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  Optical Flow (II) 

 

 

• Content 

• Global approaches (Horn-Schunck, TV-L1) 

• Coarse-to-fine warping 
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The Horn and Schunck (HS) Method 
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The Horn and Schunck (HS) Method 

• Global energy to be minimized 

 

 

•     is the regularization parameter 

• The image is of size            

•                      are column vectors 

•      is a finite differences approximation of the gradient 

operator 



5 

     Thomas Pock March 2013 

The linear system 

• Optimality conditions: 

 

 

 

• The optimality condition can be re-arranged as the 

following linear system 

 

 

 

• System is large                    but very sparse 

• Suitable solvers are Gauss-Seidel, CG, or Matlab “\” 
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The Horn and Schunck (HS) Method 

• Advantages 

– Easy and fast to solve due to quadratic functions 

– Easy to implement 

 

• Disadvantages 

– Quadratic smoothnes term does not allow for sharp 

discontinuities in the motion field 

– Quadratic data term does not allow for outliers in the optical 

flow constraint 
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The TV-L1 approach 
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The TV-L1 approach 

• Due to the quadratic functions, the HS method does 

not allow for discontinuities in the flow field 

• A good idea is to replacing the quadratic functions by 

    norms 

• Leads to the so-called TV-L1 approach 

 

 

 

 

• The first term is the so-called total variation of the 

flow field, the second term is the     norm of the OFC 
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Minimizing the TV-L1 energy 

• The TV-L1 energy is convex but non-differentiable 

• Standard gradient descent cannot be applied 

• We can rely on recent advances in convex 

optimization 

 

• We can apply two strategies: 

– Smooth the total variation term and apply the FISTA 

algorithm 

– Compute a saddle-point formulation of the energy and apply 

a primal-dual algorithm 
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The FISTA Algorithm 

• Fast Iterative Shrinkage Thresholding Algorithm 

• Proposed in 2008 by Beck and Teboulle 

• Can be applied to the following class of convex 

optimization problems 

 

 

• The function         has a Lipschitz continuous gradient 

 

 

• The function         can be non-smooth but has a simple to 

compute proximal operator  
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FISTA 

Convergence rate:                                                              
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Application to the TV-L1 energy (1) 

• Smoothing of the TV term to make its gradient Lipschitz 

 

 

• where            denotes the Huber function,           

 

 

 

•             has a Lipschitz continuous gradient 

 

 

• with                                     
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Application to the TV-L1 energy (2) 

• The non-smooth function             is given by the     norm 

of the data term 

 

 

• The solution of the proximal operator is given by 

 

 

 

 

• where                                      

• and                                                         
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Primal-dual optimization 

• A first-order primal-dual algorithm proposed in 

Chambolle, Pock, 2011 

• Can be used to find a saddle point of the following class 

of convex-concave saddle-point problems 

 

 

• where      is a linear operator,      and       are convex 

(non-smooth) functions and have simple proximal 

operators 

• Corresponds to a saddle-point formulation of the primal 

and dual problems 
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The algorithm 

• Step sizes:                     ,           

• Proximal operators 



16 

     Thomas Pock March 2013 

Saddle-point formulation of TV-L1 

• The total variation can be written as (convex conjugate) 

 

 

• The TV-L1 optical flow model is written as 

 

 

• with 

 

 

• Exactly falls into the class of the primal-dual algorithm 

•                                          
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The proximal operators 

• The proximal operator with respect to      is given by the 

same soft-shrinkage formula as before 

 

 

 

 

• The proximal operator with respect to       is a projection 

onto the Euclidean ball 
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The TV-L1 approach 

• Advantages 

– TV regularization allows for discontinuities in the flow field 

– The L1 data term allows for outliers (occlusions) 

– Reasonable fast to compute (GPU leads to realtime) 

 

• Disadvantages 

– The method requires an iterative solver to compute the 

minimizer (FISTA, or Primal-Dual) 

– FISTA requires to smooth the TV 

– Primal-Dual can also deal with the pure TV 

– Hard to find a good stopping criterion 



19 

     Thomas Pock March 2013 

Coarse-to-fine warping framework 

• Due to the restrictions of the OFC,  the discussed 

methods are only able to recover small motion 

 

• How to extend the method for large motion? 

1. Solving, warping, re-linearization, solving, ... 

2. Implement the method on an image pyramide 
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Coarse-to-fine warping framework 

• Compute image pyramids 

• init 

– Initialize the flow field 

• solve 

– Transform the moving 

image by the given flow field 

(warping) 

– Perform linearization 

– Apply one of the three 

methods (LK, HS, TV-L1) 

• prolongate 

– Initialize the flow field on the 

next finer level using 

interpolation and rescaling 

of the motion vectors 
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Coarse-to-fine warping framework 

• Advantages 

– Allows to compute large motion 

– Due to the logarithmic nature of pyramids, not much more to 

compute 

• Disadvantages 

– Large motion that is  not captured at a coarse scale cannot 

be found on finer levels 

– Dilemma: Large motion of small objects 

– Different interpolation, rescaling, filtering schemes lead to 

different results 

– Can lead to unstable results in practice 

• BUT: What is the alternative? 
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Comparison of the three methods 

• In the following, we will show an comparison of the 

three methods we covered so far 

• We use the “Army” sequence of the Middlebury 

benchmark 

Input frames Ground truth flow 
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Structure-texture decomposition 

• The data set contains changing illumination and 

shadows 
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Lucas-Kanade 



25 

     Thomas Pock March 2013 

Horn-Schunck 
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TV-L1 
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Real-time implementation 

• Implementation of the TV-L1 method on a GPU 

allows for real-time computation 
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Flow Games 

Jakob Santner et al. 
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Feature Flow 

• How can we compute the motion between 

challenging sequences 

– Large displacements 

– Different modalities 

– Image taken at different time points 

– Images from objects of the same “category”  
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Feature Flow 

• The idea is simple 

• Replace each pixel in both images by a feature 

vector 

– SIFT descriptor 

– LBP 

– … 

• Feature constancy assumption 

 

 

• Linearize each feature channel individually 
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Some results using SIFT 
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Some results using SIFT 
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Some results using SIFT 
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Some results using SIFT 
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Some results using SIFT 
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Some results using SIFT 


