
Combinatorial Optimization

Lab No. 1

An introduction to the experimental environment

Industrial Informatics Research Center

February 12, 2018

Abstract

The purpose of this lab is to introduce Gurobi Optimizer, which will be used during the
course for solving Linear Programming or Integer Linear Programming models. We also show
by example how to use Gurobi with different programming languages, namely C++, Java and
Python.

1 Gurobi Optimizer

Gurobi Optimizer1 is, at the present time, one of the best commercial solvers for a wide range
of optimization problems such as Linear Programming (LP), Quadratic Programming (QP),
Quadratically Constrained Programming (QCP), Mixed Integer Linear Programming (MILP),
Mixed-Integer Quadratic Programming (MIQP), and Mixed-Integer Quadratically Constrained
Programming (MIQCP). Moreover, obtaining license for academic purposes is quick and easy,
therefore this solver will be used for the purposes of this course.

2 Installation

First, create an account on Gurobi website http://www.gurobi.com/index . As “Account type”,
select “Academic” and use your CTU email address. After that, download Gurobi for your favorite
operating system (GNU/Linux, Mac OS, Windows). You should download either 7.5 or 7.0 version
depending on the context

• you would like to program homeworks in Python: for Python 3.5 select 7.0, for Python 3.6
select 7.5 (Python 2.7 works in both versions). Lab computers have Python 3.6, therefore,
you need to install Gurobi 7.5

• others: we recommend Gurobi 7.0 (Upload System uses Gurobi 7.0, therefore, using the
same version will give you maximum compatibility)

In this document, we will assume that you use Gurobi 7.0, so if necessary, modify the following
commands according to your version. To install Gurobi, follow the installation guide http://www.
gurobi.com/documentation/7.0/.

IMPORTANT (for C++ users): If you are using GNU/Linux system with g++ ≥ 5 and
would like to program homeworks in C++, you need perform the following

$ cd $GUROBI_HOME/src/build

$ make

$ cp libgurobi_c++.a $GUROBI_HOME/lib

This will build the C++ interface compatible with your g++ version.

1http://www.gurobi.com/index

1

http://www.gurobi.com/index
http://www.gurobi.com/documentation/7.0/
http://www.gurobi.com/documentation/7.0/
http://www.gurobi.com/index

2.1 GNU/Linux

Make sure that OS environment variable GUROBI HOME is pointing to directory with Gurobi and
LD LIBRARY PATH contains reference to $GUROBI HOME/lib

$ echo $GUROBI_HOME

/home/cimrman/opt/gurobi702/linux64

$ echo $LD_LIBRARY_PATH

:/home/cimrman/opt/gurobi702/linux64/lib

If this is not the case, you have to set the environment variables by appending the following into
your ~/.bashrc

export GUROBI_HOME=/path-to-gurobi-directory/linux64

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$GUROBI_HOME/lib

It is possible that you have to logout from your account so that the environment variables are
visible to the system.

2.2 Mac OS

Make sure that OS environment variable GUROBI HOME is pointing to directory with Gurobi and
DYLD LIBRARY PATH contains reference to $GUROBI HOME/lib.

2.3 Windows

Make sure that OS environment variable GUROBI HOME is pointing to directory with Gurobi and
PATH contains reference to %GUROBI HOME%\bin

> echo %GUROBI_HOME%

C:\gurobi702\win64

> echo %PATH%

C:\gurobi702\win64\bin;C:\WINDOWS\system32;C:\WINDOWS;

These variables should be already set by the Gurobi installer.

3 Obtaining Gurobi License

To use Gurobi, you need Academic License which can be requested at http://user.gurobi.

com/download/licenses/free-academic . After pushing “Request License” button, a new page
appears with command that you need to copy and paste to your system terminal, e.g. on UNIX
command line

$ $GUROBI_HOME/bin/grbgetkey license-key

where license-key is your license key.
IMPORTANT: in order to validate your academic license, you are required to execute the

command while being connected in CTU domain (eduroam or local area network). If you would
like to install Gurobi on your desktop computer at home and you do not have a possibility to
connect into CTU domain, you may request Online Course License at https://user.gurobi.

com/download/licenses/free-online. The difference between the academic and the course
licenses is that the latter can solve models with up to 2000 variables and 2000 constraints (should
be enough for the purpose of the course).

2

http://user.gurobi.com/download/licenses/free-academic
http://user.gurobi.com/download/licenses/free-academic
https://user.gurobi.com/download/licenses/free-online
https://user.gurobi.com/download/licenses/free-online

4 Programming interfaces

Gurobi Optimizer supports a variety of programming and modeling languages including C++,
Java, .NET, Python, C, R and MATLAB. In this course we support C++, Java and Python;
choose the language according to your preferences.

Let us consider the following LP model:

max 32x + 25y

s.t. 5x + 4y ≤ 59

4x + 3y ≤ 46

x, y ≥ 0

x, y ∈ R

Figure 1: LP model.

which has optimal value of 374. The following steps are generally required for implementing
the given model in any language:

• Importing the Gurobi functions and classes.

