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Optical Flow (II)

* Content
« Global approaches (Horn-Schunck, TV-L1)
« Coarse-to-fine warping
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The Horn and Schunck (HS) Method

Massachusetts Institute of Technology
Artificial Intelligence Laboratory

A. L. Memo No. 572 April 1980

Determining Optical Flow

Berthold K. P, Horn and Brian G. Schunck

Abstract, Optical flow cannot be computed locally, since only one independent measurement is available
from the image serquence at a point, while the Row velocity has two components. A sccond constraint
is needed. A method for finding the optical flow pattern is presented which assumes that the apparent
velocity of the brightness pattern varies smoothly almost everywhere in the image. An iterative implemen-
tation is shown which successfully computes the optical flow for a number of synthetic image sequences.
‘The algorithm is robust in that it can handle image sequences that are quantized rather coarsely in space
and time. 1t is also insensitive to quantization of brightness levels and additive noise. Examples are
included where the assumption of smoothness is violated at singular points or along lines in the image.
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* Global energy to be minimized

Ty,

The Horn and Schunck (HS) Method

Eps = ||Vul + V0|3 + AL + L(u = uo) + Iy (v — o) I3
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operator
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A is the regularization parameter
The image is of size w X h

are column vectors
V is a finite differences approximation of the gradient

Uit1,5 — Wi 1 1< w\
0 else

Ui j+1 — U g it 7 <h

0 else )

. Thomas Pock

March 2013

4



€ The linear system
« Optimality conditions:
vTvu + )\I;B(It + Ix(u — Uo) + Iy(v — ’UQ)) =0
VIV + AL, (I + I (u — ug) + L,(v —vp)) =0

« The optimality condition can be re-arranged as the
following linear system

—A + Mdiag(I?) Mdiag(1,1,) w\ _ I, (I ug + Iyvg — 1)
Miag(I,I,)  —A+ Mdiag(I7)) \v) 7 \Iy(Iyuo + Iyvg — I)

« System is large 2wh x 2wh but very sparse
 Suitable solvers are Gauss-Seidel, CG, or Matlab “\”

. Thomas Pock March 2013
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& The Horn and Schunck (HS) Method

« Advantages
— Easy and fast to solve due to quadratic functions
— Easy to implement

« Disadvantages

— Quadratic smoothnes term does not allow for sharp
discontinuities in the motion field

— Quadratic data term does not allow for outliers in the optical
flow constraint

. Thomas Pock March 2013
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The TV-L1 approach

A Duality Based Approach for Realtime TV-L!
Optical Flow

C. Zach', T. Pock?®, and H. Bischof?

! VRVis Research Center
? Institute for Computer Graphics and Vision, TU Graz

Abstract. Variational methods are among the most successful approaches
to calculate the optical flow between two image frames. A particularly
appealing formulation 1s based on total vamation (TV) regularization
and the robust L' norm in the data fidelity term. This formulation can
preserve discontinuities in the flow field and offers an increased robust-
ness against llummation changes, oeclusions and noise. In this work we
present a novel approach to solve the TV-L' formulation. Our method
results in a very efficient numerical scheme, which 1s based on a dual for-
mulation of the TV energy and employs an efficlent pomt-wise thresh-
olding step. Additionally, our approach can be accelerated by modern
graphics processing units. We demonstrate the real-time performance
(30 fps) of our approach for video Inputs at a resolution of 320 = 240
pixels.

1 Introduction

The recovery of motion from images is a major task of biclogical and artificial
vision systems. The main objective of optical flow methods is to compute a
flow field estimating the motion of pixels in two consecutive image frames. Since

mrdannl Heamer 1o an haehler 31 macsd anareros meahloam seine moaen antancitsr hooad
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j The TV-L1 approach

* Due to the quadratic functions, the HS method does
not allow for discontinuities in the flow field

A good idea is to replacing the quadratic functions by
¢1 norms
* Leads to the so-called TV-L1 approach

