
Combinatorial optimization

Optional Homework: Employee Scheduling in an IT

Company problem and List Scheduling Algorithm

Industrial Informatics Research Center
http://industrialinformatics.cz/

Abstract

This homework is devoted to the problem of Employee Scheduling in an IT Company,
which is a modified version of Resource-Constraint Project Scheduling problem. To solve
the problem of employee scheduling in an IT company, you will implement a specialized list
scheduling algorithm.

1 Resource-Constrained Project Scheduling Problem

A resource-constrained project scheduling problem (RCPSP) [1] deals with resources of certain
capacities and tasks of known processing times and resource demands, linked by precedence rela-
tions. The problem is to find a schedule of minimal length such that the precedence relations and
the resource capacities are respected.

Formally, the RCPSP is defined by a 6-tuple 〈A, p,G,R,B, b〉:

• Tasks of the project, denoted by set A = {A1, ..., An}.

• Processing times pi ∈ N of task Ai.

• Precedence relations are given by a graph G = (V,E) with vertices being the tasks V = A
and edges being a pair precedence relation. Therefore, if (Ai, Aj) ∈ E, then Ai must precede
Aj in the schedule.

• Resources are formalized by set R = {R1, · · · , Rq}.

• Resource demands of tasks are denoted by b ∈ Nn×q, where bi,v is the amount of resource
Rv that task Ai uses per time unit.

• Capacities Bv of resource Rv. In particular, a resource with capacity Bv = 1 is called
disjunctive resource and it is considered in Lab 11 that dealt with Bratley algorithm.

A solution to RCPSP is a schedule S ∈ Nn which defines start time Si of each task Ai. An
optimal solution S for RCPSP has minimal length as in Equation (1) and satisfy precedence
(Equation (2)) and resource (Equation (3)) constraints, where At = {Ai ∈ A | Si ≤ t < Si + pi}
represents the set of tasks being processed at time t.

Minimize: max
Ai∈A

(Si + pi) (1)

Sj − Si ≥ pi, ∀(Ai, Aj) ∈ E (2)∑
Ai∈At

biv ≤ Bv, ∀Rv ∈ R, t ≥ 0. (3)

From the definition of set At follows that a task cannot be interrupted once it is started, which
means that we schedule tasks non-preemptively.

1

http://industrialinformatics.cz/


A1

A2

A3

A4

A5

A6

(a) Graph of precedence relations of the
considered project

t0 1 2 3 4 5 6 7 8

A3

A3

A1
A2

A1
A5

A5

A6

A6

R1

R2

A4

(b) Example of the solution to the consid-
ered project

Figure 1: Project specification and solution.

Table 1: A project with 6 tasks and 2 resources
Ai A1 A2 A3 A4 A5 A6

pi 6 1 1 2 3 4
bi1 2 1 3 2 1 1
bi2 1 0 1 0 1 2

1.1 An Example of RCPSP

Let us consider an RCPSP instance that is given in Table 1.1 with 6 tasks and 2 resources with
capacities B1 = 7 and B2 = 4. The precedence relation graph of this instance is displayed in
Figure 1a. A schedule of minimal length S4 + 2 = 8 is displayed in Figure(1b) as a 2-dimensional
Gantt chart where the x axis is the time and the y axis is the resource occupation.

2 Employee Scheduling in an IT Company

Let us look at the problem of assignment project tasks to employees (developers) in an IT company.
Here, the project typically corresponds to the software development, where tasks are the analysis
of the client requirements, development of the application, tests, etc. Tasks are time-dependent
on each other, limited in time and each task needs particular number of employees and skills to
be performed, depending on the project requirements: analysis method, programming language
(Python, C++, Java, etc.), etc. Thus, the problem is to find a solution, i.e. an assignment of the
project tasks to the employees in time, such that the project constraints are not violated and the
project duration is minimized.

Formally, the problem comprises n tasks that are to be scheduled on q resources that are
employees. The tasks are time dependent with a precedence relations graph G and demands on the
number of required employees ei working on this task simultaneously for pi hours. Additionally to
RCPSP formulation, each task is limited in time by its release time ri. Moreover, one specific skill
ki is required to perform task Ai and for each employee Rv there is a set of skills lv = {k1, · · · , kmv

}
it is capable of.

Note that this problem is a modification of RCPSP, since instead of providing strict demands of
tasks on each resource as in RCPSP (given by matrix b), a constraint given by skills is introduced
that only limits which resources can process a particular task. Moreover, disjunctive resources (i.e.
with capacities Bv = 1) are considered. Therefore, the employee scheduling in an IT company
problem solution is defined by both vector of start times S = (S1, S2, · · · , Sn) (i.e. each task is done
on all ei resources at the same time) and a vector of resource assignments zi = [zi,1, zi,2, · · · , zi,ei ]
for each task Ti.

