CTU

Functional Programming Lecture 7: Lambda calculus

Viliam Lisý

Artificial Intelligence Center
Department of Computer Science
FEE, Czech Technical University in Prague

viliam.lisy@fel.cvut.cz

Acknowledgement

Lecture based on:
Raúl Rojas: A Tutorial Introduction to the Lambda Calculus, FU Berlin, WS-97/98.

Link will be provided in courseware.

Lambda calculus

Theory developed for studying properties of effectively computable functions

Formal basis for functional programming

- as Turing machines for imperative programming Smallest universal programming language
- function definition scheme
- variable substitution rule

Introduced by Alonzo Church in 1930s

Why do I care?

- Understand that lambda and application is enough to build any program
- without mutable state, assignment, define, etc.
- Understand how numbers, conditions, recursion can be created in a purely functional way
- Think about programming yet a little differently
- Have a clue when someone mentions λ-calculus
- Understand that Scheme syntax is not the worst

Syntax

A program in λ-calculus is an expression <expression> := <name> | <function> | <application> | (<expression>)
<function> := λ <name>.<expression> <application> := <expression><expression>
Names, also called a variables, will be a, b, c, \ldots
By convention
$E_{1} E_{2} E_{3} \ldots E_{n}$ is interpreted as $\left.\left(\ldots\left(E_{1} E_{2}\right) E_{3}\right) \ldots E_{n}\right)$

Function application

Identity function

Function can by applied to expression
$(\lambda x . x) y$
Function is applied by substituting arguments

$$
(\lambda x \cdot x) y=[y / x] x=y
$$

Free and bound variables

A variable in a body of a function is bound if it is an argument of the function and free otherwise. $\lambda x . x \boldsymbol{y},(\lambda x . x)(\lambda y . y \boldsymbol{x})$ - bold variables are free

Bound variable names can be renamed anytime $\lambda x . x \equiv \lambda y . y \equiv \lambda z . z$

Non-naming of functions

Function in λ-calculus do not have names
We apply a function by writing its whole definition We use capital letters and symbols to abbreviate this These function names are not a part of λ-calculus

The identity function is usually abbreviated by I

$$
I \equiv(\lambda x \cdot x)
$$

Example

$$
\begin{gathered}
I I \equiv \\
(\lambda x \cdot x)(\lambda y \cdot y) \\
{[\lambda y \cdot y / x] x=\lambda y \cdot y \equiv I}
\end{gathered}
$$

Name conflicts

Avoid name conflicts by renaming bound variables

1) do not let a substituent become bound

$$
\begin{gathered}
(\lambda x \cdot(\lambda y \cdot x y)) y \text { does not yield } \lambda y \cdot y y \\
{[y / x](\lambda z \cdot x z)=\lambda z \cdot y z}
\end{gathered}
$$

2) substitute only free occurrences of argument

$$
\begin{gathered}
(\lambda x \cdot(\lambda y \cdot(x(\lambda x \cdot x y)))) z \text { is not }(\lambda y \cdot(z(\lambda z \cdot z y))) \\
{[z / x](\lambda y \cdot(x(\lambda x \cdot x y)))=(\lambda y \cdot(z(\lambda x \cdot x y)))}
\end{gathered}
$$

Conditionals

$$
\begin{aligned}
& T \equiv \lambda x y \cdot x \\
& F \equiv \lambda x y \cdot y
\end{aligned}
$$

The T and F functions directly serve as If

$$
\begin{aligned}
& T a b=a \\
& F a b=b
\end{aligned}
$$

Logical operations

AND

$$
\wedge \equiv \lambda x y \cdot x y(\lambda u v \cdot v) \equiv \lambda x y \cdot x y F
$$

OR

$$
\vee \equiv \lambda x y \cdot x(\lambda u v \cdot u) y \equiv \lambda x y \cdot x T y
$$

Negation

$$
\neg \equiv \lambda x \cdot x(\lambda u v . v)(\lambda a b \cdot a) \equiv \lambda x \cdot x F T
$$

Numbers

We define a "zero" and a successor function representing the next number

$$
\begin{aligned}
& 0 \equiv \lambda s \cdot(\lambda z \cdot z) \equiv \lambda s z \cdot z \\
& 1 \equiv \lambda s z \cdot s(z) \\
& 2 \equiv \lambda s z \cdot s(s(z)) \\
& 3 \equiv \lambda s z \cdot s(s(s(z)))
\end{aligned}
$$

Functional alternative of binary representation

Successor function

Increment a number by one

$$
S \equiv \lambda w y x \cdot y(w y x)
$$

Increment zero to get one

$$
\begin{gathered}
S 0 \equiv(\lambda w y x \cdot y(w y x))(\lambda s z . z)= \\
\lambda y x \cdot y((\lambda s z . z) y x)= \\
\lambda y x \cdot y((\lambda z \cdot z) x)= \\
\lambda y x \cdot y(x) \equiv 1
\end{gathered}
$$

Try: S1, S2,...

