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Functional annotation of proteins is a fundamental problem
in the post-genomic era. The recent availability of protein
interaction networks for many model species has spurred
on the development of computational methods for inter-
preting such data in order to elucidate protein function. In
this review, we describe the current computational
approaches for the task, including direct methods, which
propagate functional information through the network, and
module-assisted methods, which infer functional modules
within the network and use those for the annotation task.
Although a broad variety of interesting approaches has
been developed, further progress in the field will depend on
systematic evaluation of the methods and their dissemina-
tion in the biological community.
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Introduction

The past decade has seen a revolution in sequencing
technologies, resulting in hundreds of sequenced genomes.
A fundamental challenge of the post-genomic era is the
interpretation of this wealth of data to elucidate protein
function. To date, even for the most well-studied organisms
such as yeast, about one-fourth of the proteins remain
uncharacterized (Figure 1).

Classical computational approaches to gene annotation
collect for each protein a set of features characterizing it, and
apply machine-learning algorithms to infer annotation rules
based on those features (Pavlidis et al, 2001). The newly
available large-scale networks of molecular interactions with-
in the cell have made it possible to go beyond these one-
dimensional approaches, and study protein function in the
context of a network. In particular, novel high-throughput
technologies for protein–protein interaction (PPI) measure-
ments (Aebersold and Mann, 2003; Fields, 2005) have created
large-scale data on protein interaction across human and most
model species. These data are commonly represented as

networks, with nodes representing proteins and edges
representing the detected PPIs.

In this review, we survey the growing body of works on
functional annotation of proteins via their network of
interactions (summarized in Table I). We distinguish two
types of approaches (Figure 2): direct annotation schemes,
which infer the function of a protein based on its connections
in the network, and module-assisted schemes, which first
identify modules of related proteins and then annotate each
module based on the known functions of its members.
Naturally, the presented methods and the emphasis on
particular ones reflect the opinions of the authors.

Direct methods

The common principle underlying all direct methods for
functional annotation is that proteins that lie closer to one
another in the PPI network are more likely to have similar
function. As can be seen in Figure 3, there is an evident
correlation between network distance and functional distance,
that is, the closer the two proteins are in the network the more
similar are their functional annotations. The methods de-
scribed below differ in the way they capture and exploit this
correlation. In the following, we denote the PPI network as a
graph G¼(V,E) (see Box 1 for graph-theoretic definitions).

Neighborhood counting

The simplest and most direct method for function prediction
determines the function of a protein based on the known
function of proteins lying in its immediate neighborhood.
Schwikowski et al (2000) predict for a given protein up to three
functions that are most common among its neighbors.
Although simple and effective, the obvious caveats of this
approach are that associations are not assigned any signifi-
cance values and the full topology of the network is not taken
into account in the annotation process.

Hishigaki et al (2001) try to tackle the first problem by
computing w2-like scores for function assignment. In detail,
they examine the n-neighborhood of a protein (Box 1). For a
protein p, each function f is assigned a score (nf -ef)

2/ef, where
nf is the number of proteins in the n-neighborhood of p that
have the function f and ef is the expectation of this number
based on the frequency of f among the network’s proteins. A
shortcoming of this approach is that within the n-neighbor-
hood, proteins at different distances from p are treated in the
same way. Chua et al (2006) try to tackle the second problem
by investigating the relation between network distance and
functional similarity. They focus on the 1- and 2-neighbor-
hoods of a protein, and devise a functional similarity score that
gives different weights to proteins according to their distances
from the target protein.
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Graph theoretic methods

As the PPI network is a graph, it is natural to apply graph
algorithms for its functional analysis. Two main approaches
have been suggested in this context: cut-based approaches and
a flow-based algorithm. In contrast to the local neighborhood
counting methods, these approaches are global and take into
account the full topology of the network.

Vazquez et al (2003) aim at assigning a function sv to each
unannotated protein v so as to maximize the number of edges
that connect proteins (unannotated or previously annotated)
assigned with the same function. Precisely, they try to
maximize X

ðu;vÞ2E0

dðsu;svÞ þ
X
v2V

hvðsvÞ

where E0 is the set of edges incident on two unannotated
proteins, d is a function that equals 1 if x¼y and 0 otherwise,
and hv(f) denotes the number of neighbors of v previously
annotated with function f. The first term in the optimization
criterion concerns unannotated proteins, whereas the second
term accounts for interactions between unannotated and
previously annotated proteins. This optimization problem,
which generalizes the computationally hard problem of
minimum multiway cut (Box 1) (Dahlhaus et al, 1994), is
heuristically solved using simulated annealing.

