CTU

Functional Programming
 Lecture 10: Other Haskell Language Features

Viliam Lisý

Artificial Intelligence Center
Department of Computer Science
FEE, Czech Technical University in Prague

viliam.lisy@fel.cvut.cz

Example: Arithmetic Expressions

Recursive typed can represent tree structures, such as expressions from numbers, plus, multiplication.

$$
\begin{aligned}
& \hline \text { data Expr }=\text { Val Int } \\
& \text { | Add Expr Expr } \\
& \text { | Mul Expr Expr } \\
& \hline
\end{aligned}
$$

$$
1+2 * 3
$$

Add (Va1 1) (Mul (Va1 2) (Va1 3))

Using recursion, it is now easy to define functions that process expressions. For example:

$$
\begin{aligned}
& \text { size : : Exp } \rightarrow \text { Int } \\
& \text { size (Val } n \text {) }=1 \\
& \text { size (Add } x \text { y) }=\text { size } x+\text { size } y \\
& \text { size (MuT } x \text { y) }=\text { size } x+\text { size } y \\
& \text { eva : : Expr } \rightarrow \text { Int } \\
& \text { eva (Val } n)=n \\
& \text { eva (Add } x y)=\text { eva } x+\text { eva } y \\
& \text { eva (M ul } x y)=\text { eva } x * \text { eva } y
\end{aligned}
$$

Type Classes

Functions required by a class can be accessed by :info <classname> :info Eq -- produces the following

$$
\begin{aligned}
& \text { Class Eq a where } \\
& (==) \text { : : a -> a -> Bool } \\
& (/=): \text { a -> a -> Bool }
\end{aligned}
$$

Functions can often be implemented based on other only minimal complete definition is required (one of the above)

Show Class

A class values convertible to a readable string

$$
\begin{array}{|l}
\hline \text { class Show a where } \\
\text { showsPrec : : Int -> a -> ShowS } \\
\text { show : a -> String } \\
\text { showList : : [a] -> ShowS } \\
\hline
\end{array}
$$

type ShowS = String -> String

This allows constant-time concatenation of results using function composition (optimization)

Minimal complete definition: showsPrec \| show

Instance of a Class

A new instance can be added to a class by

```
instance Show Nat where
show n = "N" ++ show (nat2int n)
```

instance Show Exp where show (Val n) = show n
show (Add el eZ) = "(+ " ++ show el ++ " "
++ show eZ ++ ")"
show (MuT el eZ) = "(* " ++ show el ++ " " ++ show e2 ++ ")"

Class Contexts

Remember the definition
data Maybe a = Nothing | Just a

To make Maybe an instance of Eq, a has to be in Eq

> instance Eq a $=>$ Eq (Maybe a) where Nothing $==$ Nothing $=$ True (Just x) $==$ (Just $\left.x^{\prime}\right)=x==x^{\prime}$

Deriving Classes

Obvious definition of instances are automated

$$
\begin{aligned}
\text { data Shape } & =\text { Circle Float } \\
& \text { | Rect Float Float } \\
& \text { deriving (Show, Eq) }
\end{aligned}
$$

Defining Classes

The implemented function bodies determine the minimum required functions

$$
\begin{aligned}
& \hline \text { class Eq } a \text { where } \\
&(==): ~ a ~->~ a ~ \text { Bool } \\
&(/=):: \text { a }->a->\text { Bool } \\
& x==y=\operatorname{not}(x /=y) \\
& x /=y=\operatorname{not}(x==y) \\
& \hline
\end{aligned}
$$

Functor Class

Class of structures you can map over

> class Mapable f where \quad mmap :: (a ->b) ->fa ->fb

```
instance Mapable[] where
    mmap = map
instance Mapable Maybe where
    mmap f (Just x) = Just (f x)
    mmap f Nothing = Nothing
```


Kinds

Types of types

* A specific type
* -> * A type that given a type creates a type
:k

Types Summary

- Everything has a type known in compile time
- basic values
- functions
- data structures
- Types are key for data structures in Haskell
- Types can be instances of classes
- polymorphic functions
- "Types" of types are kinds