Addition

$x+y$ is applying the successor x times to y

$$
\lambda x y . x(\ldots x(x(y)) \ldots)
$$

Meaning of number n is just "apply the first argument n times to the second argument"
Therefore $2+3$ is just:

$$
\begin{gathered}
2 S 3 \equiv \\
(\lambda s z \cdot s(s z))(\lambda w y x \cdot y(w y x))(\lambda u v \cdot u(u(u v))) \\
=S S 3=S 4=5
\end{gathered}
$$

Multiplication

We can multiply two numbers using

$$
* \equiv(\lambda x y z \cdot x(y z))
$$

$$
\begin{gathered}
* 23 \equiv(\lambda x y z \cdot x(y z)) 23=(\lambda z \cdot 2(3 z))= \\
(\lambda z \cdot(\lambda x y \cdot x(x(y)))(3 z))= \\
(\lambda z \cdot(\lambda y \cdot(3 z)((3 z)(y))))= \\
(\lambda z \cdot(\lambda y \cdot(z(z(z((3 z)(y)))))))= \\
(\lambda z y \cdot(z(z(z(z(z(z(y)))))))))=6
\end{gathered}
$$

Conditional tests

Test if a given number is the 0

$$
Z \equiv \lambda x \cdot x F \neg F
$$

$$
\begin{gathered}
Z 0 \equiv \\
(\lambda x \cdot x F \neg F) 0=0 F \neg F=\neg F=T \\
Z N \equiv \\
(\lambda x \cdot x F \neg F) N=N F \neg F \\
=F(\ldots F(\neg) \ldots) F=I F=F
\end{gathered}
$$

Pairs

The pair $[a, b]$ can be represented as ($\lambda z . z a b$)

We can extract the first element of the pair by

$$
(\lambda z . z a b) T
$$

and the second element by

$$
(\lambda z . z a b) F
$$

Predecessor

We want to create a function, which applied N times to something returns $N-1$
The function modifies a pair (x, y) to $(\mathrm{x}+1, \mathrm{x})$

$$
\Phi \equiv(\lambda p z \cdot z(S(p T))(p T))
$$

Calling Φ on $[0,0] N$ times yields [$N, N-1]$

$$
\Phi[0,0]=[1,0] \quad \Phi[1,0]=[2,1]
$$

Finally, we take the second number in the pair The predecessor function is

$$
P \equiv \lambda n \cdot n \Phi(\lambda z . z 00) F
$$

Note than the predecessor of 0 is 0

Equality and inequality

$x \geq y$ can be represented by

$$
G \equiv(\lambda x y . Z(x P y))
$$

Equality if than defined based on the above as

$$
E \equiv \lambda x y . \wedge G x y G y x=(\lambda x y . \wedge(Z(x P y))(Z(y P x)))
$$

Other inequalities can be defined analogically using the previously defined logical operations

Recursion

Can we create recursion without function names?

$$
Y \equiv(\lambda y \cdot(\lambda x \cdot y(x x))(\lambda x \cdot y(x x)))
$$

Now apply Y to some other function R

$$
\begin{gathered}
Y R=(\lambda x \cdot R(x x))(\lambda x \cdot R(x x))= \\
R((\lambda x \cdot R(x x))(\lambda x \cdot R(x x))))= \\
R(Y R)
\end{gathered}
$$

Function R is called with $Y R$ as the first argument

Recursion

We can recursively sum up first n integers as

$$
\sum_{i=0}^{n} i=n+\sum_{i=0}^{n-1} i
$$

In scheme

$$
\begin{aligned}
& \text { (define (sum-to } n \text {) } \\
& \qquad \begin{aligned}
(\text { if } & (=n 0) 0 \\
& (+n \quad(\text { sum-to }(-n ~ 1))))
\end{aligned}
\end{aligned}
$$

A corresponding recursive function is

$$
R \equiv(\lambda r n \cdot Z n 0(n S(r(P n))))
$$

Recursion

$$
\begin{gathered}
Y R 3= \\
R(Y R) 3=Z 30(3 S(Y R(P 3)))= \\
3 S(Y R 2)=3 S(2 S(Y R 1))=3 S 2 S 1 S 0=6
\end{gathered}
$$

Turing completeness

Turing machine

- a standard formal model of computation
- B4B01JAG Jazyky, automaty a gramatiky
- what can be solved by TM, can be solved by standard computers
A programming language Turing complete, if it can solve all problems solvable by TM
Lambda calculus is Turing complete

Summary

- Lambda calculus is formal bases of FP
- Simplest universal programming language
- Everything using lambda and application
- conditions
- numbers
- pairs
- recursion

