Monte Carlo Tree Search

PAH 2015

MCTS animation and RAVE slides by Michele Sebag and Romaric Gaudel

Markov Decision Processes (MDPs) %

« main formal model
o« [1=(S,A D, T,R)
o states — finite set of states of the world
« actions — finite set of actions the agent can perform
« horizon — finite/infinite set of time steps (1,2, ...)

e transition function
e T:SXAXSXD—-]01]

o reward function
e R:SXAXSXD-NR

Markov Decision Processes (MDPs) %

« online planning ~ any-time algorithm
 learn the next move

° Pla)’ |t
e iterate

« reward on final states (often win or lose)

« implicit (and compact) representation of large MDPs
« cannot grow the full tree
« cannot safely cut branches

e cannot be greedy

Markov Decision Processes (MDPs)

« online planning
« focus on current state
 set of possible courses

 decision making ~ selection of one action

« online planning curse of dimensionality

. number of applicable action is O(poly(|T1]))

« complexity because of the state-space size O(exp(lHl))

MDPs - Using Monte Carlo Methods %

« Monte Carlo sampling is a well known method for searching through
large state space

. exploiting MC in sequential decision making has first been successfully
designed in (Kocsis & Szepesvari, 2006)

. foundations in mathematical theory
o Multi-Armed Bandit (MAB) Problem
o Upper Confidence Bounds (UCB)

« exploration/exploitation dilemma

Monte Carlo Methods %

» Monte Carlo Simulation: a technique that can be used to solve a
mathematical or statistical problem using repeated sampling to
determine the properties of some phenomenon (or behavior)

» Monte-Carlo Planning: compute a good policy for an MDP by
interacting with an MDP simulator

World
« when simulator of a planning domain is available
or can be learned from data

o even if not described
as a MDP

« queries has to be cheap
(relatively)

Monte Carlo Simulation

Domains with Simulators
traffic
robotics
military missions
computer network
disaster relief and emergency planning
sports

board and video games

e board (Go, Hex, Settlers of Catan, ...), card (poker, Magic: The
Gathering, ...), RTS (Total War: Rome ll, ...)

Multi-Armed Bandit Problem %

« sequential decision problem (over a single state)

e k = 2 stochastic actions (arms a;)
« each parameterized with an unknown probability distribution v;
o each with a stored expectation y;
o if executed (pulled) rewarded at

random from v;

« oObjective

« get maximal reward after N pulls

. minimize regret of pulling wrong arm(s) =

Multi-Armed Bandit Problem (variants) %

 learning-while-acting

o reward for each action

. cumulative regret (exploration/exploitation dilemma) |5
o algorithms: e-greedy, UCBI
« used in: Monte Carlo Tree Search, UCBI applied to trees (UCT)

« online planning/learning-while-planning
« reward only for final decision (N “free action tries” by simulator)
« simple regret (only exploration)
o algorithms: uniform sampling, e-greedy, Sequential Halving

 used in: Trial-based Heuristic Tree Search (THTY)

e-greedy %

« parameterized by €

« flip a e-biased coin
e (€):select arm a; randomly with uniform probability and update y;

e (1 — €):select estimated best arm a” and update p*
 typically € = 0,1 (but this can vary depending on circumstances)

. exponential convergence to the optimal arm

Upper Confidence Bounds %

e UCBI arm selection:

o select arm a; maximizing UCBI formula:

2Inn

. +
Ui n,

N
and update y;

« N — times the state is visited; n; — times the action is visited

e U; —average reward from the previous plays

« exploration factor ensures to evaluate actions that are evaluated
rarely

 only polynomial (but empirically fast) convergence to optimal arm

Sequential Halving %

parameterized by sampling budget T

(1) begins with all arms as candidate arms S

(2) sample/play all candidate arms in S t-times

(3) remove |half| of the candidate arms with lowest y;

(4) until there is only one (resulting) candidate arm: goto (2)

exponential convergence to the optimal arm (provided the budget is
going to ©0; not any-time)

Combinatorial Multi-Armed Bandit Problem%

T
« combination of actions (arms) has to be : =
selected (some forbidden) o ol®
« reward defined over combinations of o |
actions (c-actions) ‘
« expectation of reward per c-action

o ® curse of dimensionality (action combinations), O(exp(|TI|))

« © we can approximate
« randomly generate candidate c-actions, pick the best one (NMC)

 assume additive rewards for one c-action; linear-side inform. (LSI)

