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Robot Motion Planning — Motivational problem
m How to transform high-level task specification (provided by humans)
into a low-level description suitable for controlling the actuators?
To develop algorithms for such a transformation.
The motion planning algorithms provide transformations how to
move a robot (object) considering all operational constraints.
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Piano Mover's Problem

A classical motion planning problem

Having a CAD model of the piano, model of the environment, the prob-
lem is how to move the piano from one place to another without hitting
anything.

=

Basic motion planning algorithms are focused pri-
marily on rotations and translations.

m We need notion of model representations and formal definition of
the problem.
m Moreover, we also need a context about the problem and realistic
assumptions. f
The plans have to be admissible and feasible.
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Robotic Planning Context

Mission Planning
Tasks and Actions Plans

\_symbol level ’ J

Motion Planning

Problem Path Planning Trajectory Planning
o T =
Models of
Path
° robot and
workspace

"geometric” level

Trajectory mn—/oop control?

Sensing and Acting

feedback control
controller - drives (motors) — sensors

Robot Control

Sources of uncertainties
because of real environment

"physical” level
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Real Mobile Robots

In a real deployment, the problem is a more complex.

m The world is changing

m Robots update the knowledge about
the environment

localization, mapping and navigation

= New decisions have to made

m A feedback from the environment
Motion planning is a part of the mission
replanning loop.

Josef Strunc, Bachelor
thesis, CTU, 2009.

An example of robotic mission:
Multi-robot exploration of unknown environment
How to deal with real-world complexity?

Relaxing constraints and considering realistic assumptions.
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Notation

m W — World model describes the robot workspace and its boundary

determines the obstacles O;.
2D world, W = R?

m A Robot is defined by its geometry, parameters (kinematics) and it
is controllable by the motion plan.

m C - Configuration space (C-space)
A concept to describe possible configurations of the robot. The
robot's configuration completely specify the robot location in W

including specification of all degrees of freedom.
E.g., a robot with rigid body in a plane C = {x,y,p} = R? x S*.

m Let A be a subset of W occupied by the robot, A = A(q).
m A subset of C occupied by obstacles is

Cobs = {q€C:A(q)NO;,Vi}
m Collision-free configurations are

Cfree =C \Cobs-
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Path / Motion Planning Problem

m Path is a continuous mapping in C-space such that
7 :[0,1] = Chree, with 7(0) = qo, and 7(1) = gr,
Only geometric considerations
m Trajectory is a path with explicate parametrization of time, e.g.,
accompanied by a description of the motion laws (v : [0,1] — U,
where U is robot's action space).

It includes dynamics.

[To, TF] 2t~ 7 €[0,1] : q(t) = 7(7) € Chree

The planning problem is determination of the function 7(-).

Additional requirements can be given:

m Smoothness of the path

= Kinodynamic constraints
E.g., considering friction forces

m Optimality criterion
shortest vs fastest (length vs curvature)
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Planning in C-space

Robot motion planning robot for a disk robot with a radius p.

Goal position

@

Goal configuration
.

@

Startposition
Start configuration
.
Point robot

Disk robot
C-space

Motion planning problem in
C-space representation

Motion planning problem in
geometrical representation of W

C-space has been obtained by enlarging obstacles by the disk A
with the radius p.
By applying Minkowski sum: O @ A={x+y | x€ O,y € A}.
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Example of Cops for a Robot with Rotation

y
; Robot body
X

Reference point

6=ni2

A simple 2D obstacle — has a complicated Cops

m Deterministic algorithms exist
Requires exponential time in C dimension,
J. Canny, PAMI, 8(2):200-209, 1986
m Explicit representation of Cgee is impractical to compute.
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Representation of C-space

How to deal with continuous representation of C-space?