Higher Order Functions

The same functions as in scheme are available

$$
\text { map }::(\mathrm{a} \rightarrow \mathrm{~b}) \rightarrow[\mathrm{a}] \rightarrow[\mathrm{b}]
$$

filter $::(a \rightarrow$ Boot) $\rightarrow[a] \rightarrow[a]$
map $\mathrm{f} \mathrm{xs}=[\mathrm{f} \mathrm{x} \mid \mathrm{x} \leftarrow \mathrm{xs}]$
filter p xs $=[x \mid x \leftarrow x s, p x]$

Foldr

$$
\text { foldr }::(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow[a] \rightarrow b
$$

\square
$=$
foldr (+) $0[1,2,3]$
$=$
foldr (+) 0 (1:(2:(3:[])))
$=$
$1+(2+(3+0))$
II
6

Replace each (:) by (+) and [] by 0.

Lambda Expressions

Functions can be constructed without naming the functions by using lambda expressions.

$$
\lambda x \rightarrow x+x
$$

The symbol λ is typed as a backslash \backslash.
In mathematics, nameless functions are usually denoted using the \rightarrow symbol, as in $x \rightarrow x+x$.

As in scheme,

$$
\text { add } \mathrm{x} y=\mathrm{x}+\mathrm{y}
$$

means

$$
\text { add }=\lambda x \rightarrow(\lambda y \rightarrow x+y)
$$

We also have the automated currying

$$
\text { add }=\lambda x y \rightarrow x+y
$$

We can use lambda expressions and local functions interchangeably

$$
\begin{aligned}
\text { odds } n= & \operatorname{map} f[0 \ldots n-1] \\
& \text { where } \\
& f x=x * 2+1
\end{aligned}
$$

can be simplified to

$$
\text { odds } n=\operatorname{map}(\lambda x \rightarrow x * 2+1) \quad[0 . . n-1]
$$

The earlier may be better if the local function has a natural name

Operator Sections

An infix operator can be converted into a curried prefix function by using parentheses.

$$
>(+) 12
$$

This convention also allows one of the arguments of the operator to be included in the parentheses.

$$
\begin{array}{llll}
\gg & (1+) & 2 \\
3 & & \\
> & (+2) & 1
\end{array}
$$

If \oplus is an operator then (\oplus), $(\mathrm{x} \oplus)$ and $(\oplus y)$ are called sections.

Infix Operators

Any (prefix) function can become infix using `mod`, `elem`
Names with only special symbols are infix

$$
++++, \quad+/+, \quad \%-
$$

Precedence/asociativity of infix operators set by

$$
\begin{aligned}
& \text { prefixr <0-9> <name> } \\
& \text { prefix }<0-9>\text { <name> } \\
& \text { prefix <0-9> <name> }
\end{aligned}
$$

Custom infix data constructors begin with :
:\#, :+, :::

Infix Operators

Information about associativity and precedence
:info
Interesting infix operators
. \$ unary -

Modules

Haskell program is a collection of modules name spaces, abstract data declarations module names start with upper-cased character filenames must match module names in GHC

```
module <name> ( <exported>, <symbols> ) where
```

without exported symbols, everything is exported data constructors exported with type name

Tree(Leaf,Branch), can be abbreviated to Tree(..)

Example Module

module Tree (Tree(Leaf, Branch), fringe) where
data Tree $\mathrm{a}=$ Leaf $\mathrm{a} \mid$ Branch (Tree a) (Tree a)
fringe : : Tree a -> [a]
fringe (Leaf x) $=[x]$
fringe (Branch left right) =
fringe left ++ fringe right

Importing Modules

Imports must be at the beginning of a module
Prelude module is loaded by default
We can choose names to import and hide
import Tree
import Tree hiding (tree1)
import Tree (tree1, fringe)
import qualified Tree as T hiding (tree1)
:m + Tree

Summary

- Type and type classes essential for Haskell
- Unnecessary, but pleasant Haskell features
- higher order functions
- lambda functions
- infix operators and their sections
- modules