2



Table 2: Task parameters of the considered project
Ai pi ri ki ei
A1 3 1 2 1
A2 1 0 1 2
A3 1 0 3 1
A4 2 3 2 1
A5 3 3 1 1
A6 4 4 3 1

Rv lj
R1 {1}
R2 {2,3}
R3 {1,2,3}

The parameters for the problem instance with n = 6 project tasks and q = 3 employees that
we consider are listed in Table 2, while G is the same as in the previous section (Figure 1a). The
example solution is shown in Figure 2.

t0 1 2 3 4 5 6 7 8

A2R1

R2

R3 A2
A3 A1

A5

A4

A6

Figure 2: Example of the solution to the Employee Scheduling in an IT Company problem.

3 List Scheduling Algorithm

List scheduling algorithm is based on the idea of gradually constructing the schedule task-by-task
in some predefined order of tasks that respects precedence and timing constraints, putting the
tasks to the earliest possible place on free resources.

The complete pseudocode of the modification of List Scheduling algorithm for the Employee
Scheduling in an IT company problem is given in Algorithm 1. The two main sets of variables
that list scheduling algorithm operates on are the time availability tv of each resource Rv and
start times si of each task Ai. First of all, the list scheduling algorithm sorts the list of all tasks
L according to some priority rule. Afterwards, it continues in iterations and at each iteration it
chooses the first task in L that is free (i.e. all of its predecessors are already scheduled). Then, it
schedules the task at the first possible time moment, respecting the skills constraints, precedence
relations, release dates and demand on the number of required resources. Lastly, task from list L
is removed and the algorithm continues in the next iteration.

3



Algorithm 1 List Scheduling Algorithm for Employee Scheduling Problem

Require: number of resources q; number of non-preemptive tasks n; resource skills lj =
[k1, · · · , kmj

] for each resource j; task processing times p; digraph of precedence relations G;
required skills for tasks k and release dates r.

Ensure: start times s = [s1, s2, · · · , sn] and resource assignments zi = [zi,1, zi,2, · · · , zi,ei ] for each
task Ti.
function LS-Empl(q, n, l, p,G, k, r)

tv := 0 for all v ∈ {1, 2, · · · , q};
si := 0 for all i ∈ {1, 2, · · · , n};
Sort tasks in list L;
for w := 1 to n do

In the set of free tasks, choose Ti which is the first in list L;
Rw := {Rj |ki ∈ lj}; . resources with necessary skill
Choose ei resources from Rw with minimal tv: Rchosen := {Rw

j1
, · · · , Rw

jei
};

si := max{maxRv∈Rchosen{tv},maxTj∈Predecessors(Ti){sj + pj}, ri};
Remove Ti from L;
zi := Rchosen;
tRchosen

1
:= tRchosen

2
= · · · = tRchosen

ei
= si + pi;

end for
return s, z;

end function

3.1 A homework assignment

A homework assignment: Implement LS-Empl algorithm with an appropriately chosen
priority assignment strategy. Upload your source codes to the Upload System where it will
be automatically evaluated.

3.2 Input and Output Format

Your program will be called with two arguments: the first one is absolute path to input file and the
second one is the absolute path to output file (the output file has to be created by your program).

The input file has the following format. The first line of the input file consists of a natural
number n specifying the number of tasks and a natural number q specifying the number of re-
sources. The following lines consist of vector of required skills for each task k, vector of tasks
resource demands e, vector of processing times p and vector of release dates r. Afterwards, the
next q lines consist of vectors lj = [k1, · · · , kmj

] for j ∈ {1, · · · , q} each one on a new line ending
with 0. The last n lines are numbers of tasks that must precede task Ti in graph G, each line also
ending with 0.

The output file consist of n + 2 lines, each with integer numbers. The first line represents
the makespan value, i.e. the latest completion time over all tasks. The second line contains the
vector of start times S and the n following lines display the resource assignment vectors zi for
i = 1, · · · , n (order of employees in zi can be arbitrary).

Example 1

Input:

4



6 3
2 1 3 2 1 3
1 2 1 1 1 1
3 1 1 2 3 4
1 0 0 3 3 4
1 0
2 3 0
1 2 3 0
0
0
0
1 2 0
2 0
3 0

Output:
8
1 0 0 4 3 4
2
1 3
2
2
1
3

References

[1] C. Artigues, S. Demassey, and E. Neron, Resource-constrained project scheduling: models,
algorithms, extensions and applications. John Wiley & Sons, 2013.

5


	Resource-Constrained Project Scheduling Problem
	An Example of RCPSP

	Employee Scheduling in an IT Company
	List Scheduling Algorithm
	A homework assignment
	Input and Output Format


