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Lambda calculus 

Theory developed for studying properties of 
effectively computable functions 

Formal basis for functional programming 

– as Turing machines for imperative programming 

Smallest universal programming language 

– function definition scheme 

– variable substitution rule 

Introduced by Alonzo Church in 1930s 



Why do I care? 

• Understand that lambda and application is 
enough to build any program 

– without mutable state, assignment, define, etc. 

• Understand how numbers, conditions,  recursion 
can be created in a purely functional way 

• Think about programming yet a little differently 

• Have a clue when someone mentions 𝜆-calculus 

• Understand that Scheme syntax is not the worst 



Syntax 

A program in 𝜆-calculus is an expression  

    <expression> := <name> | <function> | <application>  

                            | (<expression>) 

    <function> := λ <name>.<expression> 

    <application> := <expression><expression> 

Names, also called a variables, will be a,b,c,… 

By convention 

𝐸1𝐸2𝐸3…𝐸𝑛 is interpreted as … 𝐸1𝐸2 𝐸3 …𝐸𝑛) 



Function application 

Identity function 
𝜆𝑥. 𝑥 

Function can by applied to expression 
𝜆𝑥. 𝑥 𝑦 

Function is applied by substituting arguments 
𝜆𝑥. 𝑥 𝑦 = 𝑦/𝑥 𝑥 = 𝑦 

Argument Body 



Free and bound variables 

A variable in a body of a function is bound if it is 
an argument of the function and free otherwise. 

𝜆𝑥. 𝑥𝒚, (𝜆𝑥. 𝑥)(𝜆𝑦. 𝑦𝒙)  - bold variables are free 

 

 

Bound variable names can be renamed anytime 
𝜆𝑥. 𝑥 ≡ 𝜆𝑦. 𝑦 ≡ 𝜆𝑧. 𝑧 



Non-naming of functions 

Function in 𝜆-calculus do not have names 

We apply a function by writing its whole definition 

We use capital letters and symbols to abbreviate this 

These function names are not a part of 𝜆-calculus 

 

The identity function is usually abbreviated by 𝐼 
𝐼 ≡ (𝜆𝑥. 𝑥) 



Example 

𝐼𝐼 ≡ 
𝜆𝑥. 𝑥 𝜆𝑦. 𝑦  

𝜆𝑦. 𝑦/𝑥 𝑥 = 𝜆𝑦. 𝑦 ≡ 𝐼 

 

 



Name conflicts 

Avoid name conflicts by renaming bound variables 

1) do not let a substituent become bound 

𝜆𝑥. 𝜆𝑦. 𝑥𝑦 𝑦 does not yield 𝜆𝑦. 𝑦𝑦 

𝑦/𝑥 𝜆𝑧. 𝑥𝑧 = 𝜆𝑧. 𝑦𝑧 

2) substitute only free occurrences of argument 

𝜆𝑥. 𝜆𝑦. 𝑥 𝜆𝑥. 𝑥𝑦 𝑧  is not (𝜆𝑦. (𝑧(𝜆𝑧. 𝑧𝑦))) 

[𝑧/𝑥](𝜆𝑦. (𝑥(𝜆𝑥. 𝑥𝑦)))  =  (𝜆𝑦. (𝑧(𝜆𝑥. 𝑥𝑦))) 



Conditionals 

𝑇 ≡  𝜆𝑥𝑦. 𝑥 
𝐹 ≡  𝜆𝑥𝑦. 𝑦 

 

The 𝑇 and 𝐹 functions directly serve as If  
𝑇𝑎𝑏 = 𝑎 
𝐹𝑎𝑏 = 𝑏 

 



Logical operations 

AND 
∧ ≡  𝜆𝑥𝑦. 𝑥𝑦 𝜆𝑢𝑣. 𝑣 ≡  𝜆𝑥𝑦. 𝑥𝑦𝐹 

OR 
∨ ≡  𝜆𝑥𝑦. 𝑥(𝜆𝑢𝑣. 𝑢)𝑦 ≡  𝜆𝑥𝑦. 𝑥𝑇𝑦 

Negation 
¬ ≡  𝜆𝑥. 𝑥(𝜆𝑢𝑣. 𝑣)(𝜆𝑎𝑏. 𝑎)  ≡  𝜆𝑥. 𝑥𝐹𝑇 



Numbers 

We define a "zero" and a successor function 
representing the next number 

                   0 ≡ 𝜆𝑠. 𝜆𝑧. 𝑧 ≡ 𝜆𝑠𝑧. 𝑧 

                   1 ≡  𝜆𝑠𝑧. 𝑠 𝑧  

                   2 ≡  𝜆𝑠𝑧. 𝑠 𝑠 𝑧   

                   3 ≡  𝜆𝑠𝑧. 𝑠(𝑠(𝑠(𝑧))) 

 

Functional alternative of binary representation 

 



Successor function 

Increment a number by one 
𝑆 ≡  𝜆𝑤𝑦𝑥. 𝑦(𝑤𝑦𝑥) 

Increment zero to get one 

𝑆0 ≡  𝜆𝑤𝑦𝑥. 𝑦 𝑤𝑦𝑥 𝜆𝑠𝑧. 𝑧 = 

𝜆𝑦𝑥. 𝑦 𝜆𝑠𝑧. 𝑧 𝑦𝑥 = 

𝜆𝑦𝑥. 𝑦 𝜆𝑧. 𝑧 𝑥 = 
 𝜆𝑦𝑥. 𝑦(𝑥)  ≡  1 

Try: 𝑆1, S2,… 

 