Continuous Representation of C-space J

1

Discretization
processing critical geometric events, (random) sampling
roadmaps, cell decomposition, potential field

Graph Search Techniques
BFS, Gradient Search, A*
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Planning Methods - Overview
(selected approaches)

m Roadmap based methods
Create a connectivity graph of the free space.
m Visibility graph
(complete but impractical)
m Cell decomposition
m Voronoi diagram

m Discretization into a grid-based (or lattice-based) representation
(resolution complete)

m Potential field methods (complete only for a “navigation function”, which is
hard to compute in general)

Classic path planning algorithms

= Randomized sampling-based methods

m Creates a roadmap from connected random samples in Cfree

m Probabilistic roadmaps o
samples are drawn from some distribution

m Very successful in practice
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Visibility Graph
1. Compute visibility graph

2. Find the shortest path E.g., by Dijkstra's algorithm

Found shortest path

Visibility graph

Problem

Constructions of the visibility graph:
= Naive — all segments between n vertices of the map O(n%)
m Using rotation trees for a set of segments — O(n?)
M. H. Overmars and E. Welzl, 1988
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Voronoi Diagram

1. Roadmap is Voronoi diagram that maximizes clearance from the
obstacles

2. Start and goal positions are connected to the graph

Path is found using a graph search algorithm

Voronoi diagram Path in graph Found path
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Visibility Graph vs Voronoi Diagram
Visibility graph

Shortest path, but it is close to obstacles. We

have to consider safety of the path.
An error in plan execution can
lead to a collision.

m Complicated in higher dimensions

Voronoi diagram

m It maximize clearance, which can provide
conservative paths

m Small changes in obstacles can lead to large
changes in the diagram

Complicated in higher dimensions

A combination is called Visibility-Voronoi — R. Wein,
J. P. van den Berg, D. Halperin, 2004

For higher dimensions we need other roadmaps.
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Cell Decomposition

1. Decompose free space into parts.
Any two points in a convex region can be directly
connected by a segment.

2. Create an adjacency graph representing the connectivity of the
free space.

3. Find a path in the graph.

Trapezoidal decomposition

Find path in the
adjacency graph

Connect adjacency
cells

Centroids represent
cells

Other decomposition (e.g., triangulation) are possible.
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Artificial Potential Field Method

m The idea is to create a function f that will provide a direction
towards the goal for any configuration of the robot.

Optimal Motion Planners

m Such a function is called navigation function and —V£(q) points to
the goal.

m Create a potential field that will attract robot towards the goal gf
while obstacles will generate repulsive potential repelling the robot
away from the obstacles.

The navigation function is a sum of potentials.

Previous local mini

Such a potential function can have several local minima.
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Avoiding Local Minima in Artificial Potential Field

m Consider harmonic functions that have only one extremum
Vf(q) =0

m Finite element method

Dirichlet and Neumann boundary conditions

J. Macéak, Master thesis, CTU, 2009
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Sampling-based Motion Planning

m Avoids explicit representation of the obstacles in C-space

m A “black-box" function is used to evaluate a configuration g is a

collision free . .
(E.g., based on geometrical models and testing
collisions of the models)

m |t creates a discrete representation of Cpree

m Configurations in Cgee are sampled randomly and connected to a
roadmap (probabilistic roadmap)

m Rather than full completeness they provides probabilistic com-

pleteness or resolution completeness
Probabilistic complete algorithms: with increasing number of samples
an admissible solution would be found (if exists)
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Probabilistic Roadmaps

A discrete representation of the continuous C-space generated by ran-
domly sampled configurations in Cge. that are connected into a graph.
m Nodes of the graph represent admissible configuration of the
robot.
m Edges represent a feasible path (trajectory) between the particular
configurations.

Probabilistic complete algorithms: with increasing number of samples
an admissible solution would be found (if exists)

Having the graph, the final path (trajectory) is found by a graph search technique.
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Probabilistic Roadmap Strategies
Multi-Query

m Generate a single roadmap that is then used for planning queries
several times.
m An representative technique is Probabilistic RoadMap (PRM)

@ Probabilistic Roadmaps for Path Planning in High Dimensional Configuration
Spaces
Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H.
Overmars,
IEEE Transactions on Robotics and Automation, 12(4):566-580, 1996.

Single-Query
m For each planning problem constructs a new roadmap to character-
ize the subspace of C-space that is relevant to the problem.

m Rapidly-exploring Random Tree — RRT LaValle, 1098

m Expansive-Space Tree — EST Hsu et al., 1097

m Sampling-based Roadmap of Trees — SRT
(combination of multiple—query and single—query approaches)
Plaku et al., 2005
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Multi-Query Strategy

Build a roadmap (graph) representing the environment
1. Learning phase
1.1 Sample n points in Cfree
1.2 Connect the random configurations using a local planner

2. Query phase
2.1 Connect start and goal configurations with the PRM

E.g., using a local planner

2.2 Use the graph search to find the path

@ Probabilistic Roadmaps for Path Planning in High Dimensional Configuration
Spaces
Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H.
Overmars,
IEEE Transactions on Robotics and Automation, 12(4):566-580, 1996.