Erv_r1 = [|V(u,v)|l2.1 + MLt + Lp(uw —up) + I,(v — vo) |1

IV, o)z = 3 4 I(Va)i 3+ 1(V0)i 413
1,]

 The first term Is the so-called total variation of the
flow field, the second term is the ¢/; norm of the OFC

. Thomas Pock March 2013
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Minimizing the TV-L1 energy

The TV-L1 energy is convex but non-differentiable
Standard gradient descent cannot be applied

We can rely on recent advances in convex
optimization

We can apply two strategies:

— Smooth the total variation term and apply the FISTA
algorithm

— Compute a saddle-point formulation of the energy and apply
a primal-dual algorithm

. Thomas Pock

March 2013
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@ The FISTA Algorithm et

« Fast Iterative Shrinkage Thresholding Algorithm
* Proposed in 2008 by Beck and Teboulle

« Can be applied to the following class of convex
optimization problems

min f(z) + g(z)
« The function f(z) has a Lipschitz continuous gradient
IVf(z) = Vil < Lz -yl

 The function ¢g(x) can be non-smooth but has a simple to
compute proximal operator

piy) = argmin =z — (y — TV fw)[3 +g(x)

. Thomas Pock March 2013
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(= FISTA

FISTA with constant stepsize

Input: L = L(f) - A Lipschitz constant of V f.
Step 0. Take y1 = xg9 € R", t1 = 1.

Step k. (k£ > 1) Compute

(4.1) X = pL(Yk),
L+ /1 + 42
| t. — 1
(4.3) Y4l = Xp + ( i ) (Xp — Xg_1)-
k+1

Convergence rate: (f + g)(zr) — (f +¢g)(z*) < O(1/k?)

. Thomas Pock March 2013
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- Application to the TV-L1 energy (1)

« Smoothing of the TV term to make its gradient Lipschitz
flu,v) = ||V (u,0)]. Zh (V)i i3+ (V)i 3)

« where h-(t*) denotes the Huber function, € > 0

ho(12) = 45 if Vi2 < e
) V2 else

« f(u,v) has a Lipschitz continuous gradient
Vf(u,v) = VTdiag(maX(ej‘lv(umm WV (u,v)

+ withL(f) = [|V|]*/e = 8/¢

. Thomas Pock March 2013
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(< Application to the TV-L1 energy (2) .

« The non-smooth function g(u, v) is given by the ¢; norm
of the data term

g(u,v) = AL + Lp(u — uop) + Ly (v — vo) |1

« The solution of the proximal operator is given by
(+2V1 if  p(a,9) < —2 VI3
pr(u,v) = (0,0) + < —%VI if p(u,0) > +%]VI|§

p(4,0)
\ —WVI else

1,8) = (1) — $V1(w,0)
) = I; + Ix(ﬁ — uo) —+ Iy(”{) — ’UQ)

. Thomas Pock March 2013
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Primal-dual optimization
A first-order primal-dual algorithm proposed in
Chambolle, Pock, 2011

« Can be used to find a saddle point of the following class
of convex-concave saddle-point problems

min max(Kz, y) + G(z) — F*(y)
Ty

« where K is alinear operator, G and '™ are convex
(non-smooth) functions and have simple proximal
operators

« Corresponds to a saddle-point formulation of the primal
and dual problems

min F(Kz) + G(x) max —(F"(y) + G(—=K"y))

. Thomas Pock March 2013
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(< The algorithm

e Initialization: Choose 7.0 > 0,6 € [0.1], (2°,9") € X xY and set 7° = Y.

e Iterations (n = 0): Update z™.y", =™ as follows:

(Tl = ([ +0dF*) "Ly + o Kz")
™t = (I +70G)~ (2™ — TK=y™t) (7)
k;En—I—l — 1,!..._?1—|—1 1 (7](.'1."”4_1 _ ;'{*ﬂ')

 Step sizes: 70||K||* < 1,0 =1
* Proximal operators

(I +70G) (&) = argmi > — 23 G
= argmin —— + G(x)

a2
(I‘l‘ O'aF*)_l(Z}) _ argmyin Hy 20y|’2 _l_F*(y)

