
PUI: Notes on Classical Planning

Daniel Fǐser danfis@danfis.cz

Department of Computer Science, Faculty of Electrical Engineering

Czech Technical University in Prague

1. Representations

Definition 1. A STRIPS planning task Π is specified by a tuple Π = 〈F ,O, sinit , sgoal , c〉,
where F = {f1, ..., fn} is a set of facts, O = {o1, ..., om} is a set of operators, and c is a
cost function mapping each operator to a non-negative real number. A state s ⊆ F is a set
of facts, sinit ⊆ F is an initial state and sgoal ⊆ F is a goal specification. An operator
o is a triple o = 〈pre(o), add(o),del(o)〉, where pre(o) ⊆ F is a set of preconditions, and
add(o) ⊆ F and del(o) ⊆ F are sets of add and delete effects, respectively. All operators are
well-formed, i.e., add(o)∩ del(o) = ∅ and pre(o)∩ add(o) = ∅. An operator o is applicable
in a state s if pre(o) ⊆ s. The resulting state of applying an applicable operator o in a
state s is the state o[s] = (s \ del(o)) ∪ add(o). A state s is a goal state iff sgoal ⊆ s.

A sequence of operators π = 〈o1, ..., on〉 is applicable in a state s0 if there are states
s1, ..., sn such that oi is applicable in si−1 and si = oi[si−1] for 1 ≤ i ≤ n. The resulting
state of this application is π[s0] = sn and the cost of the plan is c(π) =

∑
o∈π c(o). A

sequence of operators π is called a plan iff sgoal ⊆ π[sinit], and an optimal plan is a plan
with the minimal cost over all plans.

Definition 2. An FDR planning task P is specified by a tuple P = 〈V,O, sinit , sgoal , c〉,
where V is a finite set of variables. Each variable V ∈ V has a finite domain DV . A
(partial) state s is a (partial) variable assignement over V. We write vars(s) for the set
of variables defined in s and s[V] for the value of V in s. The notation s[V] = ⊥ means
that V 6∈ vars(s). A partial state s is consistent with a partial state s′ if s[V] = s′[V]
for all V ∈ vars(s′). We say that atom V = v is true in a (partial) state s iff s[V] = v.
By c we denote a cost function mapping each operator to a non-negative real number. An
operator o ∈ O is a pair o = 〈pre(o), eff(o)〉, where precondition pre(o) and effect eff(o)
are partial assignements over V. We require that V = v cannot be both a precondition and
an effect. The (complete) state sinit is the initial state of the task and the partial state
sgoal describes its goal.

An operator o is applicable in a state s if s is consistent with pre(o). The resulting
state of applying an applicabe operator o in the state s is the state res(o, s) with

res(o, s) =

{
eff(o)[V] if V ∈ vars(eff(o)),

s[V] otherwise.

A sequence of operators π = 〈o1, ..., on〉 is applicable in a state s0 if there are states
s1, ..., sn such that oi is applicable in si−1 and si = res(oi, si−1) for 1 ≤ i ≤ n. The resulting
state of this application is res(π, s0) = sn and the cost of the plan is c(π) =

∑
o∈π c(o).

1

A
B

C

Icons cc by Janique Le Bail, Alex Arseneau, abdul karim, Adrien Coquet, Mello, Edward Boatman from The Noun Project

Figure 1: Example problem.

A sequence of operators π is called a plan iff res(π, sinit) is consistent with sgoal , and an
optimal plan is a plan with the minimal cost over all plans.

Exercises
Ex. 1.1 — Model the problem from Fig. 1 in STRIPS.

Ex. 1.2 — Model the problem from Fig. 1 in FDR.

2. hmax Heuristic

Definition 3. Given a STRIPS planning task Π = 〈F ,O, sinit , sgoal , c〉, Π+ = 〈F ,O+, sinit ,
sgoal , c〉 denotes a relaxed STRIPS planning task, where O+ = {o+

i = 〈pre(oi), add(oi), ∅〉
| oi ∈ O}.

Definition 4. Let Π = 〈F ,O, sinit , sgoal , c〉 denote a STRIPS planning task. The heuristic
function hadd(s) gives an estimate of the distance from s to a node that satisfies the goal
sgoal as hadd(s) = Σf∈sgoal ∆0(s, f), where:

∆0(s, o) = Σf∈pre(o)∆0(s, f), ∀o ∈ O,

and

∆0(s, f) =


0 if f ∈ s,
∞ if ∀o ∈ O : f 6∈ add(o),

min{c(o) + ∆0(s, o) | o ∈ O, f ∈ add(o)} otherwise.

