

Functional Programming Lecture 10: Other Haskell Language Features

Viliam Lisý

Artificial Intelligence Center Department of Computer Science FEE, Czech Technical University in Prague

viliam.lisy@fel.cvut.cz

Example: Arithmetic Expressions

Recursive typed can represent tree structures, such as <u>expressions</u> from numbers, plus, multiplication.

data	Expr	-	Val	Int	
			Add	Expr	Expr
			Mul	Expr	Expr

1 + 2 * 3

Add (Val 1) (Mul (Val 2) (Val 3))

Using recursion, it is now easy to define functions that process expressions. For example:

size :: Expr \rightarrow Int size (Val n) = 1size (Add x y) = size x + size ysize (Mul x y) = size x + size y eval :: Expr \rightarrow Int eval (Val n) = neval (Add x y) = eval x + eval y eval (Mul x y) = eval x * eval y

Type Classes

Functions required by a class can be accessed by

:info <classname>

:info Eq -- produces the following

Functions can often be implemented based on other only minimal complete definition is required (one of the above)

Show Class

A class values convertible to a readable string

class Show a where
 showsPrec :: Int -> a -> ShowS
 show :: a -> String
 showList :: [a] -> ShowS

type ShowS = String -> String

This allows constant-time concatenation of results using function composition (optimization)

Minimal complete definition: showsPrec | show

Instance of a Class

A new instance can be added to a class by

instance Show Nat where
 show n = "N" ++ show (nat2int n)

Class Contexts

Remember the definition

To make Maybe an instance of Eq, a has to be in Eq

instance Eq a => Eq (Maybe a) where Nothing == Nothing = True (Just x) == (Just x') = x == x'

Deriving Classes

Obvious definition of instances are automated

Defining Classes

The implemented function bodies determine the minimum required functions

Functor Class

Class of structures you can map over

class Mapable f where mmap :: (a -> b) -> f a -> f b

instance Mapable[] where

mmap = map

instance Mapable Maybe where mmap f (Just x) = Just (f x) mmap f Nothing = Nothing

Kinds

Types of types

- * A specific type
- * -> * A type that given a type creates a type

:k

Types Summary

- Everything has a type known in compile time
 - basic values
 - functions
 - data structures
- Types are key for data structures in Haskell
- Types can be instances of classes
 polymorphic functions
- "Types" of types are kinds

Higher Order Functions

The same functions as in scheme are available

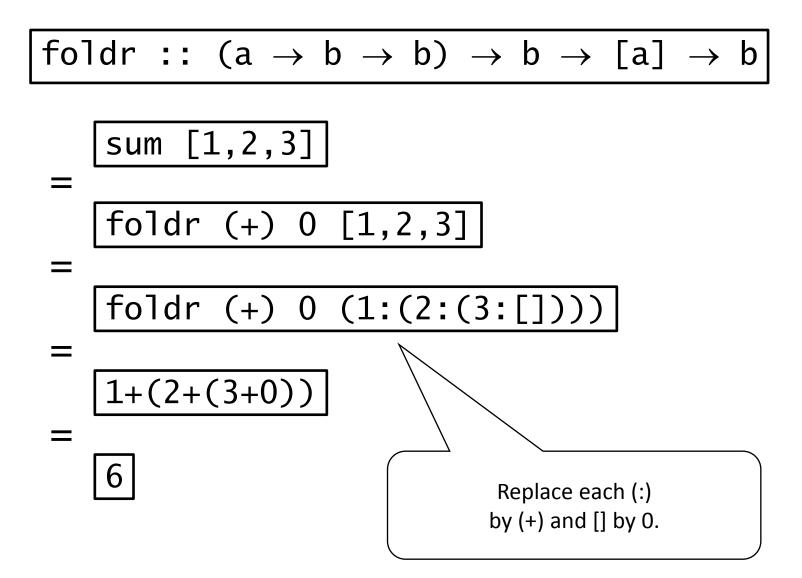
$$map :: (a \rightarrow b) \rightarrow [a] \rightarrow [b]$$

filter :: (a \rightarrow Bool) \rightarrow [a] \rightarrow [a]

$$map f xs = [f x | x \leftarrow xs]$$

filter $p xs = [x | x \leftarrow xs, p x]$

Foldr



Lambda Expressions

Functions can be constructed without naming the functions by using <u>lambda expressions</u>.

$$\lambda \mathbf{x} \rightarrow \mathbf{x} + \mathbf{x}$$

The symbol λ is typed as a backslash \setminus .

In mathematics, nameless functions are usually denoted using the \rightarrow symbol, as in $x \rightarrow x + x$.

As in scheme,

means

add =
$$\lambda x \rightarrow (\lambda y \rightarrow x + y)$$

We also have the automated currying

add =
$$\lambda x y \rightarrow x + y$$

We can use lambda expressions and local functions interchangeably

odds n = map f [0..n-1]
where
f x =
$$x*2 + 1$$

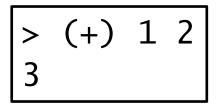
can be simplified to

odds n = map (
$$\lambda x \rightarrow x*2 + 1$$
) [0..n-1]

The earlier may be better if the local function has a natural name

Operator Sections

An <u>infix</u> operator can be converted into a curried <u>prefix</u> function by using parentheses.



This convention also allows one of the arguments of the operator to be included in the parentheses.

If \oplus is an operator then (\oplus), (x \oplus) and (\oplus y) are called <u>sections</u>.

Infix Operators

Any (prefix) function can become infix using ``
`mod`, `elem`

Names with only special symbols are infix

++++, +/+, %-

Precedence/asociativity of infix operators set by

prefix <0-9> <name>

Custom infix data constructors begin with :

:#, :+, :::

Infix Operators

Information about associativity and precedence

:info

Interesting infix operators

. \$ unary -

Modules

Haskell program is a collection of modules name spaces, abstract data declarations module names start with upper-cased character filenames must match module names in GHC

module <name> (<exported>, <symbols>) where

without exported symbols, everything is exported data constructors exported with type name Tree(Leaf,Branch), can be abbreviated to Tree(..)

Example Module

module Tree (Tree(Leaf,Branch), fringe) where

data Tree a = Leaf a | Branch (Tree a) (Tree a)

Importing Modules

Imports must be at the beginning of a module Prelude module is loaded by default We can choose names to import and hide

import Tree

import Tree hiding (tree1)

import Tree (tree1, fringe)

import qualified Tree as T hiding (tree1)

Summary

- Type and type classes essential for Haskell
- Unnecessary, but pleasant Haskell features
 - higher order functions
 - lambda functions
 - infix operators and their sections
 - modules