• Creating the environment for the optimization model. The environment represents the con-
figuration of the Gurobi (e.g. logging verbosity, number of used threads).

• Creating an empty optimization model.

• Adding the decision variables to the model with their types and bounds.

• Updating the model. The decision variables are added to the model in lazy fashion, i.e.
the effects of the modifications are not seen immediately, hence, it is necessary to manually
update the model.

• Setting and adding the objective function and the constraints to the model.

• When all the necessary components are created and set, the model is solved by calling
optimize().

• Reporting results. In particular, you can obtain the objective and the values of the decision
variables in the current solution.

• Cleaning up the resources associated with the model and environment. This step is optional,
garbage collector (Java, Python) or RAII (C++) will eventually clean up the resources.

In the following subsections, we show how to use the Java (see Section 4.2), Python (see Section 4.3)
and C++ (see Section 4.1) interfaces to solve the above mentioned LP model.

If you are interested in more examples, check http://www.gurobi.com/documentation/current/

examples.pdf or $GUROBI HOME/examples .

4.1 C++ Interface

Listing 1 shows the implementation of the example in C++.

Listing 1: C++ implementation of the model shown in Figure. 1.

1 #include <gurobi_c ++.h>

2 using namespace std;

3

http://www.gurobi.com/documentation/current/examples.pdf
http://www.gurobi.com/documentation/current/examples.pdf

3
4 int main(int argc , char *argv []) {

5 // Create new environment.

6 GRBEnv env;

7
8 // Create empty optimization model.

9 GRBModel model(env);

10
11 // Create variables x, y.

12 // addVar(lowerBound , upperBound , objectiveCoeff , variableType , name)

13 GRBVar x = model.addVar (0.0, GRB_INFINITY , 0.0, GRB_CONTINUOUS , "x");

14 GRBVar y = model.addVar (0.0, GRB_INFINITY , 0.0, GRB_CONTINUOUS , "y");

15
16 // Integrate new variables into model.

17 model.update ();

18
19 // Set objective: maximize 32x + 25y

20 model.setObjective (32*x + 25*y, GRB_MAXIMIZE);

21
22 // Add constraint: 5x + 4y <= 59

23 model.addConstr (5*x + 4*y <= 59, "cons1");

24
25 // Add constraint: 4x + 3y <= 46

26 model.addConstr (4*x + 3*y <= 46, "cons2");

27
28 // Solve the model.

29 model.optimize ();

30
31 // Print the objective

32 // and the values of the decision variables in the solution.

33 cout << "Optimal objective: " << model.get(GRB_DoubleAttr_ObjVal) << endl;

34 cout << "x: " << x.get(GRB_DoubleAttr_X) << " ";

35 cout << "y: " << y.get(GRB_DoubleAttr_X) << endl;

36
37 return 0;

38 }

To compile the example, you need to pass include and lib files to your compiler, e.g. for g++

$ g++ example.cpp -std=c++11 -O2 -march=native -pthread \

-I$GUROBI_HOME/include -L$GUROBI_HOME/lib -lgurobi_c++ -lgurobi70

If you are using Windows+Visual Studio, please follow this link http://www.technical-recipes.

com/2016/getting-started-with-gurobi-in-microsoft-visual-studio/ . If you prefer build-
ing your programs using CMake, check example.zip that you will find on CourseWare/Labs page.
The archive contains a Gurobi module finder for CMake.

4.2 Java Interface

Listing 2 shows the implementation of the example in Java. Unfortunately, Java does not support
operator overloading, therefore to create constraints and objective, GRBLinExpr has to be used.
GRBLinExpr represents a linear expression of a form

a1x1 + a2x2 + a3x3 + · · ·+ anxn

where xi are variables (instances of GRBVar class) and ai are scalar values. The terms aixi are
added to GRBLinExpr one-by-one with addTerm(double a, GRBVar x) or as a scalar product
addTerms(double[] a, GRBVar[] x).

Listing 2: Java implementation of the model shown in Figure. 1.
1 import gurobi .*;

2
3 public class Example {

4 public static void main(String [] args) throws Exception {

4

http://www.technical-recipes.com/2016/getting-started-with-gurobi-in-microsoft-visual-studio/
http://www.technical-recipes.com/2016/getting-started-with-gurobi-in-microsoft-visual-studio/

5 // Create new environment.

6 GRBEnv env = new GRBEnv ();

7
8 // Create empty optimization model.

9 GRBModel model = new GRBModel(env);

10
11 // Create variables x, y.

12 // addVar(lowerBound , upperBound , objectiveCoeff , variableType , name)

13 GRBVar x = model.addVar (0.0, GRB.INFINITY , 0.0, GRB.CONTINUOUS , "x");

14 GRBVar y = model.addVar (0.0, GRB.INFINITY , 0.0, GRB.CONTINUOUS , "y");

15
16 // Integrate new variables into model.

