
Parsimony-Based Approaches to

Inferring Phylogenetic Trees

BMI/CS 576

www.biostat.wisc.edu/bmi576.html

Mark Craven

craven@biostat.wisc.edu

Fall 2011

Phylogenetic tree approaches

•! three general types

–! distance: find tree that accounts for estimated

evolutionary distances

–! parsimony: find the tree that requires minimum

number of changes to explain the data

–! maximum likelihood: find the tree that maximizes

the likelihood of the data

Parsimony based approaches

given: character-based data

do: find tree that explains the data with a minimal

number of changes

•! focus is on finding the right tree topology, not on

estimating branch lengths

Parsimony example

AAG AAA GGA AGA

AAA

AAA AGA

AAG AGA AAA GGA

AAA

AAA AAA

•! there are various trees that could explain the phylogeny

of the sequences AAG, AAA, GGA, AGA including these

two:

•! parsimony prefers the first tree because it requires

fewer substitution events

Parsimony based approaches

•! usually these approaches involve two separate

components

1.! a procedure to find the minimum number of

changes needed to explain the data (for a given

tree topology)

2.! a search through the space of trees

Finding minimum number of changes

for a given tree

•! basic assumptions

–! any state (e.g. nucleotide, amino acid) can convert to

any other state

–! the “costs” of these changes are uniform

–! positions are independent; we can compute the min

number of changes for each position separately

Finding minimum number of changes

for a given tree

•! brute force approach

–! for each possible assignment of states to the internal

nodes, calculate the number of changes

–! report tne min number of changes found

•! runtime is O(NkN)!

k = number of possible character states (4 for DNA)

N = number of leaves

Fitch’s Algorithm [1971]

1.! traverse tree from leaves to root determining set of

possible states (e.g. nucleotides) for each internal

node

2.! traverse tree from root to leaves picking ancestral

states for internal nodes

Fitch’s algorithm: Step 1

possible states for internal nodes

•! do a post-order (from leaves to root) traversal of tree

•! determine possible states of internal node i with

children j and k!
i
R

•! this step calculates the number of changes required

of changes = # union operations

, if

, otherwise

j k j k

i

j k

R R R R
R

R R

! " =#$ %& &
= ' (

"& &) *

Fitch’s algorithm: step 1 example

G T A T C T

{GT}

{AGT}

{T}

{T} {C T} !"{A G T} =

{CT} {C} #"{T} =

Fitch’s algorithm: step 2

select states for internal nodes

•! do a pre-order (from root to leaves) traversal of tree

•! select state of internal node j with parent i!

!"

!
#
$

!%

!
&
'

(

(
=

otherwise , statearbitrary

R if , ji

j

i

j
R

rr
r

j
r

Fitch’s algorithm: step 2

G T A T C T

{CT} {GT}

{AGT}

{T}

{T}

Weighted parsimony

•! [Sankoff & Cedergren, 1983]

•! instead of assuming all state changes are equally likely,

use different costs for different changes

•! 1st step of algorithm is to propagate costs up through tree

),(baS

ba!

Weighted parsimony

•! want to determine cost of assigning character

to node i!

•! for leaves:

0, if is character at leaf
()

, otherwise
i

a
R a

!
= "

#$

)(aR
i

a

Weighted parsimony

•! for an internal node i with children j and k:

)),()((min

)),()((min)(

baSbR

baSbRaR

kb

jbi

+

++=

ba!

a

b

Example: weighted parsimony

3 3 3 3
[] , [] , [] 0, []R A R C R G R T= ! = ! = = !

G T A

3

1

2

4 5

4 4 4 4
[] , [] , [] , [] 0R A R C R G R T= ! = ! = ! =

2 3 4

2 3 4

[] [] (,) [] (,)

[] [] (,) [] (,)

R A R G S A G R T S A T

R T R G S T G R T S T T

= + + +

= + + +

!

5 5 5 5
[] 0, [] , [] , []R A R C R G R T= = ! = ! = !

()

()

1 2 2 5

1 2 2 5

[] min [] (,), , [] (,) [] (,)

[] min [] (,), , [] (,) [] (,)

R A R A S A A R T S A T R A S A A

R T R A S T A R T S T T R A S T A

= + + + +

= + + + +

…

!

…

Weighted parsimony: step 2

•! do a pre-order (from root to leaves) traversal of tree

–! for root node: select minimal cost character

–! for each internal node: select the character that

resulted in the minimum cost explanation of the

character selected at the parent

Weighted parsimony example

Consider the two simple phylogenetic trees shown below, and the symmetric

cost matrix for assessing nucleotide changes. The tree on the right has a
cost of 0.8

Show how the weighted version of parsimony would determine the cost of the

tree on the left.

What are the minimal cost characters for the internal nodes in the tree on the
left?

Which of the two trees would the maximum parsimony approach prefer?

a c g t

a 0 0.8 0.2 0.9

c 0.8 0 0.7 0.5

g 0.2 0.7 0 0.1

t 0.9 0.5 0.1 0 a c t

3

6 5 4

1

t c a

3

6 5 4

1

The minimal cost characters for node 1 are either g or t. The minimal cost

character for node 3 is g. The maximum parsimony approach would prefer
the other tree (exercise left to the reader).