Combinatorial Multi-Armed Bandit Problem%

« =2 sequential decision making (over different states): repeated MABs

oo o

2 | | |

o —
|
O

Monte Carlo Tree Search (MCTYS) %

 sequential decision making (over different states)
« gradually grow the search tree

« two types of tree nodes
 decision nodes (action selection) — the algorithm selects

« chance nodes (world selection) — the world selects the outcome (in
case of MDP model based on known probabilities)

« returned solution: path (action from root) visited the most often

Monte-Carlo Tree Search

Gradually grow the search tree:

> [terate Tree-Walk
> Building Blocks
> Select next action
Bandit phase
> Add a node
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward
Evaluate
Update information in visited nodes
Propagate

v

» Returned solution:
» Path visited most often

Kocsis Szepesvari, 06

Monte-Carlo Tree Search

Gradually grow the search tree:

> [terate Tree-Walk
> Building Blocks
> Select next action
Bandit phase
> Add a node
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward
Evaluate
Update information in visited nodes
Propagate

v

» Returned solution:
» Path visited most often

Kocsis Szepesvari, 06

Monte-Carlo Tree Search

Gradually grow the search tree:

> [terate Tree-Walk
> Building Blocks
> Select next action
Bandit phase
> Add a node
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward
Evaluate
Update information in visited nodes
Propagate

v

» Returned solution:
» Path visited most often

Kocsis Szepesvari, 06

Monte-Carlo Tree Search

Gradually grow the search tree:

> [terate Tree-Walk
> Building Blocks
> Select next action
Bandit phase
> Add a node
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward
Evaluate
Update information in visited nodes
Propagate

v

» Returned solution:
» Path visited most often

Kocsis Szepesvari, 06

Monte-Carlo Tree Search

Gradually grow the search tree:

> [terate Tree-Walk
> Building Blocks
> Select next action
Bandit phase
> Add a node
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward
Evaluate
Update information in visited nodes
Propagate

v

» Returned solution:
» Path visited most often

Kocsis Szepesvari, 06

Monte-Carlo Tree Search

Gradually grow the search tree:

> [terate Tree-Walk
> Building Blocks
> Select next action
Bandit phase
> Add a node
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward
Evaluate
Update information in visited nodes
Propagate

v

» Returned solution:
» Path visited most often

Kocsis Szepesvari, 06

Monte-Carlo Tree Search

Gradually grow the search tree:

> [terate Tree-Walk
> Building Blocks
> Select next action
Bandit phase
> Add a node
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward
Evaluate
Update information in visited nodes
Propagate

v

» Returned solution:
» Path visited most often

Kocsis Szepesvari, 06

Monte-Carlo Tree Search

Gradually grow the search tree:

> [terate Tree-Walk
> Building Blocks
> Select next action
Bandit phase
> Add a node
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward
Evaluate
Update information in visited nodes
Propagate

v

» Returned solution:
» Path visited most often

Kocsis Szepesvari, 06

Monte-Carlo Tree Search

Gradually grow the search tree:

> [terate Tree-Walk
> Building Blocks
> Select next action
Bandit phase
> Add a node
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward
Evaluate
Update information in visited nodes
Propagate

v

» Returned solution:
» Path visited most often

Kocsis Szepesvari, 06

Monte-Carlo Tree Search

Kocsis Szepesvari, 06
Gradually grow the search tree:

> lterate Tree-Walk
> Building Blocks

> Select next action

Bandit phase Bandit-B
> Add a node Phas;
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward

| 4] New Node
Evaluate

Update information in visited nodes
Propagate

v

» Returned solution:
» Path visited most often

Monte-Carlo Tree Search

Kocsis Szepesvari, 06
Gradually grow the search tree:

> lterate Tree-Walk
> Building Blocks

> Select next action

Bandit phase Bandit-B
> Add a node Phas;
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward

|&] New Node

Evaluate Random\.
» Update information in visited nodes Phase
Propagate

» Returned solution:
» Path visited most often

Monte-Carlo Tree Search

Kocsis Szepesvari, 06
Gradually grow the search tree:

> lterate Tree-Walk
> Building Blocks

> Select next action

Bandit phase Bandit-B
> Add a node Phas;
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward

|&] New Node

Evaluate Random:.
» Update information in visited nodes Phase
Propagate

» Returned solution:
» Path visited most often

Monte-Carlo Tree Search

Kocsis Szepesvari, 06
Gradually grow the search tree:

> lterate Tree-Walk
> Building Blocks

> Select next action

Bandit phase Bandit-B
> Add a node Phas;
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward

|¢] New Node

.

