming

- updates the values only on the path from the starting state to the goal
- during one iteration updates one rollout/trial:
 - start with $s = s_0$
 - evaluate all actions using Bellman's Q-functions Q(s, a)
 - select action that maximizes current value: $\arg\max_{a \in A} Q(s, a)$
 - set $V(s) \leftarrow Q(s,a)$
 - get resulting state s'
 - if s' is not goal, then $s \leftarrow s'$ and go to step 2
- can be further improved with labeling (LRTDP) to identify solved states

MDPs – Using Monte Carlo Methods

- Monte Carlo Simulation: a technique that can be used to solve a mathematical or statistical problem using repeated sampling to determine the properties of some phenomenon (or behavior)
- Monte-Carlo Planning: compute a good policy for an MDP by interacting with an MDP simulator
- when simulator of a planning domain is available or can be learned from data
 - even if not described as a MDP
 - queries has to be cheap (relatively)

MDPs – Using Monte Carlo Methods

- sequential decision problem (over a single state)
- $k \ge 2$ stochastic actions (arms a_i)
 - each parameterized with an unknown probability distribution v_i
 - each with a stored expectation μ_i
 - if executed (pulled) rewarded at random from ν_i
- objective
 - get maximal reward after N pulls
 - minimize regret for pulling wrong arm(s)

MCTS - UCBI

Upper Confidence Bounds

- UCBI arm selection:
 - select arm a_i maximizing UCBI formula:

$$\mu_i + c \sqrt{\frac{\ln n}{n_i}}$$

and update μ_i

- n times the state is visited; n_i times the action is visited
- μ_i average reward from the previous plays
- exploration factor c ensures to evaluate actions that are evaluated rarely

MCTS – from UCBI to UCT

• UCBI applied on trees – UCT

MCTS - from UCBI to UCT

Example

Random simulation results:

- 1. 2
- 2. 3
- 3. 1
- 4. 1
- 5. ...

Questions (assume lexicographic tie braking):

- 1. Which action will be selected in the first iteration?
- 2. Which action will be selected in the fourth iteration?
- 3. Which action will be selected in the fifth iteration?

Example

Random simulation results:

- 1. 2
- 2. 3
- 3. 1
- 4. 1
- 5. ...

Questions (assume lexicographic tie braking):

- 1. Which action will be selected in the first iteration? a
- 2. Which action will be selected in the fourth iteration? **b**
- 3. Which action will be selected in the fifth iteration? a

MCTS - PROST

IPPC 2011 winner

- Vanilla UCT does not work very well in practice
 - huge branching factor
 - long (infinite) horizon
 - very difficult to find the correct plan by random rollouts
- these issues were addressed by PROST
 - search depth limitation
 - pruning out unreasonable actions
 - heuristic value initialization

MCTS - PROST

IPPC 2011 winner

PROST – search depth limitation

- we can limit search depth to L instead of solving to full depth
- we need to do that if we have an infinite horizon.
- there can be a problem in re-using statistics from previous searches with limited depth (an optimal plan for horizon L does not have to be optimal for the full problem)

PROST - pruning out unreasonable actions

- we can heuristically identify unnecessary actions that do not yield any positive reward
- compare to a NOOP action

MCTS – PROST

IPPC 2011 winner

- PROST initialization of values
 - vanilla UCT first evaluates an action, if this action has not been evaluated before in state s
 - in case of a large branching factor, our search tree is very shallow
 - we can set some heuristic values to actions/children
 - we can set an artificial number of iterations
- we can set the values using some relaxation/determinization of the problem
 - Q-value initialization based on most probable outcome
 - the algorithm performs an iterative deepening search and checks whether the values are **informative** $(I(s,a) > I(s,a_0))$

MCTS - PROST

IPPC 2011 winner

	CROSSING	ELEVATORS	GAME	NAVIGATION	RECON	SKILL	SYSADMIN	TRAFFIC	TOTAL
\mathbf{P}^0	0.46	0.01	0.86	0.14	0.00	0.89	0.86	0.98	0.53 ± 0.09
P	0.51	0.04	0.91	0.27	0.40	0.90	0.86	0.96	0.61 ± 0.08
\mathbf{P}_{15}	0.56	0.01	0.95	0.30	0.46	0.91	0.91	0.99	0.63 ± 0.08
\mathbf{P}^{I}	0.84	0.86	0.88	0.65	0.98	0.94	0.82	0.84	0.85 ± 0.05
\mathbf{P}_{15}^{I}	0.83	0.93	0.91	0.57	0.98	0.95	0.88	0.93	0.87 ± 0.05
$\mathbf{P}^{I,R}$	0.98	0.85	0.86	0.71	0.98	0.89	0.80	0.83	0.86 ± 0.04
$\mathbf{P}_{15}^{I,R}$	0.91	0.94	0.92	0.67	0.97	0.92	0.86	0.94	0.89 ± 0.04
Glutton	0.80	0.90	0.67	0.97	0.76	0.86	0.34	0.67	0.75 ± 0.06

