Pairwise Sequence Alignment (Continued)

BMI/CS 576
www.biostat.wisc.edu/bmi576/
Mark Craven
craven@biostat.wisc.edu
Fall 2011

Local alignment

- so far we have discussed global alignment, where we are looking for best match between sequences from one end to the other
- often we want a local alignment, the best match between subsequences of x and y

Example local alignment

- aligning my name against the sequence for dTDP-4-dehydrorhamnose reductase from the bacterium opitutus terrae

Local alignment motivation

- useful for comparing protein sequences that share a common motif (conserved pattern) or domain (independently folded unit) but differ elsewhere
- useful for comparing DNA sequences that share a similar motif but differ elsewhere
- useful for comparing protein sequences against genomic DNA sequences (long stretches of uncharacterized sequence)
- more sensitive when comparing highly diverged sequences

Local alignment DP algorithm

- original formulation: Smith \& Waterman, Journal of Molecular Biology, 1981
- interpretation of array values is somewhat different: $F(i, j)=$ score of the best alignment of a suffix of $x[1 \ldots i]$ and a suffix of $y[1 \ldots j]$

Local alignment DP algorithm

- the recurrence relation is slightly different than for global algorithm

$$
F(i, j)=\max \left\{\begin{array}{l}
F(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
F(i-1, j)-d \\
F(i, j-1)-d \\
0
\end{array}\right.
$$

Local alignment DP algorithm

- initialization: first row and first column initialized with 0's
- traceback:
- find maximum value of $F(i, j)$; can be anywhere in matrix
- stop when we get to a cell with value 0

Local alignment example

More on gap penalty functions

- a gap of length k is more probable than k gaps of length 1
- a gap may be due to a single mutational event that inserted/deleted a stretch of characters
- separated gaps are probably due to distinct mutational events
- a linear gap penalty function treats these cases the same
- it is more common to use gap penalty functions involving two terms
- a penalty d associated with opening a gap
- a smaller penalty e for extending the gap

Gap penalty functions

linear

$$
w(g)=-g \times d
$$

affine

$$
w(g)=\left\{\begin{array}{l}
-d-(g-1) e, \quad g \geq 1 \\
0, \quad g=0
\end{array}\right.
$$

Dynamic programming for the affine gap penalty case

- to do in $O\left(n^{2}\right)$ time, need 3 matrices instead of 1

$$
\begin{array}{ll}
M(i, j) & \begin{array}{l}
\text { best score given that } x[i] \text { is } \\
\text { aligned to } y[j]
\end{array} \\
I_{x}(i, j) & \begin{array}{l}
\text { best score given that } x[i] \text { is } \\
\text { aligned to a gap }
\end{array} \\
I_{y}(i, j) \quad \begin{array}{l}
\text { best score given that } y[j] \text { is } \\
\text { aligned to a gap }
\end{array}
\end{array}
$$

Global alignment DP for the affine gap penalty case

$$
\begin{aligned}
& M(i, j)=\max \left\{\begin{array}{l}
M(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
I_{x}(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
I_{y}(i-1, j-1)+s\left(x_{i}, y_{j}\right)
\end{array}\right. \\
& I_{x}(i, j)=\max \left\{\begin{array}{l}
M(i-1, j)-d \\
I_{x}(i-1, j)-e
\end{array}\right. \\
& I_{y}(i, j)=\max \left\{\begin{array}{l}
M(i, j-1)-d \\
I_{y}(i, j-1)-e
\end{array}\right.
\end{aligned}
$$

Global alignment DP for the affine gap penalty case

- initialization

$$
\begin{array}{ll}
M(0,0)=0 & \\
I_{x}(i, 0)=-d-(i-1) e & \text { for } i>0 \\
I_{y}(0, j)=-d-(j-1) e & \text { for } j>0
\end{array}
$$

other cells in top row and leftmost column $=-\infty$

- traceback
- start at largest of $M(m, n), I_{x}(m, n), I_{y}(m, n)$
- stop at $M(0,0)$
- note that pointers may traverse all three matrices

Global alignment example (affine gap penalty)

$$
d=4, e=1
$$

A

A

Global alignment example (continued)

A

Why three matrices are needed

- consider aligning the sequences WFP and FW using $d=5, e=1$ and the following values from the BLOSUM-62 substitution matrix:

$$
\begin{array}{ll}
s(F, W)=1 & S(W, W)=11 \\
S(F, F)=6 & S(W, P)=-4 \\
s(F, P)=-4 &
\end{array}
$$

- the matrix shows the highest-scoring partial alignment for each pair of prefixes

Local alignment DP for the affine gap penalty case

$$
\begin{aligned}
& M(i, j)=\max \left\{\begin{array}{l}
M(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
I_{x}(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
I_{y}(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
0
\end{array}\right. \\
& I_{x}(i, j)=\max \left\{\begin{array}{l}
M(i-1, j)-d \\
I_{x}(i-1, j)-e
\end{array}\right. \\
& I_{y}(i, j)=\max \left\{\begin{array}{l}
M(i, j-1)-d \\
I_{y}(i, j-1)-e
\end{array}\right.
\end{aligned}
$$

Local alignment DP for the affine gap penalty case

- initialization
$M(0,0)=0$
$M(i, 0)=0$
$M(0, j)=0$
cells in top row and leftmost column of $I_{x}, I_{y}=-\infty$
- traceback
- start at largest $M(i, j)$
- stop at $M(i, j)=0$

Gap penalty functions

- linear: $w(g)=-g \times d$
- affine:

$$
w(g)=\left\{\begin{array}{l}
-d-(g-1) e, \quad g \geq 1 \\
0, \quad g=0
\end{array}\right.
$$

- convex: as gap length increases, magnitude of penalty for each additional character decreases
e.g. $\quad w(g)=-d-\log (g) \times e$

Computational complexity and gap penalty functions

linear: $O\left(n^{2}\right)$
affine:
$O\left(n^{2}\right)$
convex:
$O\left(n^{2} \log n\right)$
general:
$O\left(n^{3}\right)$

* assuming two sequences of length n

Alignment (global) with general gap penalty function

why the general case has time complexity $O\left(n^{3}\right)$

$$
F(i, j)=\max \left\{\begin{array}{l}
F(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
F(k, j)+\gamma(i-k) \\
F(i, k)+\gamma(j-k)
\end{array} \left\lvert\, \begin{array}{l}
\begin{array}{l}
k \text { ranges over previous } \\
\text { coordinates }
\end{array} \\
\begin{array}{l}
\text { consider every previous } \\
\text { element in the column } \\
\text { element in the row }
\end{array}
\end{array}\right.\right.
$$

Pairwise alignment summary

- the number of possible alignments is exponential in the length of sequences being aligned
- dynamic programming can find optimal-scoring alignments in polynomial time
- the specifics of the DP depend on
- local vs. global alignment
- gap penalty function
- affine penalty functions are most commonly used

