
Combinatorial optimization

CoContest semester project assignment: Air Tickets TSP

Industrial Informatics Research Center
http://industrialinformatics.fel.cvut.cz/

February 27, 2018

Abstract

This document introduces the assignment for the CoContest semester project.

1 Motivational example

The members of Industrial Informatics Research Center have submitted three conference papers
to different conferences around the world. All their papers were accepted for the presentation,
but the problem is that the conferences days are overlapping. Luckily, each of the conferences is
scheduled for multiple days.

One of the paper authors, Theodor, was picked to present all the papers. However, it emerged
that grant agencies’ funds are being abused for so-called conferential tourism (one such popular
destination has become the area of Eastern Asia, where cheap manpower is known to be offering
unprecedented services to European tourists). This observation triggered harsh austerity mea-
sures that the funding agencies imposed on scientific workers. Therefore, Theodor needs to think
carefully, which flights tickets he should buy such that he visits all the conferences and presents
the papers.

Theodor needs to start at the city he lives in and each day, make exactly one flight to another
destination. Finally, the last day, he returns to his hometown. Finding the cheapest flight sequence
sounds like the problem he is dealing with in one of his conference paper entitled Sub-exponential
algorithm for solving the famous Traveling Salesman Problem. However, some of the flights be-
tween specific destinations are not available during each day, and Theodor is puzzled, whether he
can still use his algorithm to find the cheapest sequence of flights1.

2 Air Tickets TSP - formal statement

Let C = {c1, c2, . . . , cn} be a set of n cities and cs ∈ C be the city where the trip starts. Let
D = {0, . . . , n − 1} be a set of days. Let F ⊆ C × C ×D be a set of all available flights. Notice
that some triples (ci, cj , d) might not be in F , since it is a subset of C × C × D. Each triple
(ci, cj , d) ∈ F denotes a flight ticket ci ∈ C to cj ∈ C on day d ∈ D. Its price is pci,cj ,d ∈ N0.

Let π = (π(1), π(2), . . . , π(n)) be a permutation of C. The goal is to find the trip π∗ such that:

1This problem is inspired by a recent challenge given by Kiwi.com https://github.com/kiwicom/

travelling-salesman

1

http://industrialinformatics.fel.cvut.cz/
https://github.com/kiwicom/travelling-salesman
https://github.com/kiwicom/travelling-salesman


π∗ = arg min
π
P (π) (1)

such that

π(1) = cs (2)

P (π) = pπ(n),π(1),n−1 +
∑

d∈D\{0}

pπ(d),π(d+1),d−1 (3)

(π(d), π(d+ 1), d− 1) ∈ F ∀d ∈ D \ {0} (4)

(π(n), π(1), n− 1) ∈ F (5)

π is a permutation of C (6)

In other words, you are asked to find the shortest Hamiltonian cycle on a time-dependent graph
C × C ×D (where some edges might be missing), starting at cs on day 0, finishing at cs on day
n− 1. Hence, during the whole trip, you make |C| = n flights, exactly one each day and you can
consider that each flight transfers you immediately, i.e. traveling from city ci to cj on day d gives
you access to all flights from cj on day d+ 1.

3 Rules

If you decide to choose the contest as your semestral project, then you are expected to implement
a correct solver for the Air Tickets TSP. The implementation will be submitted to BRUTE https:

//cw.felk.cvut.cz/brute/ where it will be automatically evaluated (number of submissions is
not limited). The grading is combination of ability of finding good solutions and the achieved
rank relative to other students (w.r.t. the objective function). Therefore, you can acquire some
minimum number of points even if your solver is not very efficient relative to other students.

In BRUTE, you will find 3 tasks related to the contest. Each task has specific instances, rules
and grading. The contest is split into different tasks so that we avoid re-evaluation of the instances
(which is time-consuming) and so that you can implement specific solver for each task.

1. SP CC O: you have to implement an exact, MILP solver for the problem. If your solver solves
optimally all the instances in this task, then you will get 3 points for this task. If the solver
returns suboptimal solution for any instance in this task, then the evaluation of your solver
is stopped and you will get 0 points in this task.

2. SP CC T: the goal is to find the best possible feasible solution within the specified time limit,
i.e. the optimal solutions are not required and you are encouraged to implement clever
heuristics solving these instances. For each instance in this task, you will obtain one point
if the length of the trip in your solution is not worse than our threshold (5 points at max).

3. SP CC R: similarly as in SP CC T, in this task we are also interested in finding the best possible
feasible solution within the specified time limit. However, the evaluation of your solver will
depend on how good your solver is relative to other students’ solvers, i.e. the number of
points obtained will depend on your rank (3 points at max).

Some general contest rules also apply

1. usage of single-purpose problem-specific solvers is prohibited (i.e. a MILP solver is allowed,
but somebody’s else code for solving the Air Tickets TSP is not).

2. every participant is required to write its own code. However, sharing ideas and other dis-
cussion about the problem is encouraged

2

https://cw.felk.cvut.cz/brute/
https://cw.felk.cvut.cz/brute/


4 Input and Output Format

Your solver will be called with the following three parameters, e.g.

$ ./your-solver PATH_INPUT_FILE PATH_OUTPUT_FILE TIME_LIMIT

where

• PATH INPUT FILE and PATH OUTPUT FILE: similarly as in homeworks, these parameters rep-
resent the path to the input and output files, respectively (see below for description of the
file formats).

• TIME LIMIT: an integer representing the time-limit in seconds given to your solver. Your
solver will be killed after the time-limit is reached and the solution written in the output file
(if any) will be taken as the result of your program.

The input file has the following form (we use one space as a separator between values on one line)
cs
c1 c2 0 pc1,c2,0
c1 c2 1 pc1,c2,1
...

...
...

...
c1 c2 n− 1 pc1,c2,n−1
c2 c1 0 pc2,c1,0
c2 c1 1 pc2,c1,1
...

...
...

...
c2 c1 n− 1 pc2,c1,n−1
...

...
...

...
cn cn−1 n− 1 pcn,cn−1,n−1

where cs and ci’s are three characters codes of the airport (e.g. PRG), d ∈ D is the day at which
is a ticket available for price pci,cj ,d ∈ N0. cs denotes the airport where the trip has to start and
finish. Please notice that some triples (ci, cj , d) may be missing, as there is no flight between ci
and cj on day d.

The output file consists of two lines
P (π)
π(1) π(2) · · · π(n)

where π is a feasible permutation of cities and P (π) ∈ N0 is the total cost of trip π. Notice
that as we need to start the trip from city cs, then always π(1) = cs holds.

In theory, there might be no feasible solution. However, we ensure that for every instance, at
least one feasible solution exists.

Example 1

Input:

COW

ADZ COW 0 906

ADZ COW 1 984

ADZ COW 2 443

ADZ LST 0 1474

ADZ LST 1 978

ADZ LST 2 560

COW ADZ 0 29

COW ADZ 1 188

3



COW ADZ 2 111

COW LST 0 58

COW LST 1 1051

COW LST 2 82

LST ADZ 0 753

LST ADZ 1 778

LST COW 1 1367

LST COW 2 1291

Output:

1279

COW LST ADZ

The optimal trip is given as

COW
58−→ LST

778−−→ ADZ
443−−→ COW

4


	Motivational example
	Air Tickets TSP - formal statement
	Rules
	Input and Output Format