Addition 

𝑥 + 𝑦 is applying the successor 𝑥 times to y 
𝜆𝑥𝑦. 𝑥(…𝑥(𝑥 𝑦 )… ) 

Meaning of number 𝑛 is just "apply the first 
argument 𝑛 times to the second argument" 

Therefore 2+3 is just: 
2𝑆3 ≡ 

 (𝜆𝑠𝑧. 𝑠(𝑠𝑧))(𝜆𝑤𝑦𝑥. 𝑦(𝑤𝑦𝑥))(𝜆𝑢𝑣. 𝑢(𝑢(𝑢𝑣))) 
= 𝑆𝑆3 = 𝑆4 = 5 



Multiplication 

We can multiply two numbers using  
∗ ≡ (𝜆𝑥𝑦𝑧. 𝑥(𝑦𝑧)) 

 

∗ 23 ≡ 𝜆𝑥𝑦𝑧. 𝑥 𝑦𝑧 23 = 𝜆𝑧. 2 3𝑧 = 

𝜆𝑧. (𝜆𝑥𝑦. 𝑥 𝑥 𝑦 ) 3𝑧 = 

𝜆𝑧. (𝜆𝑦. 3𝑧 3𝑧 𝑦 ) = 

𝜆𝑧. (𝜆𝑦. 𝑧 𝑧 𝑧 3𝑧 𝑦 ) = 

𝜆𝑧𝑦. 𝑧 𝑧 𝑧 𝑧(𝑧 𝑧 𝑦 )) = 6 

 

 

 

 

 



Conditional tests 

Test if a given number is the 0 
𝑍 ≡  𝜆𝑥. 𝑥𝐹¬𝐹 

 
𝑍0 ≡ 

 (𝜆𝑥. 𝑥𝐹¬𝐹)0 =  0𝐹¬𝐹 =  ¬𝐹 =  𝑇 

 
𝑍𝑁 ≡ 

 𝜆𝑥. 𝑥𝐹¬𝐹 𝑁 =  𝑁𝐹¬𝐹 
= 𝐹 …𝐹(¬ …)𝐹 = 𝐼𝐹 = 𝐹 



Pairs 

The pair 𝑎, 𝑏  can be represented as 
𝜆𝑧. 𝑧𝑎𝑏  

 

We can extract the first element of the pair by 
𝜆𝑧. 𝑧𝑎𝑏 𝑇 

and the second element by  
𝜆𝑧. 𝑧𝑎𝑏 𝐹 

 

 



Predecessor 

We want to create a function, which applied 𝑁 
times to something returns 𝑁 − 1 

The function modifies a pair (𝑥, 𝑦) to (x+1,x) 
𝛷 ≡  (𝜆𝑝𝑧. 𝑧(𝑆(𝑝𝑇))(𝑝𝑇)) 

Calling 𝛷 on [0,0] 𝑁 times yields [𝑁, 𝑁 − 1] 
𝛷 0,0 = 1,0       𝛷 1,0 = 2,1    … 

Finally, we take the second number in the pair 

The predecessor function is 
𝑃 ≡  𝜆𝑛. 𝑛𝛷(𝜆𝑧. 𝑧00)𝐹 

Note than the predecessor of 0 is 0 



Equality and inequality 

𝑥 ≥ 𝑦 can be represented by 
𝐺 ≡  (𝜆𝑥𝑦. 𝑍(𝑥𝑃𝑦)) 

Equality if than defined based on the above as 
𝐸 ≡ 𝜆𝑥𝑦.∧ 𝐺𝑥𝑦𝐺𝑦𝑥 = (𝜆𝑥𝑦.∧  (𝑍(𝑥𝑃𝑦))(𝑍(𝑦𝑃𝑥))) 

 

Other inequalities can be defined analogically 
using the previously defined logical operations 



Recursion 

Can we create recursion without function names? 
𝑌 ≡  (𝜆𝑦. (𝜆𝑥. 𝑦(𝑥𝑥))(𝜆𝑥. 𝑦(𝑥𝑥))) 

Now apply 𝑌 to some other function R 
𝑌𝑅 =  𝜆𝑥. 𝑅 𝑥𝑥 𝜆𝑥. 𝑅 𝑥𝑥 = 

𝑅((𝜆𝑥. 𝑅(𝑥𝑥))(𝜆𝑥. 𝑅(𝑥𝑥)))) = 
𝑅 𝑌𝑅  

Function R is called with YR as the first argument 



Recursion 

We can recursively sum up first 𝑛 integers as 

 𝑖

𝑛

𝑖=0

= 𝑛 + 𝑖

𝑛−1

𝑖=0

 

In scheme 
(define (sum-to n) 

  (if (= n 0) 0  

      (+ n (sum-to (- n 1)))) 

A corresponding recursive function is 
𝑅 ≡  (𝜆𝑟𝑛. 𝑍𝑛0(𝑛𝑆(𝑟(𝑃𝑛)))) 



Recursion 

𝑌𝑅3 = 

 𝑅 𝑌𝑅 3 =  𝑍30 3𝑆 𝑌𝑅 𝑃3 = 

3𝑆 𝑌𝑅2 = 3𝑆 2𝑆 𝑌𝑅1 = 3𝑆2𝑆1𝑆0 = 6 



Turing completeness 

Turing machine  

– a standard formal model of computation 

– B4B01JAG Jazyky, automaty a gramatiky 

– what can be solved by TM, can be solved by 
standard computers 

A programming language Turing complete, if it 
can solve all problems solvable by TM 

Lambda calculus is Turing complete 



Summary 

• Lambda calculus is formal bases of FP 

• Simplest universal programming language 

• Everything using lambda and application 

– conditions 

– numbers 

– pairs 

– recursion 