. Thomas Pock March 2013
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E Ty,
: Saddle-point formulation of TV-L1

The total variation can be written as (convex conjugate)
IV (u,v)

= max (V(u,v),p
2,1 IIpllz,oo§1< (u,v), p)

The TV-L1 optical flow model is written as

min mgx(V(u, v), p) + G(u,v) — F*(p)

U,V

with  G(u,v) = A|| Ly + (v — uo) + L, (v — o)1
. 0 if|pllac <1
Fe(p) = { [Pl

oo else
Exactly falls into the class of the primal-dual algorithm
° a:E(u7U)7yEp7KEV

. Thomas Pock March 2013
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The proximal operators

« The proximal operator with respect to GG is given by the
same soft-shrinkage formula as before

(+7AVI  if p(@,0) < —TA| VI3
(I +70G)"Y(a,0) = (41,0) + { —TAVI if p(a,0) > +7A|VI|3

(0,9)
- KIJV—IIE VI else

« The proximal operator with respect to £ is a projection
onto the Euclidean ball

(I+00F*)~1(p) = —2L

max(LP) [
N

%
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" The TV-L1 approach

Advantages
— TV regularization allows for discontinuities in the flow field
— The L1 data term allows for outliers (occlusions)
— Reasonable fast to compute (GPU leads to realtime)

« Disadvantages

— The method requires an iterative solver to compute the
minimizer (FISTA, or Primal-Dual)

— FISTA requires to smooth the TV
— Primal-Dual can also deal with the pure TV
— Hard to find a good stopping criterion

. Thomas Pock March 2013
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(= Coarse-to-fine warping framework

* Due to the restrictions of the OFC, the discussed
methods are only able to recover small motion

« How to extend the method for large motion?
1. Solving, warping, re-linearization, solving, ...
2. Implement the method on an image pyramide

. Thomas Pock March 2013
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Coarse-to-fine warping framework

« Compute image pyramids
* init

— Initialize the flow field
« solve

— Transform the moving
image by the given flow field
(warping)

— Perform linearization

— Apply one of the three ~—
methods (LK, HS, TV-L1)

.« prolongate o
— Initialize the flow field on the
next finer level using
interpolation and rescaling
of the motion vectors

@

. Thomas Pock March 2013

20



- TU
= Coarse-to-fine warping framework

« Advantages
— Allows to compute large motion
— Due to the logarithmic nature of pyramids, not much more to
compute
« Disadvantages

— Large motion that is not captured at a coarse scale cannot
be found on finer levels

— Dilemma: Large motion of small objects

— Different interpolation, rescaling, filtering schemes lead to
different results

— Can lead to unstable results in practice
 BUT: What is the alternative?

. Thomas Pock March 2013
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€ Comparison of the three methods

* In the following, we will show an comparison of the
three methods we covered so far

« We use the “Army” sequence of the Middlebury
benchmark

Input frames 5 Ground truth flow
(u,v)

March 2013
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Structure-texture decomposition

« The data set contains changing illumination and
shadows
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@ Lucas-Kanade Ty
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Horn-Schunck
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E TV-L1 ot

. Thomas Pock March 2013

26



Real-time implementation

* Implementation of the TV-L1 method on a GPU
allows for real-time computation

GPU4&

VISION

. Thomas Pock March 2013




Flow Games

Jakob Santner et al.
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Feature Flow

 How can we compute the motion between
challenging sequences
— Large displacements
— Different modalities
— Image taken at different time points
— Images from objects of the same “category” ©
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Feature Flow

 The idea is simple

* Replace each pixel in both images by a feature
vector

— SIFT descriptor
— LBP

 Feature constancy assumption

Flx+ Ax,y+ Ay, z + Az, t + At) = F(x,y, z,t)

« Linearize each feature channel individually

. Thomas Pock March 2013
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Some results using SIFT
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Some results using SIFT
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Some results using SIFT
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Some results using SIFT
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Some results using SIFT
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Some results using SIFT
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