Definition 5. Let Π = 〈F ,O, sinit , sgoal , c〉 denote a STRIPS planning task. The heuristic
function hmax(s) gives an estimate of the distance from s to a node that satisfies the goal
sgoal as hmax(s) = maxf∈sgoal ∆1(s, f), where:

∆1(s, o) = max
f∈pre(o)

∆1(s, f), ∀o ∈ O,

2

and

∆1(s, f) =


0 if f ∈ s,
∞ if ∀o ∈ O : f 6∈ add(o),

min{c(o) + ∆1(s, o) | o ∈ O, f ∈ add(o)} otherwise.

Algorithm 1: Algorithm for computing hmax(s).

Input: Π = 〈F ,O, sinit , sgoal , c〉, state s
Output: hmax(s)

1 for each f ∈ s do ∆1(s, f)← 0;
2 for each f ∈ F \ s do ∆1(s, f)←∞;
3 for each o ∈ O do U(o)← |pre(o)|;
4 C ← ∅;
5 while sgoal 6⊆ C do
6 c← arg minf∈F\C ∆1(s, f);

7 C ← C ∪ {c};
8 for each o ∈ O, c ∈ pre(o) do
9 U(o)← U(o)− 1;

10 if U(o) = 0 then
11 for each f ∈ add(o) do
12 ∆1(s, f)← min{∆1(s, f), c(o) + ∆1(s, c)};
13 end

14 end

15 end

16 end
17 hmax(s) = maxf∈sgoal ∆1(s, f);

Exercises

Ex. 2.1 — Modify Algorithm 1 to compute hadd instead of hmax.

Ex. 2.2 — Compute hmax(sinit), hadd(sinit), h+(sinit), and h?(sinit) for the following prob-
lem Π = 〈F ,O, sinit , sgoal , c〉:
F = {a, b, c, d, e, f, g}

O =

pre add del c

o1 {a} {c, d} {a} 1
o2 {a, b} {e} ∅ 1
o3 {b, e} {d, f} {a, e} 1
o4 {b} {a} ∅ 1
o5 {d, e} {g} {e} 1

sinit = {a, b}, sgoal = {f, g}

3

3. LM-Cut Heuristic

Definition 6. A disjunctive operator landmark L ⊆ O is a set of operators such that
every plan contains at least one operator from L.

Definition 7. Let Π = 〈F ,O, sinit , sgoal , c〉 denote a planning task, let ∆1 denote the
function from Definition 5 for Π, and let supp(o) = arg maxf∈pre(o) ∆1(f) denote a function
mapping each operator to its supporter.

A justification graph G = (N,E) is a directed labeled multigraph with a set of nodes
N = {nf | f ∈ F} and a set of edges E = {(ns, nt, o) | o ∈ O, s = supp(o), t ∈ add(o)},
where the triple (a, b, l) denotes an edge from a to b with the label l.

An s-t-cut C(G, s, t) = (N0, N? ∪ N b) is a partitioning of nodes from the justification
graph G = (N,E) such that N? contains all nodes from which t can be reached with a
zero-cost path, N0 contains all nodes reachable from s without passing through any node
from N?, and N b = N \ (N0 ∪N?).

Algorithm 2: Algorithm for computing hlm-cut(s).

Input: Π = 〈F ,O, sinit , sgoal , c〉, state s
Output: hlm-cut(s)

1 hlm-cut(s)← 0;
2 Π1 = 〈F ′ = F ∪ {I,G},O′ = O ∪ {oinit , ogoal}, s′init = {I}, s′goal = {G}, c1〉, where

pre(oinit) = {I}, add(oinit) = sinit , del(oinit) = ∅, pre(ogoal) = sgoal ,
add(ogoal) = {G}, del(ogoal) = ∅, c1(oinit) = 0, c1(ogoal) = 0, and c1(o) = c(o) for all
o ∈ O;

3 i← 1;
4 while hmax(Πi, s

′
init) 6= 0 do

5 Construct a justification graph Gi from Πi;

6 Construct an s-t-cut Ci(Gi, nI , nG) = (N0
i , N

?
i ∪N b

i);
7 Create a landmark Li as a set of labels of edges that cross the cut Ci, i.e., they

lead from N0
i to N?

i ;
8 mi ← mino∈Li ci(o);

9 hlm-cut(s)← hlm-cut(s) +mi;
10 Set Πi+1 = 〈F ′,O′, s′init , s′goal , ci+1〉, where ci+1(o) = ci(o)−mi if o ∈ Li, and

ci+1(o) = ci(o) otherwise;
11 i← i+ 1;

12 end

Exercises

Ex. 3.1 — Modify Algorithm 1 to compute hmax and to find supporters from Definition 7
at the same time.