First planner that demonstrates ability to solve general planning prob-
lems in more than 4-5 dimensions. ALy
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PRM Construction

#1 Given problem domain #2 Random configuration #3 Connecting samples
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Practical PRM

Optimal Motion Planners

m Incremental construction

m Connect nodes in a radius p

m Local planner tests collisions up
to selected resolution &

m Path can be found by Dijkstra’s
algorithm

What are the properties of the PRM algorithm?

We need a couple of more formalism.
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Path Planning Problem Formulation

m Path planning problem is defined by a triplet
P = (Cf7867 Qinit ngal)v
8 Cree = cl(C\ Cops), C=(0,1)9, for d € N, d > 2
B Ginit € Cree is the initial configuration (condition)
B Ggoar is the goal region defined as an open subspace of Cpree

m Function 7 : [0,1] — RY of bounded variation is called :

m path if it is continuous;

= collision-free path if it is path and 7(7) € Cee for 7 € [0,1];

m feasible if it is collision-free path, and 7(0) = gjni and

(1) € cl(Qgoar)-
= A function 7 with the total variation TV(7) < oo is said to have bounded
variation, where TV(r) is the total variation
TV(T") = SUP{neN,0=rg<T1<...<Tp=s} 27:1 |7T(Tf) - 71'("7—1)|

= The total variation TV() is de facto a path length.
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Path Planning Problem

m Feasible path planning:
For a path planning problem (Cfree, Ginit, Qgoar)
m Find a feasible path 7 : [0, 1] = Cfee such that m(0) = ginir and
7(1) € cl(Qgoar). if such path exists.
m Report failure if no such path exists.

m Optimal path planning:
The optimality problem ask for a feasible path with the minimum cost.
For (Cfrees Ginit, Qgoar) and a cost function ¢ : ¥ — Rxg
m Find a feasible path 7* such that
c(m*) = min{c(x) : 7 is feasible}.
m Report failure if no such path exists.

The cost function is assumed to be monotonic and bounded,
i.e., there exists ke such that c(mw) < ke TV(m).
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Probabilistic Completeness 1/2 Probabilistic Completeness 2/2 Asymptotic Optimality 1/4

. . . An algorithm ALG is probabilistically complete if, for any robustly
First, we need robustly feasible path planning problem feasible path planning problem P = (Ciree, Ginits Qgoat)

(Cfre67 Qinit Q I)
goal )
rlylno Pr(ALG returns a solution to P) = 1. Asymptotic optimality relies on a notion of weak J-clearance
Notice, we use strong §-clearance for probabilistic completeness

B g € Cfree is O-interior state of Cpee if
the closed ball of radius d centered at g o .
lies entirely inside Cfree. . = Itis a “relaxed” notion of completeness m Function 1 : [0,1] — Cpee is called homotopy, if 4(0) = 71 and (1) =
""" m Applicable only to problems with a robust solution. mp and (1) is collision-free path for all 7 € [0, 1].
m A collision-free path 71 is homotopic to 7 if there exists homotopy

' s-interior state
function .

m O-interior of Cgree is intg(Cf,ee) = {q S Cf,ee‘B/,(; - Cf,ee}. N .

A collection of all 6-interior states.
Cobs N

A path homotopic to m can be continuously trans-
formed to m through Cfree.

inside ints(Cree)- . . . ‘ N inty Cp) ;
® (Ctrees Ginit, Qgoat) is robustly feasible if a solution exists and it is a :

feasible path with strong d-clearance, for §>0.
We need some space, where random configurations
can be sampled

m A collision free path 7 has strong d-clearance, if 7 lies entirely -
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Asymptotic Optimality 2/4 Asymptotic Optimality 3/4 Asymptotic Optimality 4/4

