Combinatorial Optimization
Lab No. 10
Traveling Salesman Problem

Industrial Informatics Research Center
http://industrialinformatics.cz/

May 29, 2018

Abstract

In this lab we review various ways how to solve the famous Traveling Salesman Problem.
A new Integer Linear Programming formulation is introduced along with an approach based
on lazy constraints. As a homework, you will solve a problem of image unshredding.

1 Traveling Salesman problem

Traveling Salesman Problem (TSP) is one of the most famous problems in combinatorial opti-
mization. TSP has a wide range of applications in both theory and practice. For example, TSP
is natural model for solving problems in logistics.

Let G = (V, E) be a complete, directed graph where V = {1,...,n} is the set of nodes and
E ={(i,j) | i,7 € V,i # j} is the set of edges. We assume n > 3. Let each edge (i,5) € E be
associated with cost ¢; ;. The task is to find a closed path of minimal cost going through each
node of G exactly once Hamiltonian circuit of a minimal cost). As an example, consider a graph
from Fig. la; the corresponding optimal solution is depicted in Fig. 1b.

(a) Instance. To 51mp11fy the illustration, edges (4, j), @
(4,1) are drawn only once using a bidirectional edge (b) Optimal solution with cost 19.

{i, 5}

Figure 1: TSP example with symmetric costs.

On lectures, you were introduced to the following Integer Linear Programming (ILP) model of
TSP

http://industrialinformatics.cz/

min Z Ci,j . xi,j (1)

(i,J)EE
s.t. Z ;=1 jeV (2)
(i.))€E
Z ;=1 i€V (3)
(@.9)eE
sitci; <sj+M-(1—z;;), ieV,jeV\{1} (4)
z;; €{0,1},s,, €R (5)

Figure 2: ILP formulation of TSP from the lecture.

where z; ; is a binary variable such that z; ; = 1 iff node 7 in the circuit just before node j. s;
is a variable representing the “time” of arrival into the node and is used for eliminating subtours.

Although this model is straightforward, we show a more efficient one below. Nevertheless, the
model in Fig. 2 is still useful if we consider TSP with time-windows (time interval in which the
node has to be visited).

1.1 More efficient ILP formulation for TSP

More efficient ILP model is shown in Fig. 3 where the decision variable x; ; indicates whether the
edge (i,7) € E belongs to the circuit or not.

D ciywy (6)

(i,))€E
st > mi;=1, jEV (7)
(i,J)EE
Z Tij = 1, 1€V (8)
(i,J)EE
Sowii—1= > wyik JeV\{1} (9)
(i,J)EE (4,k)EE
Dot == > (10)
(i,1)eE (L,k)eE
Yi,j S (’IL - 1) * L g, (laj) S (11)
Tij € {O, 1}, Yij € Zzo (12)

Figure 3: More efficient ILP formulation of TSP.

One thing to mention about the model is the elimination of the subtours, see constraints
(9)—(11). The idea is that we assume the salesman sells n items during his journey starting
from node 1 and he is required to sell exactly one item in each node. Let y; ; be the number of
items which the salesman has after leaving node ¢ and before entering node j. Due to the selling
requirement, the number of remaining items before visiting node j € V' \ {1} is one more than
the number of remaining items after leaving node j (see constraint (9)). Notice that when the
salesman return back to its starting node 1, it must hold that y; ;1 = 0, where 7 is the immediate
predecessor to node 1 during the salesman tour. Thus constraint (9) is modified for this special
case as shown in constraint (10). Constraint (11) denotes that the upper bound of y; ; is n—1 while

the lower bound is 0. It is obvious that when the edge (4,j) € E does not belong to the salesman
tour, then y; ; equals 0. In Fig. 4a we show an example of a feasible solution whereas in Fig. 4b
we show an example of an infeasible solution with multiple subtours that violates constraint (10).

@ Y12 =4 : Y12 =4 :

y3,1 = 2
Ys,1 = 0 Y2,3 = 3

Y23 =3

()

(a) Feasible solution. (b) Infeasible solution.

Figure 4: Feasible and infeasible solutions to model in Fig. 3.

1.2 Lazy Constraints

Since combinatorial optimization problems are studied for decades already, it is natural that there
exist a lot of advanced optimization approaches that result in reduced computation time for certain
problem types. One of the conceptually easiest approach is called lazy constraints [1]. The basic
idea is to initially formulate the problem only with the most essential constraints, omitting those
that are only rarely violated. These other constraints are checked and added one-by-one to the
model only if the current solution violates any of them. In other words, some constraints are
generated in a lazy fashion, i.e. the constraint is added to the model only if the solution violates
it.