Ex. 3.2 — Compute hlm-cut(sinit) for the following problem Π = 〈F ,O, sinit , sgoal , c〉:
F = {s, t, q1, q2, q3}

4

O =

pre add del c

o1 {s} {q1, q2} ∅ 1
o2 {s} {q1, q3} ∅ 1
o3 {s} {q2, q3} ∅ 1
fin {q1, q2, q3} {t} ∅ 0

sinit = {s}, sgoal = {t}

Ex. 3.3 — Compute hmax(sinit), hlm-cut(sinit), h+(sinit), and h?(sinit) for the following
problem Π = 〈F ,O, sinit , sgoal , c〉:
F = {a, b, c, d, e, i, g}

O =

pre add del c

o1 {i} {a, b} ∅ 2
o2 {i} {b, c} ∅ 3
o3 {a, c} {d} {c} 1
o4 {b, d} {e} {b} 3
o5 {a, c, e} {g} {c, d} 1
o6 {a} {e} {a, c} 5

sinit = {i}, sgoal = {g}

Ex. 3.4 — Decide dominance for the following cases: hmax < hadd, hmax < hlm-cut, hmax

< h+, hlm-cut 4 h+, hlm-cut < hmax.

4. Merge And Shrink Heuristic

Definition 8. A transition system is a tuple T = 〈S,L, T, I,G〉, where S is a finite set
of states, L is a finite set of labels, each label has cost c(l) ∈ R+

0 , T ⊆ S × L × S is a
transition relation, I ⊆ S is a set of initial states, and G ⊆ S is a set of goal states.

Definition 9. Given an FDR planning task P = 〈V,O, sinit , sgoal , c〉, T (P) = 〈S,L, T, I,G〉
denote a transition system of P , where S is a set of states over V, L = O, T =
{(s, o, t) | res(o, s) = t}, I = {sinit}, and G = {s | s ∈ S, s is consistent with sgoal}.

Definition 10. Let T 1 = 〈S1, L, T 1, I1, G1〉 and T 2 = 〈S2, L, T 2, I2, G2〉 denote two tran-
sition systems with the same set of labels, and let α : S1 7→ S2. We say that S2 is
an abstraction of S1 with abstraction function α if for every s ∈ I1 it holds that
α(s) ∈ I2 and for every s ∈ G1 it holds that α(s) ∈ G2 and for every (s, l, t) ∈ T 1 it holds
that (α(s), l, α(t)) ∈ T 2.

Definition 11. Let P denote an FDR planning task, let A denote an abstraction of a
transition system T (P) = 〈S,L, T, I,G〉 with the abstraction function α. The abstraction
heuristic induced by A and α is the function hA,α(s) = h?(A, α(s)) for all s ∈ S.

Definition 12. Given two transition systems T 1 = 〈S1, L, T 1, I1, G1〉 and T 2 = 〈S2, L, T 2,
I2, G2〉 with the same set of labels, the synchronized product T 1⊗T 2 = T is a transition
system T = 〈S,L, T, I,G〉, where S = S1 × S2, T = {((s1, s2), l, (t1, t2)) | (s1, l, s2) ∈
T 1, (s2, l, t2) ∈ T 2}, I = I1 × I2, and G = G1 ×G2.

5

Algorithm 3: Algorithm for computing merge-and-shrink.

Input: P = 〈V,O, sinit , sgoal , c〉
Output: Abstraction M

1 A ← Set of (atomic) abstractions (αi, Ti) of T (P);
2 while |A| > 1 do
3 A1 = (α1, T1), A2 = (α2, T2)← Select two abstractions from A;
4 Shrink A1 and/or A2 until they are “small enough”;
5 A ← (A \ {A1, A2}) ∪ (A1 ⊗A2) // Merge

6 end
7 M← The only element of A;

Exercises

Ex. 4.1 — Compute the synchronized product of T 1 = 〈S1, L, T 1, I1, G1〉 and T 2 =
〈S2, L, T 2, I2, G2〉, where L = {a, b, c, d, e}, S1 = {A,B,C,D}, T 1 = {(A, a,B), (B, b, C),
(C, c,A), (A, d,A), (A, e,D)}, I1 = {A,B}, G1 = {A,C}, S2 = {X,Y, Z}, T 2 = {(X, a, Y),
(X, a, Z), (Y, b, Z), (Z, c, Y), (Z, d, Y), (Z, e, Z)}, I2 = {X}, and G2 = {X}.

Ex. 4.2 — Study merge and shrink strategies proposed by Helmert, Haslum, and Hoff-
mann (2007) and compute hm&s(sinit) for the problem in Fig. 1 (Ex. 1.2).

