UNIVERSITY

IN PRAGUE CENTER

L]
/“%»f%é - /\l

Functional Programming
Lecture 7: Lambda calculus

Viliam Lisy

Artificial Intelligence Center
Department of Computer Science
FEE, Czech Technical University in Prague

viliam.lisy@fel.cvut.cz

Acknowledgement

Lecture based on:

Raul Rojas: A Tutorial Introduction to the Lambda
Calculus, FU Berlin, WS-97/98.

Link will be provided in courseware.

Lambda calculus

Theory developed for studying properties of
effectively computable functions
Formal basis for functional programming

— as Turing machines for imperative programming
Smallest universal programming language

— function definition scheme
— variable substitution rule

Introduced by Alonzo Church in 1930s

Why do | care?

Understand that lambda and application is
enough to build any program

— without mutable state, assignment, define, etc.

Understand how numbers, conditions, recursion
can be created in a purely functional way

Think about programming yet a little differently
Have a clue when someone mentions A-calculus
Understand that Scheme syntax is not the worst

Syntax

A program in A-calculus is an expression
<expression> := <name> | <function> | <application>
| (<expression>)
<function> := A <name>.<expression>

<application> := <expression><expression>
Names, also called a variables, will be a,b,c,...

By convention
EE;E; ...E, isinterpreted as (... (E{E,)E3) ... E;)

Function application

Argument Body

ldentity function N
Ax. x

Function can by applied to expression
(Ax.x)y
Function is applied by substituting arguments
(Ax.x)y = ly/x]x =y

Free and bound variables

A variable in a body of a function is bound if it is
an argument of the function and free otherwise.

Ax.xy, (Ax.x)(Ay.yx) - bold variables are free

Bound variable names can be renamed anytime
Ax.x = Ay.y =1z.z

Non-naming of functions

Function in A-calculus do not have names
We apply a function by writing its whole definition
We use capital letters and symbols to abbreviate this

These function names are not a part of A-calculus

The identity function is usually abbreviated by I
I = (Ax.x)

Example

I =
(Ax.x)(Ay.y)
Ay.y/x|x =Ay.y =1

Name conflicts

Avoid name conflicts by renaming bound variables
1) do not let a substituent become bound

(Ax. (Ay.xy))y does not yield 1y. yy
ly/x|(Az.xz) = Az.yz

2) substitute only free occurrences of argument

(Ax. (Ay. (x(x. xy)))) z isnot (Ay. (z(Az. zy)))
[z/x](Ay. (x(Ax.xy))) = (Ay.(z(Ax.xY)))

Conditionals

Axy. x
Axy.y

T
F

The T and F functions directly serve as If
Tab = a
Fab =b

Logical operations

AND

A= Axy.xy(Auv.v) = Axy.xyF
OR

V= Axy.x(Auv.u)y = Axy.xTy
Negation

- = Ax.x(luv.v)(Adab.a) = Ax.xFT

Numbers

We define a "zero" and a successor function
representing the next number

0=As.(1z.2z) = Asz.z
1= Asz.s(2)

2 = ASZ.S(S(Z))

3= Asz.5(s(s(2)))

Functional alternative of binary representation

Successor function

Increment a number by one

S = Awyx.y(wyx)
Increment zero to get one

SO0 = (Awyx. y(wyx))(/lsz. zZ) =
Ayx.y((Asz.z)yx) =
Ayx.y((Az.2)x) =
Ayx.y(x) = 1

Try: 51, S2,...

Addition

x + y is applying the successor x times toy

Axy. x(..x(x(y)) ...)

Meaning of number n is just "apply the first
argument n times to the second argument”

Therefore 2+3 is just:
253 =

(Asz.s(sz))(Awyx. y(wyx)) (Auv. u(u(uv)))
=553 =54=5

Multiplication

We can multiply two numbers using
* = (Axyz.x(yz))

x 23 = (Axyz.x(yz))23 = ()LZ.Z(3z)) —
(/12. (Axy. x(x(y)))(gz)) _
(22.(1y. B2)(B2) (1)) =

()lz. (Ay. <z (z (2((32) (y))))))) _
(Azy. (z (Z (z(z(z(z(y)))))))>> =6

Conditional tests

Test if a given number is the O
Z = Ax.xF—=F

(Ax.xF=F)0 =

ZN =
(/19(,' XF—lF)N = NF=F
=F(..F(=).)F=IF=F

Pairs

The pair [a, b| can be represented as
(Az.zab)

We can extract the first element of the pair by
(Az.zab)T

and the second element by
(Az.zab)F

Predecessor

We want to create a function, which applied N
times to something returns N — 1

The function modifies a pair (x, y) to (x+1,x)
= (Apz.z(S(pT))(PT))

Calling @ on [O O] N times yields [N, N — 1]
®[0,0] = [1,0] @[1,0] = [2,1]

Finally, we take the second number in the pair

The predecessor function is
P = In.nd(1z.z00)F

Note than the predecessor of 0is 0

Equality and inequality

X = y can be represented by
G = (Axy.Z(xPy))

Equality if than defined based on the above as
E = Axy.A GxyGyx = (Axy.A (Z(xPy))(Z(yPx)))

Other inequalities can be defined analogically
using the previously defined logical operations

Recursion

Can we create recursion without function names?
Y = (Ay. (Ax. y(xx)) (Ax. y(xx)))
Now apply Y to some other function R
YR = (/lx. R(xx))(/lx. R(xx)) =
R((Ax.R(xx))(Ax.R(xx)))) =
R(YR)

Function R is called with YR as the first argument

Recursion

We can recursively sum up first n integers as

n-—1

i=n+Zi

n
=0 =0

In scheme
(define (sum-to n)
(if (= n 0) O

(+ n (sum-to (- n 1))))

A corresponding recursive function is
R = (An.Zn0(nS(r(Pn))))

Recursion

YR3 =
R(YR)3 = 730 (35(YR(P3))) =
3S(YR2) = 35(2S(YR1)) = 3525150 = 6

Turing completeness

Turing machine
— a standard formal model of computation
— B4B0O1JAG Jazyky, automaty a gramatiky

— what can be solved by TM, can be solved by
standard computers

A programming language Turing complete, if it
can solve all problems solvable by TM

Lambda calculus is Turing complete

Summary

 Lambda calculus is formal bases of FP
* Simplest universal programming language

* Everything using lambda and application
— conditions
— numbers
— pairs
— recursion