= A collision-free path 7 : [0,s] = Cpee has weak d-clearance if m It is applicable with a robust optimal solution that can be obtained
there exists a path 7’ that has strong -clearance and homotopy as 2 I?rzit of robust (non-o tinr:al) colutions An algorithm ALG is asymptotically optimal if, for any path plan-
¥ with ¥(0) = 7, ¥(1) = 7/, and for all a € (0,1] there exists o ] P o o ning problem P = (Cfree, Ginit, Qgoar) and cost function ¢ that admit
6o > 0 such that 1() has strong &-clearance. m A collision-free path 7* is robustly optimal solution if it has weak a robust optimal solution with the finite cost c*
Weak 5-clearance does not require points along a d-clearance and for any sequence of* collision free paths {7} nen,
path to be at least a distance § away from obstacles. Th € Cfree such that |Im,,*>OO Tp =T, Pr <{.|im Y-‘AEg _ C*}> —1.
1—00
lim c(mp) = c(n*).
5 u A path 7 with a weak d-clearance oo m Y7449 is the extended random variable corresponding to the minimum-
u 7 lies in ints(Cpee) and it is the There exists a path with strong d-clearance, and m* is cost solution included in the graph returned by ALG at the end of
free homotopic to such path and ©* is of the lower cost. iteration i

me hom | . . . .
same homotopy class as 7 m Weak d-clearance implies robustly feasible solution problem
(thus, probabilistic completeness)
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Properties of the PRM Algorithm PRM vs simplified PRM (sPRM) PRM — Properties

PRM sPRM Algorithm
. m sPRM (simplified PRM)
Input: gjnir, number of samples n, radius p Input: gjn:, number of samples n, ra- i . .
Output: PRM - G = (V, E) dius p n Probabilistically complete and asymptotically optimal
. : : 2
m Completeness for the standard PRM has not been provided when V0 E< 0 Output: PRM - G = (V, E) = Processing clom.plegtyZO(n )
it was introduced for i =0,...,ndo V — {qinit} U = Query comp exity ("2)
A simplified . f the PRM (called SPRM) has b | Grand < SampleFree; {SampleFree,}i—y.. n 1 E « 0; m Space complexity O(n?)
= A simplified version of the (called s ) has been mostly 5“ ':‘,ear(G - (‘./’ E): Grand: p): foreach v € V do m Heuristics practically used are usually not probabilistic complete
studied < VUldanaki ) U +Near(G = (V,E), v, p)\ {v}; . I
foreach u € U, with increasing foreach u € U do m k-nearest SPRM is not probabilistically complete
m sPRM is probabilistically complete [lu—grl| do ) if CollisionFree(v, u) then m variable radius sSPRM is not probabilistically complete
if Grang and u are not in the | E« EU{(v,u),(u,v)} Based on analysis of Karaman and Frazzoli
Wh he diff b PRM d sSPRM? same connected component of
at are the differences between and s ! G = (V,E) then _ . .
if CollisionFree(qyand, u) return G = (V, E); PRM algonthm:
thenE £ There are several ways for the set U of + Has very simple implementation
- X
X vertices to connect them + Completeness (for SPRM)
{(@rand> 1), (U, Grand) }: « + neighbors t ) . ) . . .
® K-nearest neighbors to v — Differential constraints (car-like vehicles) are not straightforward
- m variable connection radius p as a
return G = (V, E); function of n
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Comments about Random Sampling 1/2 Comments about Random Sampling 2/2 Rapidly Exploring Random Tree (RRT)
m A solution can be found using only a few samples. Single-Query algorithm
m Different sampling strategies (distributions) may be applied _ ‘ Do you know the Oraculum? (from Alice in Wonderland) m It incrementally builds a graph (tree) towards the goal area.
- . e N = Samplmg strategies are important It does not guarantee precise path to the goal configuration.

N bstacl . — . . L
| Lear obstacies 1. Start with the initial configuration go, which is a root of the

caots . e AR m Narrow passages
Len Tt m Grid-based constructed graph (tree)
o | = Uniform sampling must be carefully considered. 2. Generate a new random configuration gney in Crree
.. s, Se, James J. Kuffner, Effective Sampling and Distance . .
- DI Metrics for 3D Rigid Body Path Planning, ICRA, 2004. 3. Find the closest node gpear t0 Gpew in the tree

E.g., using KD-tree implementation like ANN or FLANN libraries

4. Extend gpear towards gpew
Extend the tree by a small step, but often a direct control
u € U that will move robot the position closest to Qnew is
selected (applied for &t ).

