ARO Homework 6: ICP with fast
nearest-neighbor search

Karel Zimmermann, Vladimir Kubelka

2017

The basic implementation which was finished during the lab searches for
nearest neighbors by iterating over all points. This approach is sufficient for
demonstration on small point-clouds, but would take too much time with real-
life point-clouds counting hundreds of thousands of points. Your task is to:

1.

2.

Learn what a k-d tree is and what is it good for.
Look up documentation of the SciPy implementation of the k-d tree.

Replace the brute-force approach to the nearest-neighbor search (used
during the lab) by the k-d tree approach.

Test it on a larger point-cloud, stored in PO_large.npy and Q0_large.npy.
You might want to plot only a subset of the points to make the process
faster or to plot only the final result. Compare the brute-force and k-d
tree approach computation time (we recommend to omit plotting for the
comparison).

Bonus: The point clouds provided so far are not identical, but they
were created by sampling from a single original point cloud. In practice,
you often receive only partially overlapping point clouds (you have moved
your sensor between the scans, so you see some new points and some
are not visible anymore). You also cannot tell exactly how much you
have moved. We provide sections from the large point cloud that over-
lap: PO_large_secA.npy and QO0_large_secB.npy. Their mis-alignment is
actually not that severe, so the algorithm should work fine and converge
nicely... or should it? Try and see if you can make it work. (A tip: if the
algorithm does not work as fine as expected, have a look at the correspon-
dences idzp and idrq. The k-d tree gives you distances for free as a return
value. And you don’t have to use all the correspondences...)