The application of lazy constraints to TSP is really straightforward. Let model TSP as follows

min Z CiJ’ . ‘Ti7j (13)

(i,j)€E
st Y mi;=1, jEV (14)
(i)EE
Y omi;=1, i€V (15)
(i)EE
>oomi;<I8] -1, ScV,S#£0 (16)
i,jES i#£]
z;; € {0,1} (17)

Figure 5: ILP formulation of TSP, suitable for lazy constraints.

Notice that model in Fig. 5 is the same as in Fig. 3 with exception that constraints (9)-(11)
were replaced with constraints (16) which eliminate subtours. It requires that in each proper non-
empty subset of vertices S there are at most |S| — 1 edges between them. Indeed, having a subset
of vertices with |S| edges if S # V means that there are subtours in the solution, for instance if

§={1,2,3} asin Fig. 4b then 3, ;g ;255 =3 > |S| - 1.

The problem with model in Fig.5 is that there are exponential number of subsets .S, e.g. n = 10
results in 2772 = 1022 constraints of (16).

However, we may generate Constraint (16) in a lazy manner. In the beginning, the problem
is formulated first without these constraints, i.e. only with Constraints (14) and (15). Then each
time when the new integer solution is found during branching, we find a cycle in this solution; let
S be the nodes in this cycle. If |S| < n, i.e. the solution contains a subtour, the corresponding
constraint (16) is added to the model. Adding this constraint excludes this solution from the
search space in the further run. The constraints are added to the model until the solution is the
cycle of length n.

1.2.1 Lazy Constraints in Gurobi

Modern solvers, including Gurobi optimizer, allow the user to apply the lazy constraints trick by
using so called callbacks that are called whenever a feasible solution is found.

1.2.1.1 Java Lazy constraints have to be enabled by setting model parameter
GRB.IntParam.LazyConstraints to 1.

GRBModel model = new GRBModel (env);
model.set (GRB.IntParam.LazyConstraints, 1);

To define a callback, inherit from class GRBCallback and override method callback(). The
callback is then passed to model by setCallback().

public class MyCallback extends GRBCallback {
protected void callback() {

// Callback is called when some event occur. The type of event is
// distinguished using variable ’’where’’ defined in parent class.
// In this case, we want to perform something when an integer

// solution is found, which corresponds to ’’GRB.CB_MIPSOL’’.

if (where == GRB.CB_MIPSOL) {

// TODO: your code here...

// Get the value of variable x[i, j] from the solution.
// There are also methods for getting multiple values at once, see docs.
double value = getSolution(x[i, jl);

// Add lazy constraint to model.
addLazy (...);

model.setCallback(new MyCallback());
model.optimize () ;

1.2.1.2 Python Lazy constraints have to be enabled by setting model parameter
lazyConstraints to 1.

model = g.Model ()
model.Params.lazyConstraints = 1

To define a callback, create a function that accepts two arguments: model and where. The
callback is then passed to model when calling optimize ().

def my_callback(model, where):
Callback is called when some event occur. The type of event is
distinguished using argument ’’where’’.
In this case, we want to perform something when an integer
solution is found, which corresponds to ’’GRB.Callback.MIPSOL’’.
if where == GRB.Callback.MIPSOL:
TODO: your code here...

Get the value of variable x[i, j] from the solution.
You may also pass a list of variables to the method.
value = model.cbGetSolution(x[i, jI1)

Add lazy constraint to model.
model.cbLazy (...)

model.optimize (my_callback)

1.2.1.3 C++ Lazy constraints have to be enabled by setting model
GRB.IntParam.LazyConstraints to 1.

GRBModel model (env);
model.set (GRB_IntParam_LazyConstraints, 1);

parameter

To define a callback, inherit from class GRBCallback and override method callback(). The

callback is then passed to model by setCallback().

class MyCallback : public GRBCallback {
protected:
void callback () {

// Callback is called when some event occur. The type of event is
// distinguished using variable ’’where’’ defined in parent class.
// In this case, we want to perform something when an integer

// solution is found, which corresponds to ’’GRB_CB_MIPSOL’’.

if (where == GRB_CB_MIPSOL) {

// TODO: your code here...

// Get the value of variable x[i, j] from the solution.

// There are also methods for getting multiple values at once, see docs.

double value = getSolution(x[i, jl);
// Add lazy constraint to model.
addLazy (...);

}

MyCallback cb;

model.setCallback (&cb);
model.optimize () ;

2 A homework assignment - image unshredding

Image unshredding is a problem of reconstructing shredded images from a set of stripes as closely
as possible to the original image. For example, Fig. 6 shows the shredded image and Fig. 7 is its

reconstruction.