MCTS - Online planning

- Anytime algorithm
- A typical use case for MCTS-like approach is online planning i.e. selecting the best action in the current situation in a limited time
- This corresponds to a simple regret we do not want to regret not selecting a different action in the current state
- However, UCBI optimizes the cumulative regret (selecting the best arm over all attempts)
- But these attempts are fictitious in our case!
- While MAB approach works in practice, it does not exactly correspond to the online planning

MCTS – BRUE

- There are two conflicting tasks
 - selecting the best action in state s (reaching s')
 - exploring and finding the best continuation after s' is reached
- In order to satisfy Task 2 we need to select the best action sufficiently often
- To do that, we need to know the optimal continuation
- BRUE algorithm uses two different action selection methods
 - the action in the selection phase is selected uniformly
 - the action in the update phase is selected using greedy strategy

MCTS – BRUE

```
procedure UPDATE(\rho)
      for d \leftarrow |\rho|, \ldots, 1 do
             h \leftarrow H - d
             \langle s, a, r, s' \rangle \leftarrow \rho[d]
             n(s\langle h \rangle) \leftarrow n(s\langle h \rangle) + 1
             n(s\langle h \rangle, a) \leftarrow n(s\langle h \rangle, a) + 1
             n(s\langle h \rangle, a, s') \leftarrow n(s\langle h \rangle, a, s') + 1
             \bar{r} \leftarrow r + \text{ESTIMATE}(s'\langle h-1 \rangle)
             MC-BACKUP(s\langle h \rangle, a, \bar{r})
procedure Estimate(s\langle h \rangle)
      \bar{r} \leftarrow 0
      for d \leftarrow 0, \ldots, h-1 do
             a \leftarrow \text{EstAction}(s\langle h - d \rangle)
             s' \leftarrow \text{EstOutcome}(s\langle h - d \rangle, a)
             \tilde{r}_{d+1} \leftarrow R\left(s, a, s'\right)
             \bar{r} \leftarrow \bar{r} + \tilde{r}_{d+1}
             s \leftarrow s'
      return \bar{r}
```

```
procedure StopRollout(\rho)
     d \leftarrow |\rho|
     return d = H or A(\rho[d].s') = \emptyset
procedure ROLLOUTACTION(s\langle h \rangle) // uniform
     return a \sim \mathcal{U}[A(s)]
procedure ROLLOUTOUTCOME(s\langle h \rangle, a)
     return s' \sim \mathcal{P}(S | s, a)
procedure Estaction(s\langle h \rangle) // best
     return \operatorname{argmax}_{a \in A(s)} \widehat{Q}(s\langle h \rangle, a)
procedure EstOutcome(s\langle h \rangle, a)
     for s': n(s\langle h \rangle, a, s') > 0 do
          \widehat{\mathcal{P}}(S = s' | s, a) \leftarrow \frac{n(s\langle h \rangle, a, s')}{n(s\langle h \rangle, a)}
     return s' \sim \widehat{\mathcal{P}}(S | s, a)
```

MCTS - BRUE

- a common framework based on five ingredients:
 - heuristic function
 - backup function
 - action selection
 - outcome selection
 - trial length
- subsuming: MCTS, UCT, FIND-and-REVISE, AO* (AND/OR graph solver), Real-Time Dynamic Programming (RTDP), various heuristic functions (e.g., iterative deepening search)
- providing: MaxUCT, UCT*, ...
- UCT* in PROST 2014 is currently best performing IPPC planner

Algorithm 1: The THTS schema.

```
1 THTS(MDP M, timeout T):
      n_0 \leftarrow \text{getRootNode}(M)
      while not solved(n_0) and time() < T do
          visitDecisionNode(n_0)
      return greedyAction(n_0)
 5
 6 visitDecisionNode(Node n_d):
      if n_d was never visited then initializeNode(n_d)
      N \leftarrow \text{selectAction}(n_d)
      for n_c \in N do
          visitChanceNode(n_c)
10
      backupDecisionNode(n_d)
11
   visitChanceNode(Node n_c):
      N \leftarrow \text{selectOutcome}(n_c)
13
      for n_d \in N do
14
          visitDecisionNode(n_d)
15
      backupChanceNode(n_c)
16
```


- maintains explicit tree of alternating decision and chance nodes
- selection phase
 - alternating visitDecisionNode and visitChanceNode
 - selection by selectAction and selectOutcome
 - tree traversing (down)

expansion phase

- when unvisited node encountered
- add child node for each action
- heuristics used to initialize the estimates
- allows selection phase for new nodes