5. Go to Step 2, until the tree is within a sufficient distance from the
goal configuration

G =
T,
e 4"
N

m Notice, one of the main issue of the randomized sampling-based
approaches is the narrow passage

LSy
T Rerey g
NIREES ARG

m Several modifications of sampling based strategies have been pro-
posed in the last decades

Or terminates after dedicated running time.

> Naive sampling Uniform sampling of SO(3) using Euler angles
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RRT Construction RRT Algorithm Properties of RRT Algorithms

m Motivation is a single query and control-based path finding

m Rapidly explores the space

#1 new random configuration #2 the closest node m It incrementally builds a graph (tree) towards the goal area.
/ / Gnew will more likely be generated in large not yet covered parts.
\ \ RIRT _Ng"”thm P m Allows considering kinodynamic/dynamic constraints (during the
< Vs \ < J nput: gj,ir, number of samples n .
9 - °y q, .7 Grear °, Output: Roadmap G = (V, E) expanS|on).
e new el new ) ) )
\ | V < {qinic}; E + 0; m Can provide trajectory or a sequence of direct control commands
fori=1,...,ndo for robot controllers.
Grand < SampleFree;
7 o - m o Gnearest g Ne?rest(G = (V:)E)vqrand); m A collision detection test is usually used as a “black-box".
3 possible actions from gpear 4 extended tree Qnew <— Steer(Qnearest; Grand ); N
if CollisionFree(qnearest; Gnew) then E.g., RAPID, Bullet libraries.
\f / L V4« VU {Xnew}; E + EU{(xnearests Xnew) }i m Similarly to PRM, RRT algorithms have poor performance in
[ 4
\‘ VRN return G = (V, E); narrow passage problems.
q - . . .
9 rew I Extend the tree by a small step, but often a direct control u € U that will m RRT algorlthms prOVIdES feasible paths.
\ move robot to the position closest to qnew is selected (applied for dt). It can be relatively far from optimal solution, e.g.,
according to the length of the path.
@ Rapidly-exploring random trees: A new tool for path planning ™ Many variants of RRT have been proposed.
S. M. LaValle,
Technical Report 98-11, Computer Science Dept., lowa State University, 1998
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RRT — Examples 1/2 RRT — Examples 2/2 Car-Like Robot

= Configuration

X = |v

m Planning for a car-like robot

position and orientation

Alpha puzzle benchmark Apply rotations to reach the goal

m Controls
( Vf >

forward velocity, steering angle

m Planning on a 3D surface

m Planning with dynamics m System equation

| L, (friction forces) X = VvcCos (]5 Kinematic constraints dim(ﬂ) < dim(?)
- \T"V; ;TT\ H y = vsin ¢ Differential constraints on possible §:
Bugtrap benchmark Variants of RRT algorithms Courtesy of V. Vonasek and P. Vanék . sV tan %sin(¢) — y cos(¢) =0
Courtesy of V. Vonasek and P. Vanék v L @
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Control-Based Sampling

m Select a configuration g from the tree T of the current
configurations

= Pick a control input & = (v, ¢) and
integrate system (motion) equation
over a short period

Ax tAt v CoS ¢
Ay | = vsing | dt
Ay A ftane

m If the motion is collision-free, add the endpoint to the tree

E.g., considering k configurations for kit = dt.
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RRT and Quality of Solution

Optimal Motion Planners

m RRT provides a feasible solution without quality guarantee
Despite of that, it is successfully used in many prac-
tical applications

m In 2011, a systematical study of the asymptotic behaviour of ran-
domized sampling-based planners has been published
It shows, that in some cases, they converge to a non-
optimal value with a probability 1.
@ Sampling-based algorithms for optimal motion planning

Sertac Karaman, Emilio Frazzoli
International Journal of Robotic Research, 30(7):846-894, 2011.

http://sertac.scripts.mit.edu/rrtstar
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RRT and Quality of Solution 1/2

Optimal Motion Planners

m Let Y*RT be the cost of the best path in the RRT at the end of

iteration /.
m YRRT converges to a random variable
lim YRRT = yRRT
i—00
m The random variable Y2RT is sampled from a distribution with zero

mass at the optimum, and

PriYERT > o] =1.
Karaman and Frazzoli, 2011

m The best path in the RRT converges to a sub-optimal solution al-
most surely.
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RRT and Quality of Solution 2/2

Optimal Motion Planners

m RRT does not satify a necessary condition for the asymptotic opti-
mality
m For 0 < R <infeeco,,, YRTT = ¢*}

occurs only if the k-th branch of the RRT contains vertices outside
the R-ball centered at gj,;: for infinitely many k.