5. LP-Based Heuristics

Definition 13. Let P = 〈V,O, sinit , sgoal , c〉 denote an FDR planning task. The do-
main transition graph for a variable V ∈ V is a tuple AV = (NV , LV , TV), where
NV = {nv | v ∈ DV } ∪ {n⊥} is a set of nodes, LV = {o | o ∈ O, V ∈ vars(pre(o)) ∪
vars(eff(o))} is a set of labels, and TV ⊆ NV × LV × NV is a set of transitions TV =
{(nu, o, nv) | o ∈ LV , V ∈ vars(eff(o)),pre(o)[V] = u, eff(o)[V] = v} ∪ {(nv, o, nv) | o ∈
LV , V 6∈ vars(eff(o)),pre(o)[V] = v}.

Definition 14. Let P = 〈V,O, sinit , sgoal , c〉 denote an FDR planning task, AV = (NV , LV , TV)
a domain transition graph for each variable V ∈ V, and s a state reachable from sinit . Given
the following linear program with real-valued variables xo for each operator o ∈ O:

minimize
∑
o∈O

c(o)xo

subject to LBV,v ≤
∑

(v′,o,v)∈TV

xo −
∑

(v,o,v′)∈TV

xo ∀V ∈ V,∀v ∈ DV ,

where

LBV,v =


0 if V ∈ vars(sgoal) and sgoal [V] = v and s[V] = v,
1 if V ∈ vars(sgoal) and sgoal [V] = v and s[V] 6= v,
−1 if (V 6∈ vars(sgoal) or sgoal [V] 6= v) and s[V] = v,

0 if (V 6∈ vars(sgoal) or sgoal [V] 6= v) and s[V] 6= v,

6

then the value of the flow heuristic hflow(s) for the state s is

hflow(s) =

{ ⌈∑
o∈O c(o)xo

⌉
if the solution is feasible,

∞ if the solution is not feasible.

(Bonet, 2013; Bonet & van den Briel, 2014)

Definition 15. Let P = 〈V,O, sinit , sgoal , c〉 denote an FDR planning task and s a state
reachable from sinit . Given the following linear program with real-valued variables PV,v for
each variable V ∈ V and each value v ∈ DV , and real-valued variables MV for each variable
V ∈ V:

maximize
∑
V ∈V

PV,s[V]

subject to PV,v ≤MV ∀V ∈ V,∀v ∈ DV∑
V ∈V

maxpot(V, sgoal) ≤ 0∑
V ∈vars(eff(o))

(maxpot(V,pre(o))− PV,eff(o)[V]) ≤ cost(o) ∀o ∈ O,

where

maxpot(V, p) =

{
PV,p[V] if V ∈ vars(p),

MV otherwise .

then the value of the potential heuristic hpot(s) for the state s is

hpot(s) =

{ ⌈∑
V ∈V PV,s[V]

⌉
if the solution is feasible,

∞ if the solution is not feasible.

(Pommerening, Helmert, Röger, & Seipp, 2015; Seipp, Pommerening, & Helmert, 2015)

Exercises

Ex. 5.1 — Compute the hflow(sinit) and hpot(sinit) for the problem from Fig. 1.

Ex. 5.2 — How can be flow heuristic improved with landmarks (e.g., from the LM-Cut
heuristic)?

Ex. 5.3 — How can we modify objective of the LP for the potential heuristic so we still
obtain admissible estimate for all reachable states?

References

Bonet, B. (2013). An admissible heuristic for SAS+ planning obtained from the state
equation. In Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI), pp. 2268–2274.

7

Bonet, B., & Helmert, M. (2010). Strengthening landmark heuristics via hitting sets. In
19th European Conference on Artificial Intelligence, ECAI, pp. 329–334.

Bonet, B., & van den Briel, M. (2014). Flow-based heuristics for optimal planning: Land-
marks and merges. In Proceedings of the Twenty-Fourth International Conference on
Automated Planning and Scheduling (ICAPS), pp. 47–55.

Helmert, M., & Domshlak, C. (2009). Landmarks, critical paths and abstractions: What’s
the difference anyway?. In Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS).

Helmert, M., Haslum, P., & Hoffmann, J. (2007). Flexible abstraction heuristics for optimal
sequential planning. In Proceedings of the Seventeenth International Conference on
Automated Planning and Scheduling, (ICAPS), pp. 176–183.

Pommerening, F., Helmert, M., Röger, G., & Seipp, J. (2015). From non-negative to gen-
eral operator cost partitioning. In Proceedings of the Twenty-Ninth Conference on
Artificial Intelligence (AAAI), pp. 3335–3341.

Seipp, J., Pommerening, F., & Helmert, M. (2015). New optimization functions for potential
heuristics. In Proceedings of the Twenty-Fifth International Conference on Automated
Planning and Scheduling (ICAPS), pp. 193–201.

8

