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What is the “Deep Learning” ?  

 Deep learning  
= both the classifiers and the features are learned automatically 
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image label 
classifier • Typically not feasible, due to 

high dimensionality 

image label 
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hand-engineering 
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knowledge, works in specific 
domain only 
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features 
learning 

Deep neural network 

(e.g. SIFT, SURF, HOG,  
 or MFCC in audio) 

(feature hierarchies) 



Deep learning successes 

 Deep learning methods have been extremely successful recently 
– Consistently beating state-of-the-art results in many fields, winning 

many challenges by a significant margin 
 
Computer vision: 
• Hand writing recognition, Action/activity recognition, Face recognition 
• Large-scale image category recognition (ILSVRC’ 2012 challenge) 
 INRIA/Xerox  33%,  
 Uni Amsterdam  30%,  
 Uni Oxford  27%,  
 Uni Tokyo  26%, 
 Uni Toronto  16% (deep neural network) [Krizhevsky-NIPS-2012] 

 
Automatic speech recognition: 
• TIMIT Phoneme recognition, speaker recognition 
Natural Language Processing, Text Analysis: 
• IBM Watson, Google translate 
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Learning the representation – Sparse coding 

 Natural image statistics 
– Luckily, there is a redundancy in natural images  
– Pixel intensities are not i.i.d. (but highly correlated) 

 
 Sparse coding [Olshausen-1996, Ng-NIPS-2006] 
 
Input images: 
 
Learn dictionary of basis functions 
that      
       ;   s.t.          are mostly zero, “sparse” 
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Sparse coding 
5 

    Natural Images Learned bases (φ1 , …, φ64):  “Edges” 

≈ 0.8 *                   + 0.3 *                     + 0.5 * 

     x      ≈ 0.8 *       φ
36         +  0.3 *        φ42          

+ 0.5 *       φ63 

 [0, 0, …, 0, 0.8, 0, …, 0, 0.3, 0, …, 0, 0.5, …]  
= [a1, …, a64]    (feature representation)  

Test example 

Compact & easily 
interpretable 



Unsupervised Learning Hierarchies of features 
 Many approaches to unsupervised learning of 

feature hierarchies 
– Sparse Auto-encoders [Bengio-2007] 
– Restricted Boltzmann Machines [Hinton-2006] 

 These model can be stacked: lower hidden layer is 
used as the input for subsequent layers 
 
 
 
 
 
 
 

 The hidden layers are trained to capture higher-
order data correlations. 
 

 Learning the hierarchies and classification can be 
implemented by a (Deep) Neural Network 
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[Lee-ICML-2009] 



Resemblance to sensory processing in the brain 
 Needless to say that the brain is a neural network 

 
 
 
 
 

 
 Primary visual cortex V1 

– Neurophysiological evidences that primary visual cells are sensitive to 
the orientation and frequency (Gabor filter like impulse responses) 

– [Hubel-Wiesel-1959] (Nobel Price winners) 
• Experiments on cats with electrodes in the brain 
 

 A single learning algorithm hypothesis ? 
– “Rewiring” the brain experiment [Sharma-Nature-2000] 

• Connecting optical nerve into A1 cortex (a subject was able to solve visual 
tasks by using the processing in A1) 
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~ 2e-11 neurons 
~ 1e-14 synapses 

Presenter
Presentation Notes
Sharma-Nature-2000 (pokusy na fretkach. Fretky jsou po narozeni malo vyvinute, nervova spojeni jeste rostou)



(Artificial) Neural Networks 

 Neural networks are here for more than 50 years 
– Rosenblatt-1956 (perceptron) 

 
 
 
 
 
 
 
 

– Minsky-1969 (xor issue, => skepticism) 
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Neural Networks 

Rumelhart and McClelland – 1986:   
– Multi-layer perceptron,  
– Back-propagation (supervised training) 

• Differentiable activation function 
• Stochastic gradient descent 

 
Empirical risk 
  
 
  
Update weights: 
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What happens if a network is deep? 
(it has many layers) 



What was wrong with back propagation? 

