
Functional Programming
Lecture 7: Lambda calculus

Viliam Lisý

Artificial Intelligence Center
Department of Computer Science

FEE, Czech Technical University in Prague

viliam.lisy@fel.cvut.cz

Acknowledgement

Lecture based on:

 Raúl Rojas: A Tutorial Introduction to the Lambda
Calculus, FU Berlin, WS-97/98.

Link will be provided in courseware.

Lambda calculus

Theory developed for studying properties of
effectively computable functions

Formal basis for functional programming

– as Turing machines for imperative programming

Smallest universal programming language

– function definition scheme

– variable substitution rule

Introduced by Alonzo Church in 1930s

Why do I care?

• Understand that lambda and application is
enough to build any program

– without mutable state, assignment, define, etc.

• Understand how numbers, conditions, recursion
can be created in a purely functional way

• Think about programming yet a little differently

• Have a clue when someone mentions 𝜆-calculus

• Understand that Scheme syntax is not the worst

Syntax

A program in 𝜆-calculus is an expression

 <expression> := <name> | <function> | <application>

 | (<expression>)

 <function> := λ <name>.<expression>

 <application> := <expression><expression>

Names, also called a variables, will be a,b,c,…

By convention

𝐸1𝐸2𝐸3…𝐸𝑛 is interpreted as … 𝐸1𝐸2 𝐸3 …𝐸𝑛)

Function application

Identity function
𝜆𝑥. 𝑥

Function can by applied to expression
𝜆𝑥. 𝑥 𝑦

Function is applied by substituting arguments
𝜆𝑥. 𝑥 𝑦 = 𝑦/𝑥 𝑥 = 𝑦

Argument Body

Free and bound variables

A variable in a body of a function is bound if it is
an argument of the function and free otherwise.

𝜆𝑥. 𝑥𝒚, (𝜆𝑥. 𝑥)(𝜆𝑦. 𝑦𝒙) - bold variables are free

Bound variable names can be renamed anytime
𝜆𝑥. 𝑥 ≡ 𝜆𝑦. 𝑦 ≡ 𝜆𝑧. 𝑧

Non-naming of functions

Function in 𝜆-calculus do not have names

We apply a function by writing its whole definition

We use capital letters and symbols to abbreviate this

These function names are not a part of 𝜆-calculus

The identity function is usually abbreviated by 𝐼
𝐼 ≡ (𝜆𝑥. 𝑥)

Example

𝐼𝐼 ≡
𝜆𝑥. 𝑥 𝜆𝑦. 𝑦

𝜆𝑦. 𝑦/𝑥 𝑥 = 𝜆𝑦. 𝑦 ≡ 𝐼

Name conflicts

Avoid name conflicts by renaming bound variables

1) do not let a substituent become bound

𝜆𝑥. 𝜆𝑦. 𝑥𝑦 𝑦 does not yield 𝜆𝑦. 𝑦𝑦

𝑦/𝑥 𝜆𝑧. 𝑥𝑧 = 𝜆𝑧. 𝑦𝑧

2) substitute only free occurrences of argument

𝜆𝑥. 𝜆𝑦. 𝑥 𝜆𝑥. 𝑥𝑦 𝑧 is not (𝜆𝑦. (𝑧(𝜆𝑧. 𝑧𝑦)))

[𝑧/𝑥](𝜆𝑦. (𝑥(𝜆𝑥. 𝑥𝑦))) = (𝜆𝑦. (𝑧(𝜆𝑥. 𝑥𝑦)))

Conditionals

𝑇 ≡ 𝜆𝑥𝑦. 𝑥
𝐹 ≡ 𝜆𝑥𝑦. 𝑦

The 𝑇 and 𝐹 functions directly serve as If
𝑇𝑎𝑏 = 𝑎
𝐹𝑎𝑏 = 𝑏

Logical operations

AND
∧ ≡ 𝜆𝑥𝑦. 𝑥𝑦 𝜆𝑢𝑣. 𝑣 ≡ 𝜆𝑥𝑦. 𝑥𝑦𝐹

OR
∨ ≡ 𝜆𝑥𝑦. 𝑥(𝜆𝑢𝑣. 𝑢)𝑦 ≡ 𝜆𝑥𝑦. 𝑥𝑇𝑦

Negation
¬ ≡ 𝜆𝑥. 𝑥(𝜆𝑢𝑣. 𝑣)(𝜆𝑎𝑏. 𝑎) ≡ 𝜆𝑥. 𝑥𝐹𝑇

Numbers

We define a "zero" and a successor function
representing the next number

 0 ≡ 𝜆𝑠. 𝜆𝑧. 𝑧 ≡ 𝜆𝑠𝑧. 𝑧

 1 ≡ 𝜆𝑠𝑧. 𝑠 𝑧

 2 ≡ 𝜆𝑠𝑧. 𝑠 𝑠 𝑧

 3 ≡ 𝜆𝑠𝑧. 𝑠(𝑠(𝑠(𝑧)))

Functional alternative of binary representation

Successor function

Increment a number by one
𝑆 ≡ 𝜆𝑤𝑦𝑥. 𝑦(𝑤𝑦𝑥)

Increment zero to get one

𝑆0 ≡ 𝜆𝑤𝑦𝑥. 𝑦 𝑤𝑦𝑥 𝜆𝑠𝑧. 𝑧 =

𝜆𝑦𝑥. 𝑦 𝜆𝑠𝑧. 𝑧 𝑦𝑥 =

𝜆𝑦𝑥. 𝑦 𝜆𝑧. 𝑧 𝑥 =
 𝜆𝑦𝑥. 𝑦(𝑥) ≡ 1

Try: 𝑆1, S2,…

Addition

𝑥 + 𝑦 is applying the successor 𝑥 times to y
𝜆𝑥𝑦. 𝑥(…𝑥(𝑥 𝑦)…)