See Appendix B in Karaman&Frazzoli, 2011

m It is required the root node will have infinitely many subtrees that

extend at least a distance € away from ginit

The sub-optimality is caused by disallowing new better paths
to be discovered.
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Rapidly-exploring Random Graph (RRG)
RRG Algorithm

Input: gjnit, number of samples n
Output: G = (V,E)

V0, E « 0;

fori=0,...,ndo

Grand < SampleFree;

Gnearest < Nearest(G = (V, E), qrand);

Grew < Steer(Qnearest, Grand);

if CollisionFree(qnearest; Gnew) then
Qpear < Near(G =
(V, E), Gnew, min{yrre (log(card(V))/ card(V))*/9, });
V <+ VU {qnew}; E < E U {(Gnearest Gnew ); (Gnew Gnearest) };
foreach gnear € Qnear do
L if CollisionFree(qnear, Gnew) then

L E <+ EU{(Grand, u), (U, Grana) };
return G = (V, E);

Proposed by Karaman and Frazzoli (2011). Theoretical results are related to
properties of Random Geometric Graphs (RGG) introduced by Gilbert (1961)
and further studied by Penrose (1999).
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RRG Expansions

m At each iteration, RRG tries to connect new sample to the all
vertices in the r, ball centered at it.
m The ball of radius
[ d(v))\
rteard(v) = min {2enc (PEETEV)
where

m 7 is the constant of the local steering function
" YRR > Vare = 2(1+1/d)9(1(Crree) /€a)?
- d — dimension of the space;
- 1(Cree) — Lebesgue measure of the obstacle—free space;
- &4 — volume of the unit ball in d-dimensional Euclidean space.

m The connection radius decreases with n

m The rate of decay ~ the average number of connections
attempted is proportional to log(n)
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RRG Properties

Optimal Motion Planners

m Probabilistically complete
m Asymptotically optimal
m Complexity is O(log n)
(per one sample)
= Computational efficiency and optimality

m Attempt connection to ©(log n) nodes at each iteration;
in average
m Reduce volume of the “connection” ball as log(n)/n;
® Increase the number of connections as log(n).
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Other Variants of the Optimal Motion Planning

m PRM* — it follows standard PRM algorithm where connections are
attempted between roadmap vertices that are within connection
radius r as a function of n

1/d
r(n) = ypru(log(n)/n)"
m RRT* - a modification of the RRG, where cycles are avoided
A tree version of the RRG
m A tree roadmap allows to consider non-holonomic dynamics and
kinodynamic constraints.

m It is basically RRG with “rerouting” the tree when a better path is
discovered.
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Example of Solution 1/2

RRT*, n—2500 RRT*, n=10000
Karaman & Frazzoli, 2011

RRT*, n=250 RRT*, n=500
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Example of Solution 2/2

RRT, n=20000

Jan Faigl, 2016

A4M36PAH — Lecture 9: Trajectory Planning

Optimal Motion Planners
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Overview of Randomized Sampling-based Algorithms

. Probabilistic  Asymptotic
Algorithm o

Completeness Optimality
sPRM (4 X
k-nearest sPRM X X
RRT v X
RRG v v
PRM* v v
RRT* (%4 v

Notice, k-nearest variants of RRG, PRM*, and RRT* are complete
and optimal as well.
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Summary

Introduction to motion planning

Overview of sampling-based planning methods
m Basic roadmap methods
m Visibility graph
m Voronoi diagram
m Cell decomposition

m Artificial potential field method

m Randomized Sampling-based Methods and their properties (PRM,
sPRM, RRT)

Optimal Motion Planners (RRG, PRM*, RRT*)
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