 Local optimization only (needs a good initialization, or re-initialization) 
 Prone to over-fitting  

– too many parameters to estimate 
– too  few labeled examples 

 Computationally intensive 
=> Skepticism: A deep network often performed worse than a shallow one 

 
 However nowadays: 

– Weights can be initialized better (Use of unlabeled data, Restricted 
Boltzmann Machines) 

– Large collections of labeled data available 
• ImageNet (14M images, 21k classes, hand-labeled) 

– Reducing the number of parameters by weight sharing 
• Convolutional layers – [LeCun-1989] 

– Fast enough computers (parallel hardware, GPU) 
=> Optimism: It works! 
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Deep convolutional neural networks 

 An example for Large Scale Classification Problem: 
– Krizhevsky, Sutskever, Hinton: ImageNet classification with deep 

convolutional neural networks. NIPS, 2012.  
• Recognizes 1000 categories from ImageNet 
• Outperforms state-of-the-art by significant margin (ILSVRC 2012) 
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• 5 convolutional layers, 3 fully connected layers 
• 60M parameters, trained on 1.2M images (~1000 examples for 

each category) 



Deep convolutional neural networks  

 Additional tricks:  “Devil is in the details” 
– Rectified linear units instead of standard sigmoid 

=> Mitigate vanishing gradient problem 
– Convolutional layers followed by max-pooling 

• Local maxima selection in overlapping windows (subsampling) 
=> dimensionality reduction, shift insensitivity 

– Dropout  
• Averaging results of many independent models (similar idea as in 

Random forests) 
• 50% of hidden units are randomly omitted during the training, but 

weights are shared in testing time 
=> Probably very significant to reduce overfitting 

– Data augmentation  
• Images are artificially shifted and mirrored (10 times more images) 
=> transformation invariance, reduce overfitting 
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Novel tricks 

 Network initialization 
– Mishkin, Matas. All you need is a good init. ICLR 2016 
– Weights initialization: zero mean, unit variance, orthogonality 

 
 Batch normalization 

– Iosse, Szegedy. Batch Normalization: Accelerating Deep Network 
Training by Reducing Internal Covariate Shift. NIPS 2015 

– Zero mean and unit variance weights are “supported” during training 
to avoid vanishing gradient 
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⇒Small sensitivity to learning rate 
setting (can be higher, faster training 
– 10 times fewer epochs needed) 

⇒Regularizer (dropout can be 
excluded/smaller) (better optimum 
found) 



Deep convolutional neural networks 
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 No unsupervised pre-initialization! 
– The training is supervised by standard back-propagation 
– enough labeled data: 1.2M labeled training images for 1k categories 
– Learned filters in the first layer 

• Resemble cells in primary visual cortex 
 

 
 

 Training time: 
– 5 days on NVIDIA GTX 580, 3GB memory (Krizhevsky, today faster) 
– 90 cycles through the training set 

 Test time (forward step) on GPU 
– Implementation by Yangqing Jia, http://caffe.berkeleyvision.org/  
– 5 ms/image in a batch mode  
– (my experience: 100 ms/image in Matlab, including image 

decompression and normalization) 

http://caffe.berkeleyvision.org/


Preliminary experiments 1: Category recognition 

 Implementation by Yangqing Jia, http://caffe.berkeleyvision.org/  
– network pre-trained for 1000 categories provided 

 Which categories are pre-trained? 
– 1000 “most popular” (probably mostly populated) 
– Typically very fine categories (dog breeds, plants, vehicles…) 
– Category “person” (or derived) is missing 
– Recognition subjectively surprisingly good… 
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http://caffe.berkeleyvision.org/
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Sensitivity to image rotation 
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Sensitivity to image blur 
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It is not a texture only... 



Preliminary experiments 2: Category retrieval 

 50k randomly selected images from Profimedia dataset 
 Category: Ocean liner 
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Preliminary experiments 2: Category retrieval 

 Category: Restaurant (results out of 50k-random-Profiset) 
20 



Preliminary experiments 2: Category retrieval 

 Category: stethoscope (results out of 50k-random-Profiset) 
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Preliminary experiments 3: Similarity search 

 Indications in the literature that the last hidden layer carry semantics 
– Last hidden layer (4096-dim vector), final layer category responses 

(1000-dim vector) 
– New (unseen) categories can be learned by training (a linear) 

classifier on top of the last hidden layer 
• Oquab, Bottou, Laptev, Sivic, CVPR, 2014 
• Girshick, Dphanue, Darell, Malik, CVPR, 2014 

– Responses of the last hidden layer can be used as a compact 
global image descriptor 

• Semantically similar images should have small Euclidean distance 
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image 

4096-dim 
descriptor 



Preliminary experiments 3: Similarity search 

 Qualitative comparison: (20 most similar images to a query image) 
1. MUFIN annotation (web demo), http://mufin.fi.muni.cz/annotation/, 

[Zezula et al., Similarity Search: The Metric Space Approach.2005.] 
• Nearest neighbour search in 20M images of Profimedia 
• Standard global image statistics (e.g. color histograms, gradient 

histograms, etc.) 
2. Caffe  NN (last hidden layer response + Euclidean distance), 

• Nearest neighbour search in 50k images of Profimedia 
• 400 times smaller dataset ! 