17 model.update ();

18
19 // Set objective: maximize 32x + 25y

20 GRBLinExpr obj = new GRBLinExpr ();

21 obj.addTerm (32.0, x);

22 obj.addTerm (25.0, y);

23 model.setObjective(obj , GRB.MAXIMIZE);

24
25 // Add constraint: 5x + 4y <= 59

26 GRBLinExpr cons1 = new GRBLinExpr ();

27 cons1.addTerm (5.0, x);

28 cons1.addTerm (4.0, y);

29 // addConstr(leftHandSide , inequalityType , rightHandSide , name)

30 model.addConstr(cons1 , GRB.LESS_EQUAL , 59.0, "cons1");

31
32 // Add constraint: 4x + 3y <= 46

33 GRBLinExpr cons2 = new GRBLinExpr ();

34 cons2.addTerm (4.0, x);

35 cons2.addTerm (3.0, y);

36 model.addConstr(cons2 , GRB.LESS_EQUAL , 46.0, "cons2");

37
38 // Solve the model.

39 model.optimize ();

40
41 // Print the objective

42 // and the values of the decision variables in the solution.

43 System.out.println(x.get(GRB.StringAttr.VarName)+ " " +x.get(GRB.DoubleAttr.X)

);

44 System.out.println(y.get(GRB.StringAttr.VarName) + " " +y.get(GRB.DoubleAttr.X

));

45 System.out.println("Obj: " + model.get(GRB.DoubleAttr.ObjVal));

46 }

47 }

To run the example from UNIX command line, make sure that $GUROBI HOME/lib/gurobi.jar

is in your classpath

$ javac -cp $GUROBI_HOME/lib/gurobi.jar Example.java

$ java -cp $GUROBI_HOME/lib/gurobi.jar:. Example

Similarly, the example can be run from Windows command line as follows (assuming that the
Java executables are in your PATH environment variable)

> javac.exe -cp %GUROBI_HOME%\lib\gurobi.jar Example.java

> java.exe -cp %GUROBI_HOME%\lib\gurobi.jar;. Example

If you prefer using IDE, it should be enough to add jarfile $GUROBI HOME/lib/gurobi.jar to
your project.

4.3 Python Interface

Both Python 2 and Python 3 versions are supported by Gurobi, just make sure that you use the
proper shebang in your scripts (here we will use Python 3). To include Gurobi’s module, one has
to install it first

5

$ cd $GUROBI_HOME

$ python3 setup.py install

If you do not have the administrator rights, you can install the Gurobi with following

$ python3 setup.py install --user

Listing 3 shows the implementation of the example in Python.

Listing 3: Python implementation of the model shown in Figure. 1.

1 #!/usr/bin/env python3

2
3 import gurobipy as g

4
5 # Create empty optimization model.

6 # In Python , only one environment exists and it is created internally

7 # in the Model () constructor.

8 model = g.Model()

9
10 # Create variables x, y.

11 x = model.addVar(lb=0, ub=g.GRB.INFINITY , vtype=g.GRB.CONTINUOUS , name="x")

12 y = model.addVar(lb=0, ub=g.GRB.INFINITY , vtype=g.GRB.CONTINUOUS , name="y")

13
14 # Integrate new variables into model.

15 model.update ()

16
17 # Set objective: maximize 32x + 25y

18 model.setObjective (32*x + 25*y, sense=g.GRB.MAXIMIZE)

19
20 # Add constraint: 5x + 4y <= 59

21 model.addConstr (5*x + 4*y <= 59, "cons1")

22
23 # Add constraint: 4x + 3y <= 46

24 model.addConstr (4*x + 3*y <= 46, "cons2")

25
26 # Solve the model.

27 model.optimize ()

28
29 # Print the objective and the values of the decision variables in the solution.

30 print("Optimal objective:", model.objVal)

31 print("x:", x.x, "y:", y.x)

There is also a neat shortcut quicksum for creating a linear expression of a form

a1x1 + a2x2 + a3x3 + · · ·+ anxn

where xi are variables and ai are scalar values. For example, we could do

1 # Create list of variables , x_i.

2 x = [model.addVar(lb=0, ub=g.GRB.INFINITY , vtype=g.GRB.CONTINUOUS),

3 model.addVar(lb=0, ub=g.GRB.INFINITY , vtype=g.GRB.CONTINUOUS)]

4
5 # Create list of coefficients , a_i.

6 a = [10, 50]

7
8 # Add constraint: 10x_1 + 50x_2 <= 31

9 model.addConstr(g.quicksum ([a_i*x_i

10 for a_i , x_i in zip(a, x)])

11 <= 31)

6

	Gurobi Optimizer
	Installation
	GNU/Linux
	Mac OS
	Windows

	Obtaining Gurobi License
	Programming interfaces
	C++ Interface
	Java Interface
	Python Interface