Weighted Parsimony Example

3

3

3

3

() 0 0.8 0.8

() 0.8 0 0.8

() 0.2 0.7 0.9

() 0.9 0.5 1.4

R a

R c

R g

R t

= + =

= + =

= + =

= + =

a c g t

a 0 0.8 0.2 0.9

c 0.8 0 0.7 0.5

g 0.2 0.7 0 0.1

t 0.9 0.5 0.1 0
a c t

3

6 5 4

1

1

1

1

1

() 0.9 min{0.8, 0.8 0.8, 0.3 0.9, 0.9 1.4} 1.7

() 0.5 min{0.8 0.8, 0.8, 0.7 0.9, 0.5 1.4} 1.3

() 0.1 min{0.2 0.8, 0.7 0.8, 0.9, 0.1 1.4} 1.0

() 0 min{0.9 0.8, 0.5 0.8, 0.1 0.9, 1.

R a

R c

R g

R t

= + + + + =

= + + + + =

= + + + + =

= + + + + 4} 1.0=

0.2!

Exploring the space of trees

•! we’ve considered how to find the minimum number of

changes for a given tree topology

•! need some search procedure for exploring the space

of tree topologies

Heuristic method:

nearest neighbor interchange

A C

B D

A B

C D

A B

D C

•! for any internal edge in a tree, there are 3 ways the

four subtrees can be grouped

•! nearest neighbor interchanges move from one

grouping to another

Heuristic method: hill-climbing with

nearest neighbor interchange

given: set of leaves L!

create an initial tree t incorporating all leaves in L!

best-score = parsimony algorithm applied to t!

repeat

 for each internal edge e in t!

 for each nearest neighbor interchange

 t’ ! tree with interchange applied to edge e in t!

 score = parsimony algorithm applied to t’!

 if score < best-score

 best-score = score

 best-tree = t’!

 t = best-tree

until stopping criteria met

Exact method: branch and bound

1

2

3

•! each partial tree represents a set of complete trees

•! the parsimony score on a partial tree provides a lower
bound on the best score in the set

•! search by repeatedly selecting the partial tree with the

lowest lower bound

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Exact method: branch and bound

given: set of leaves

initialize with a partial tree with 3 leaves from

repeat

 tree in with lowest lower bound

 if has incorporated all leaves in

 return

 else

L

Q L

t Q

t L

t

!

 create new trees by adding next leaf from to each branch of

 compute lower bound for each tree

 put trees in sorted by lower bound

L t

Q

Branch and bound (alternate version)

given: set of leaves

use heuristic method to grow initial tree '

initialize with a partial tree with 3 leaves from

repeat

 tree in with lowest lower bound

 if has incorporated all l

L

t

Q L

t Q

t

!

eaves in

 return

 else

 create new trees by adding next leaf from to each branch of

 for each new tree

 if lower-bound() < score(')

L

t

L t

n

n t

 put in sorted by lower bound

n Q

Rooted or unrooted trees for parsimony?

•! we described parsimony calculations in terms of rooted trees

•! but we described the search procedures in terms of unrooted

trees

•! unweighted parsimony: minimum cost is independent of

where root is located

•! weighted parsimony: minimum cost is independent of root if

substitution cost is a metric (refer back to definition of metric
from distance-based methods)

Comments on branch and bound

•! it is a complete search method

–! guaranteed to find optimal solution

•! may be much more efficient than exhaustive search

•! in the worst case, it is no better

•! efficiency depends

–! the tightness of the lower bound

–! the quality of the initial tree

Comments on tree inference

•! search space may be large, but

–! can find the optimal tree efficiently in some cases

–! heuristic methods can be applied

•! difficult to evaluate inferred phylogenies: ground truth not
usually known

–! can look at agreement across different sources of
evidence

–! can look at repeatability across subsamples of the data

–! can look at indirect predictions, e.g. conservation of
sites in proteins

•! some newer methods use data based on linear order of
orthologous genes along chromosome

•! phylogenies for bacteria, viruses not so straightforward
because of lateral transfer of genetic material; “local”
phylogenies might be more appropriate

Phylogenetic inference case study:

identifying functional regions in proteins
[Pupko et al., Bioinformatics 2002]

Given:

–! multiple sequence alignment for a set of protein

sequences

–! a distance-based phylogenetic tree for the

sequences

Do:

–! estimate rate of evolution of individual sites in the

sequence

•! motivation: identify the sites that are most important

for the function of the proteins

Identifying functional regions in proteins

D

P

T
H

D H

t5 t4 t3

t2

t1

•! we want to estimate the rate r for each position

•! consider a four-sequence example

•! now we calculate the rate r that maximizes this

expression

frequency of amino acid D

prob that amino acid D will be replaced by T

along branch length t4 given rate r

!

P({D,H},data | r) = "
D
P

D,D (r $ t1) #

 P
H ,P (r $ t2) # PH ,H (r $ t3) #

 P
D,T (r $ t4) # PD,H (r $ t5)

D

P

T
H

t5 t4 t3

t2

t1

•! actually we can do this without assuming particular

amino-acid assignments at the internal nodes

sum over all possibilities

•! as before calculate the rate r that maximizes this

expression

Identifying functional regions in proteins

!

P(data | r) =

"
X
P

X ,D (r $ t1) #

P
Y ,P (r $ t2) # PY ,H (r $ t3) #

 P
X ,T (r $ t4) # PX ,Y (r $ t5)

%

&

'
'
'

(

)

*
*
* X ,Y

+

Identifying functional region in proteins

Rates estimated using

233 sequences

Rates estimated using

34 sequences

MP-ConSurf method Rate4Site method

Identifying functional region in proteins