 
MUFIN results:  
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MUFIN results  

http://mufin.fi.muni.cz/annotation/


Preliminary experiments 3: Similarity search 
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Preliminary experiments 3: Similarity search 

MUFIN results  

25 



26 

Preliminary experiments 3: Similarity search 
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Preliminary experiments 3: Similarity search 

MUFIN results  
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Preliminary experiments 3: Similarity search 
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Preliminary experiments 3: Similarity search 

MUFIN results  
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Preliminary experiments 3: Similarity search 
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Preliminary experiments 3: Similarity search 

MUFIN results  
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Preliminary experiments 3: Similarity search 
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Preliminary experiments 3: Similarity search 

MUFIN results  
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Preliminary experiments 3: Similarity search 
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Preliminary experiments 3: Similarity search 

MUFIN results  
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Preliminary experiments 3: Similarity search 
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Preliminary experiments 3: Similarity search 

MUFIN results  
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Preliminary experiments 3: Similarity search 
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Multiple object classes 
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Multiple object classes 



Object detection: Deep Nets and Sliding Windows 

 An image of a scene contains multiple objects 
 Exhaustive sliding window detector is prohibitively slow 
=> Category independent region proposals: 

– Objectness [Alexe-TPAMI-2012] 
– Selective search [Uijlings-IJCV-2013] 
 
 
 
 

 
– Edgeboxes [Zitnick-ECCV-2014] 
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More recent 
approches, see 

next lecture 

Presenter
Presentation Notes
Objectness – nauci se rychly klasifikator, ktery kombinuje nekolik priznaku (lokalni kontrast, hrany, ….)
Selective search – zalozeno na segmentaci (hierarchicke spojovani superpixelu)
Edgeboxes – zalozeno na pozorovani, ze okno na objektu obsahuje hodne vnitrnich hran a malo hran, ktere prekracuji hranici bboxu (rychle pomoci integralniho obrazku, 0.25 s/ obrazek )



Face interpretation tasks 

 Face recognition, face verification 
– Architecture similar to AlexNet -  very deep CNN (softmax at the last 

layer) 
[Taigman-ECVV-2014] DeepFace: Closing the Gap to Human-Level 
 Performance in Face Verification (authors from Facebook) 
[Parkhi-BMVC-2015] Deep Face recognition (authors from Oxford Uni) 
 - 2.6M images of  2.6k celebrities, trained net available 
 
 
 
 
 
 
 
 

 Face represented by penultimate layer response, similarity serach, large 
scale indexing 
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Face interpretation tasks 

 Facial landmarks, Age / Gender estimation 
– Multitask network  

• Shared representation 
• Combination of both classification and regression problems 
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Age estimation – How good the network is? 

 Our survey 
~20 human subjects , ~100 images of 2 datasets 
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MORPH dataset 

IMDB dataset 



 Better than average human… 
 
 
 
 
 
 
 
 
 
 
 
 
 

 [Franc-Cech-BwildW-2017] 
 Network runs real-time on CPU 

Age estimation – How good the network is? 
45 

MORPH IMDB 



General recipe to use deep neural networks 

 Recipe to use deep neural network to “solve any problem” (by G. Hinton) 
– Have a deep net 
– If you do not have enough labeled data, pre-train it by unlabeled data; 

otherwise do not bother with pre-initialization 
– Use rectified linear units instead of standard neurons (sigmoid) 
– Use dropout to regularize it (you can have many more parameters 

than training data) 
– If there is a spatial structure in your data, use convolutional layers 
– Have fun…  

 
 Novel: 

– Use Batch Normalization  [Ioffe-Szegedy-NIPS-2015] 
 

 Experience: 
– Data matters (the more data the better), data augmentation helps 
– Network architecture (if deep enough) is surprisingly not critical 
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 It efficiently learns the abstract representation (shared among classes) 
– The network miraculously captures semantics… 

 Low computational demands for running, Training needs GPU 
 Many “deep” toolboxes: Caffe (Berkeley), MatconvNet (Oxford), 

TensorFlow (Google), Theano (Montreal), Torch, … 
 NNs are (again) in the “Golden Age” (or witnessing a bubble), as many 

practical problems seem solvable in near future 
 Explosion of interest of DNN in literature, graduates get incredible offers, 

start-ups appear all the time 
 
 
 Do we understand enough what is going on? 
http://www.youtube.com/watch?v=LVLoc6FrLi0 
 
 
 
 
 

 
 
 

Acknowledgement: I borrowed some images from  slides of G. Hinton, A. Ng, Y. Le Cun. 

 
 

Conclusions 
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http://www.youtube.com/watch?v=LVLoc6FrLi0
http://www.youtube.com/watch?v=LVLoc6FrLi0
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