Algorithm 1: The THTS schema.

```
1 THTS(MDP M, timeout T):
     n_0 \leftarrow \text{getRootNode}(M)
     while not solved(n_0) and time() < T do
          visitDecisionNode(n_0)
     return greedyAction(n_0)
6 visitDecisionNode(Node n_d):
      if n_d was never visited then initializeNode(n_d)
     N \leftarrow \text{selectAction}(n_d)
     for n_c \in N do
          visitChanceNode(n_c)
10
      backupDecisionNode(n_d)
12 visitChanceNode(Node n_c):
      N \leftarrow \text{selectOutcome}(n_c)
14
      for n_d \in N do
15
          visitDecisionNode(n_d)
      backupChanceNode(n_c)
```


- selection and expansion phases alternate until the trial length
- backup phase (backupDecisionNode & backupChanceNode)
 - all selected nodes are updated in reverse order
 - when another selected, but not yet visited → selection phase
 - a trial ends when the backup is called on the root node
 - tree backing (up)
- the process is repeated until the timeout T allows for another trial
- highest expectation action is returned greedyAction

Algorithm 1: The THTS schema.

```
1 THTS(MDP M, timeout T):
     n_0 \leftarrow \text{getRootNode}(M)
     while not solved(n_0) and time() < T do
          visitDecisionNode(n_0)
     return greedyAction(n_0)
6 visitDecisionNode(Node n_d):
     if n_d was never visited then initializeNode(n_d)
     N \leftarrow \text{selectAction}(n_d)
     for n_c \in N do
          visitChanceNode(n_c)
10
     backupDecisionNode(n_d)
12 visitChanceNode(Node n_c):
     N \leftarrow \text{selectOutcome}(n_c)
     for n_d \in N do
15
          visitDecisionNode(n_d)
     backupChanceNode(n_c)
```


Heuristic function

action value initialization (Q-value)

$$h: S \times A \mapsto \mathbb{R}$$

• state value initialization (V-value)

$$h: S \mapsto \mathbb{R}$$

Action selection

• UCBI, ϵ -greedy, ...

Outcome selection

Monte Carlo sampling; outcome based on biggest potential impact

Backup

optimal policy derived from the Bellman optimality equation:

$$V^{*}(s) = \begin{cases} 0 & \text{if } s \text{ is terminal} \\ \max_{a \in A} Q^{*}(a, s) & \text{otherwise} \end{cases}$$
$$Q^{*}(a, s) = R(a, s) + \sum_{s' \in S} P(s'|a, s) \cdot V^{*}(s')$$

- Full Bellman backup \sim Bellman optimality equation, k trials
- Monte Carlo backup

$$V^{k}(s) = \begin{cases} 0 & \text{if } s \text{ is terminal} \\ \frac{\sum_{a \in A} n_{a,s} \cdot Q^{k}(a,s)}{n_{s}} & \text{otherwise} \end{cases}$$

$$Q^{k}(a,s) = R(a,s) + \frac{\sum_{s' \in S} n_{s'} \cdot V^{k}(s')}{n_{a,s}}$$

MaxUCT

- backup function
 - action-value by Monte Carlo backup $(Q^k(s))$
 - state-value by Full Bellman backup $(V^*(s))$
- action selection → UCBI
- outcome selection → Monte Carlo sampling (MDP based)
- heuristic function \rightarrow N/A
- trial length → UCT (horizon length, i.e. to leafs)

- backup function
 - Partial Bellman backup (weighted proportionally to subtree probability)
- action selection → UCBI
- outcome selection → Monte Carlo sampling (MDP based)
- heuristic function → Iterative Deepening Search (depth: I5)
- trial length → explicit tree length + I
 (only initialized new nodes using heuristics)
- resembles classical heuristic Breadth-First-Search (rather than UCT Depth-First-Search)

	Elevators	Sysadmin	RE	CON	GAME	TRAFFIC	CROSSING	SKILL	NAVIGATION	Total
UCT	0.93	0.66		0.99	0.88	0.84	0.85	0.93	0.81	0.86
MaxUCT	0.97	0.71		0.88	0.9	0.86	0.96	0.95	0.66	0.86
DP-UCT	0.97	0.65		0.89	0.89	0.87	0.96	0.98	0.98	0.9
UCT*	0.97	1.0		0.88	0.98	0.99	0.98	0.97	0.96	0.97
PROST	0.93	0.82		0.99	0.93	0.93	0.82	0.97	0.55	0.87

References

- Keller & Eyerich "PROST: Probabilistic Planning Based on UCT" ICAPS 2012
- Feldman & Domshlak "Simple Regret Optimization in Online Planning for Markov Decision Processes" JAIR 2014
- Keller & Helmert "Trial-based Heuristic Tree Search for Finite Horizon MDPs" ICAPS 2013