Figure 6: Example of shredded image.

Figure 7: Example of reconstructed image.

Interestingly, quite reliable image reconstructions can be obtained by transforming this problem
to Shortest Hamiltonian Path Problem (SHPP), where each stripe will represent one node in a
graph. The idea is to order the stripes in such a way that adjacent stripes are “similar”. For this,
we need to define a distance function between two stripes.

Let w denote the width, i.e., the number of pixel columns in each stripe and let m denote the
height, i.e., the number of rows in each stripe. Assume that we have two stripes S (see Fig. 8)
and S (see Fig. 9). Both stripes have width w = 2 and height h = 4.

255 0 0 0 0 255
0 128 128 0 256 O
0 0 255 255 0 0
0 255 O 255 0 0

(a) Color image of the stripe.
(b) RGB values of the pixels in left and right column.

Figure 8: Stripe S(),

0 0 255 0 255 O
0 0 255 0 255 0
255 0 0 0 0 255

) 0 255 0

(a) Color image of the stripe.
(b) RGB values of the pixels in left and right column.

Figure 9: Stripe S,

The distance function is a sum of the absolute difference between the RGB color components
of the adjacent pixel columns of the stripes, i.e.,

h 3
dist($M,5@) =33 s L stF | (18)
i=1 c=1
Notice that the distance function is generally not symmetric since different columns are compared,
ie.

dist(SM, §?)) = 1020 (19)
dist(S®, W) = 765 (20)

Therefore, the image unshredding problem can be solved by computing the distances between
every pair of stripes and solving the corresponding SHPP. The solution of the SHPP then represents
the order of the stripes.

Moreover, we can further transform SHPP to TSP by adding a “dummy” node that has a
zero distance to all other nodes (the nodes that will be connected to the dummy node in the
TSP solution are the left and right edges of the reconstructed image.). The motivation for this
transformation is that there exists really good solvers for TSP, whereas for SHPP this is not the
case.

A homework assignment: Implement a program that solves the image unshredding prob-
lem using T'SP. Implement exact TSP solver using lazy constraints. Upload your source
code to the CourseWare Upload System where it will be automatically evaluated.

Hint 1 (for Python): Computing the distances between stripes in Python may lead to
time-outs if not implemented efficiently. We strongly recommend using numpy, which is an
optimized library for working with matrices using Matlab-like interface. Eq. (18) can then
be computed using vectorized notation instead of two nested for-loops.

Hint 2: Use the following interface to your TSP solver: int[] solveTsp(double[] []
distances), where distances[i] [j] is a distance from node i to node j. The result of the
function is an ordered list of node indices forming the optimal circuit.

Hint 3: When an integer solution with multiple subtours is found in the callback, add the
constraint that forbids the shortest one. Experimentally, forbidding shortest subtours shows
good results.

2.1 Input and Output Format

Your program will be called with two arguments: the first one is absolute path to input file and the
second one is the absolute path to output file (the output file has to be created by your program).
The input file has the following form

n w h
(1) (1) (1) (1) (1) (1) (1)
S1110 S11,2 S11,3 0 S121 --- Siw3 S211 o+ Shws
(2) (2) (2) (2) (2) (2) (2)
S111 0 S112 S11,3 Si121 -0 Stw3 S211 - Shwgs
(n) (n) (n) (n) (n) (n) (n)
S1i1 0 S112 0 S1,1,3 Si1210 o0 Stws3 S211 - Shws

One space is used as a separator between values on one line. All the values in the input file are

non-negative integers. Values sgkj)c € {0,1,...,255} represent the color components of the pixels
in stripes.
The output file has the following form

(1) =w(2) ... =(n)

where 7 is an optimal permutation of the stripes (without the dummy stripe). All the values
in the input file are positive integers.
Example 1

Notice that the first stripes correspond to stripes S and S from Fig. 8 and Fig. 9, respectively.

Input:

324

266 000 0 2
0 0 2556 0 255
00255002

5 128 128 0 265 0 0 O
255 0 265 0 255 0O
02

0
0 2565 0 0 2656 O

55 255
00 25
0 0 25

o
N
o

o O

50 2
00 0
50 5

o o1 O
(2B @R

O O O

O N
)l

N OOl

o O O

O N
o)l

N O N

5 5

[}
[

Output:

321

References

[1] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The traveling salesman problem:
a computational study. The traveling salesman problem: a computational study, 2011.

	Traveling Salesman problem
	More efficient ILP formulation for TSP
	Lazy Constraints
	Lazy Constraints in Gurobi

	A homework assignment - image unshredding
	Input and Output Format