Evaluate Random
» Update information in visited nodes Phase®,
Propagate

» Returned solution:
» Path visited most often

Monte-Carlo Tree Search

Kocsis Szepesvari, 06
Gradually grow the search tree:

> lterate Tree-Walk
> Building Blocks

> Select next action

Bandit phase Bandit-B
Phas,

> Add a node <
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out
» Compute instant reward

|&] New Node

.

Evaluate Random
» Update information in visited nodes Phase®,
‘.,

Propagate Explored Tree o

» Returned solution:
» Path visited most often

UCT - Principle

« UCBI applied on trees — UCT

R(s,a;, *) R(s,a, *) R(s,a3 *) R(s,a,, *) R(s,a, *)

UCT - Principle

UCT

« UCBI applied on trees —

UCT - Phases

« UCBI applied on trees — UCT

« cumulative or simple regret?

« using bandits in sequential decision making

e 4 phases from MCTS

Repeatod X times

Selection + Expansion « Simulation ——+ Backpropagation

U

O

vme/.NOh

UCT - Phases

« UCBI applied on trees — UCT

« cumulative or simple regret?

« using bandits in sequential decision making

e 4 phases from MCTS

Repaated X times

Selection + Expansion « Simulation -+ Backpropagation

~

ot |

FQae TOm Craet (008

O

UCT - Phases

« UCBI applied on trees — UCT

« cumulative or simple regret?

o why? 2 “it just works”

« using bandits in sequential decision making

e 4 phases from MCTS

Repaated X times

Selection + Expansion « Simulation -+ Backpropagation

"ony

e

O

FQse TOm Craget (Joos)

UCT - Selection

 selection (UCBI)

« for each action a; applicable in s UCB selects
the one that maximizes

Inn

C

+ z T(s,a;,s")[R(s,a;,s") +yV(s')]

Tli -
S'ES

N

e N — times the state is visited; n; — times the action is visited
« V(s) —average reward from the previous iterations

« C - exploration constant (linear to expected utility)

 exploration factor ensures to evaluate actions that are evaluated
rarely

UCT - Expansion, Simulation, Backup %

« expansion (MCTYS)

« in a selection node where not all actions were yet sampled, expand
(uniformly) randomly one of the new nodes

 simulation (MCTY)

 (uniformly) randomly select actions in decision nodes

 using the simulator based on the probabilities in the MDP simulate
world behavior in the chance nodes MDP

o backup (MCTY)

o updating u; for all search tree nodes along the trial based on the
rewards (incl. the simulation)

Beyond UCT %

« UCT is far from optimal algorithm

« there exist simple examples where vanilla UCT performs bad

e number of reasons

 learning the best action is different from learning the best
(contingency) plan

o situation that occur in states does not exactly correspond to multi-
armed bandit (mathematically)

« there are modifications and improvements
« RAVE (Gelly & Silver, 2007) = rapid action value estimate
o THTS (Keller & Helmert, 2013) - MaxUCT, UCT*

« many others ...

Beyond UCT many others %

« numbers of possible of improvements

o vanilla UCT is not that fast

o« MCTS/UCT requires large number of iterations to converge

« depth-limited rollouts

o reducing branching factor (some actions are dominated = remove)
. different action selection principles

« improving rollout policy (biased simulators,“clever” decision nodes)
« incorporate prior knowledge

 parallelization

RAVE: Rapid Action Value Estimate

Gelly Silver 07
Motivation

> It needs some time to decrease the variance of jis ,

» Generalizing across the tree ?

RAVE (s, a) =
average {fi(s’,a),s parent of s'}
a
e
L |
local RAVE

global RAVE

Rapid Action Value Estimate, 2

Using RAVE for action selection
In the action selection rule, replace fis , by

fis.a+ (1— @) (BRAVE (s, a) + (1 — B)RAVE(s, a))
Mparent(s)

Ns,a
o= ———— —_ P
Ns,a+C1 IB parent(s)+62

Using RAVE with Progressive Widening
» PW: introduce a new action if [¢/n(s)+ 1] > [¢/n(s)]
» Select promising actions: it takes time to recover from bad

ones
» Select argmax RAVE,(parent(s)).