Meaning of number 𝑛 is just "apply the first
argument 𝑛 times to the second argument"

Therefore 2+3 is just:
2𝑆3 ≡

 (𝜆𝑠𝑧. 𝑠(𝑠𝑧))(𝜆𝑤𝑦𝑥. 𝑦(𝑤𝑦𝑥))(𝜆𝑢𝑣. 𝑢(𝑢(𝑢𝑣)))
= 𝑆𝑆3 = 𝑆4 = 5

Multiplication

We can multiply two numbers using
∗ ≡ (𝜆𝑥𝑦𝑧. 𝑥(𝑦𝑧))

∗ 23 ≡ 𝜆𝑥𝑦𝑧. 𝑥 𝑦𝑧 23 = 𝜆𝑧. 2 3𝑧 =

𝜆𝑧. (𝜆𝑥𝑦. 𝑥 𝑥 𝑦) 3𝑧 =

𝜆𝑧. (𝜆𝑦. 3𝑧 3𝑧 𝑦) =

𝜆𝑧. (𝜆𝑦. 𝑧 𝑧 𝑧 3𝑧 𝑦) =

𝜆𝑧𝑦. 𝑧 𝑧 𝑧 𝑧(𝑧 𝑧 𝑦)) = 6

Conditional tests

Test if a given number is the 0
𝑍 ≡ 𝜆𝑥. 𝑥𝐹¬𝐹

𝑍0 ≡

 (𝜆𝑥. 𝑥𝐹¬𝐹)0 = 0𝐹¬𝐹 = ¬𝐹 = 𝑇

𝑍𝑁 ≡

 𝜆𝑥. 𝑥𝐹¬𝐹 𝑁 = 𝑁𝐹¬𝐹
= 𝐹 …𝐹(¬ …)𝐹 = 𝐼𝐹 = 𝐹

Pairs

The pair 𝑎, 𝑏 can be represented as
𝜆𝑧. 𝑧𝑎𝑏

We can extract the first element of the pair by
𝜆𝑧. 𝑧𝑎𝑏 𝑇

and the second element by
𝜆𝑧. 𝑧𝑎𝑏 𝐹

Predecessor

We want to create a function, which applied 𝑁
times to something returns 𝑁 − 1

The function modifies a pair (𝑥, 𝑦) to (x+1,x)
𝛷 ≡ (𝜆𝑝𝑧. 𝑧(𝑆(𝑝𝑇))(𝑝𝑇))

Calling 𝛷 on [0,0] 𝑁 times yields [𝑁, 𝑁 − 1]
𝛷 0,0 = 1,0 𝛷 1,0 = 2,1 …

Finally, we take the second number in the pair

The predecessor function is
𝑃 ≡ 𝜆𝑛. 𝑛𝛷(𝜆𝑧. 𝑧00)𝐹

Note than the predecessor of 0 is 0

Equality and inequality

𝑥 ≥ 𝑦 can be represented by
𝐺 ≡ (𝜆𝑥𝑦. 𝑍(𝑥𝑃𝑦))

Equality if than defined based on the above as
𝐸 ≡ 𝜆𝑥𝑦.∧ 𝐺𝑥𝑦𝐺𝑦𝑥 = (𝜆𝑥𝑦.∧ (𝑍(𝑥𝑃𝑦))(𝑍(𝑦𝑃𝑥)))

Other inequalities can be defined analogically
using the previously defined logical operations

Recursion

Can we create recursion without function names?
𝑌 ≡ (𝜆𝑦. (𝜆𝑥. 𝑦(𝑥𝑥))(𝜆𝑥. 𝑦(𝑥𝑥)))

Now apply 𝑌 to some other function R
𝑌𝑅 = 𝜆𝑥. 𝑅 𝑥𝑥 𝜆𝑥. 𝑅 𝑥𝑥 =

𝑅((𝜆𝑥. 𝑅(𝑥𝑥))(𝜆𝑥. 𝑅(𝑥𝑥)))) =
𝑅 𝑌𝑅

Function R is called with YR as the first argument

Recursion

We can recursively sum up first 𝑛 integers as

 𝑖

𝑛

𝑖=0

= 𝑛 + 𝑖

𝑛−1

𝑖=0

In scheme
(define (sum-to n)

 (if (= n 0) 0

 (+ n (sum-to (- n 1))))

A corresponding recursive function is
𝑅 ≡ (𝜆𝑟𝑛. 𝑍𝑛0(𝑛𝑆(𝑟(𝑃𝑛))))

Recursion

𝑌𝑅3 =

 𝑅 𝑌𝑅 3 = 𝑍30 3𝑆 𝑌𝑅 𝑃3 =

3𝑆 𝑌𝑅2 = 3𝑆 2𝑆 𝑌𝑅1 = 3𝑆2𝑆1𝑆0 = 6

Turing completeness

Turing machine

– a standard formal model of computation

– B4B01JAG Jazyky, automaty a gramatiky

– what can be solved by TM, can be solved by
standard computers

A programming language Turing complete, if it
can solve all problems solvable by TM

Lambda calculus is Turing complete

Summary

• Lambda calculus is formal bases of FP

• Simplest universal programming language

• Everything using lambda and application

– conditions

– numbers

– pairs

– recursion