Trial-based Heuristic Tree Search (THTS) %

« a common framework based on five ingredients:
 heuristic function
« backup function
 action selection
« outcome selection
o trial length
« subsuming: MCTS, UCT, FIND-and-REVISE, AO* (AND/OR graph

solver), Real-Time Dynamic Programming (RTDP), various heuristic
functions (e.g., iterative deepening search)

o providing: MaxUCT, UCT™, ...
o UCT*in PROST 2014 is currently best performing IPPC planner

Trial-based Heuristic Tree Search (THTS) %

o Heuristic function

 action value initialization (Q-value)
h:S XA R

o state value initialization (V-value)
h:S » R

o Action selection
« UCBI, €-greedy, ...

o Outcome selection

« Monte Carlo sampling; outcome based on biggest potential impact

Trial-based Heuristic Tree Search (THTS)

« optimal policy derived from the Bellman optimality equation:

, 0 if s is terminal
Vi(s) = max Q*(a,s) otherwise
d

Q*(a,s) = R(a,s) + z ,ESP(S’|a, s)-V*(s")

» Full Bellman backup ~ Bellman optimality equation, k trials

« Monte Carlo backup

(0 if s is terminal
VE(s) = { Xaeanas - Q*(a,s)
nS

otherwise

\

, K(a!
0%(a,s) = R(a,s) + sres g - VE(s")

Ng s

Trial-based Heuristic Tree Search (THTS) %

Algorithm 1: The THTS schema.

1 THTS(MDP M, timeout T'):

no < getRootNode(M)

while not solved(no) and time() < 71" do
visitDecisionNode(n)

return greedyAction(np)

visitDecisionNode(Node n4):
if ng was never visited then initializeNode(n4)
N < selectAction(nq)
for n. € N do

10 visitChanceNode(n.)

11 backupDecisionNode(ng)

12 visitChanceNode(Node 7.):
13 N < selectOutcome(n..)
14 forng € N do

15 visitDecisionNode(n.4)
16 backupChanceNode(n.)

2
3
4
5
6
7
8
9

Trial-based Heuristic Tree Search (THTS)

« maintains explicit tree of alternating decision and chance nodes

« selection phase

o alternating visitDecisionNode and visitChangeNode

« selection by selectAction and selectOutcome

tree traversing (down)

« expansion phase

when unvisited nhode encountered
added child node for each action

heuristics used to initialize
the estimates

allows selection phase for new nodes

Algorithm 1: The THTS schema.

1 THTS(MDP M, timeout T'):

no +— getRootNode(M)

while not solved(no) and time() < T" do
visitDecisionNode(n)

return greedyAction(no)

visitDecisionNode(Node n,):
if ng was never visited then initializeNode(n)
N « selectAction(nq)

9 forn. € Ndo

10 visitChanceNode(n..)

11 backupDecisionNode(ng)

12 visitChanceNode(Node 7.):
13 N < selectOutcome(n.)
14 forng € Ndo

15 visitDecisionNode(7.4)
16 backupChanceNode(n..)

0 3 h & W R

Trial-based Heuristic Tree Search (THTS)

« selection and expansion phases alternate until the trial length

« backup phase (backupDecisionNode & backupChanceNode)
o all selected nodes are updated in reverse order
« when another selected, but not yet visited = selection phase

o a trial ends when the backup is called on the root node

e ftree bacl(i ng (u P) Algorithm 1: The THTS schema.
1 THTS(MDP M, timeout T):
ngo < getRootNode (M)
while not solved(no) and time() < T" do
visitDecisionNode(n)
return greedyAction(no)

« the process is repeated until the
timeout T allows for another trial

visitDecisionNode(Node n,):
if ng was never visited then initializeNode(n)
N < selectAction(ng)
for n. € N do
visitChanceNode(n..)
backupDecisionNode(n.q)

12 visitChanceNode(Node 7.):
13 N ¢ selectOutcome(n.)
14 forng € N do

15 visitDecisionNode(7.4)
16 backupChanceNode(n..)

—
—I=T- RN B h & W N

« highest expectation action is returned
greedyAction

—
—

MaxUCT

« backup function
. action-value by Monte Carlo backup (Q*(s))
o state-value by Full Bellman backup (V*(s))

o action selection 2 UCBI
« outcome selection = Monte Carlo sampling (MDP based)
o heuristic function 2 N/A

o trial length > UCT (horizon length, i.e. to leafs)

ver sis

« backup function

 Partial Bellman backup
(weighted proportionally to subtree probability)

o action selection - UCBI
« outcome selection = Monte Carlo sampling (MDP based)
o heuristic function = lIterative Deepening Search (depth: |5)

o trial length = explicit tree length + |
(only initialized new nodes using heuristics)

« resembles classical heuristic Breadth-First-Search (rather than UCT
Depth-First-Search)