Karaoz et al (2004) use a similar approach but handle one
function at a time. Each annotated protein v receives a state sv

that equals þ 1 if v has the function in question and equals �1
otherwise. Next, an assignment of �1 and þ 1 states to
unannotated proteins is sought so as to maximize

P
ðu;vÞ2E

susv.

The advantage of this formulation is that a partition of the
vertices into two sets only is sought. To find a good partition,
Karaoz et al (2004) apply a local search procedure in which for
every vertex in turn (until convergence), the state of the vertex
is changed according to the majority of the states of its
neighbors. This procedure guarantees a solution with value at
least half of the optimum.

A related method suggested by Nabieva et al (2005) again
formulates the annotation problem as a minimum multiway

cut problem, where the goal is to assign a unique function to all
unannotated proteins so as to minimize the cost of edges
connecting proteins with different assignments. They propose
an integer programming reformulation of this problem, which
allows them to solve the problem in practice (on the yeast PPI
network) by applying a commercial solver (CPLEX).

Finally, Nabieva et al (2005) also suggest a flow-based
(Box 1) approach for the annotation problem. As they note that
the maximum-cut-based approaches described above take into
account global properties of the network but do not reward
local proximity, they propose a novel method that aims at
considering both local and global effects. They handle one
function at a time. The basic idea is to treat each protein
annotated with the function as the source of a ‘functional flow’.
After simulating the spread over time of this functional flow
through the network, each unannotated protein is assigned
a score for having the function based on the amount of flow
it received during the simulation.

Markov random field

A number of probabilistic approaches to the annotation
problem have been suggested, all relying on a Markovian
assumption: the function of a protein is independent of all
other proteins given the functions of its immediate neighbors.
This assumption gives rise to a Markov random field (MRF)
model (Box 2), initially proposed by Deng et al (2003). Deng
et al (2003) devise an MRF model in which the probability that
a protein v is assigned with a certain function that occurs with
frequency f is a logistic function of logðf=1 � fÞ þ bNðv; 1Þþ
aðNðv; 1Þ � Nðv; 0ÞÞ � Nðv; 0Þ, where a and b are model
parameters and N(v,1) and N(v,0) are the numbers of
neighbors of v that are assigned or not assigned with the
function, respectively. The parameters a and b of the model
are first estimated using a quasi-likelihood method, and then
Gibbs sampling is used for inferring the functions of
unannotated proteins. Interestingly, as pointed out by Deng
et al (2004), setting a to 0 and b to 1 yields the exact
optimization criterion used by Karaoz et al (2004).

Figure 1 Extent of annotation of proteins in model species. For each species, the charts give the fractions and numbers of annotated and unannotated proteins,
according to the three ontologies of the GO annotation. The numbers are based on the Entrez Gene and the WormBase databases as of September 2006.
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Letovsky and Kasif (2003) also use an MRF model. Their main
assumption is that the number of neighbors of a protein that are
annotated with a given term is binomially distributed, where the
distribution’s parameter depends on whether the protein has
that function or not. They employ loopy belief propagation
(Murphy et al, 1999) to perform inference in their model.

Integrating multiple information sources

Several authors have integrated data from multiple sources for
the annotation task. The approaches differ in the way the
sources are combined. The simplest approach treats each data
source independently. Such an approach for function prediction
was first introduced by Marcotte et al (1999) in a different
context. Joshi et al (2004) integrated PPIs, genetic interactions
and coexpression interactions. For each interaction type they
estimated the a priori probability of functional association given
an interaction of this type. By treating all interactions (within-
and between-types) as independent of one another, they
combined them into a single reliability score for the functional
association of a protein given the annotations of its neighbors.

A second approach for combining multiple data types
constructs a joint probabilistic model or a prediction function
of the different types. Deng et al (2004) generalized their
earlier MRF approach to allow using multiple networks in the
annotation process, and applied the method to annotate yeast
proteins using both PPIs and genetic interactions (Deng et al,
2004; Lee et al, 2006). Lanckriet et al (2004) and later Tsuda
et al (2005) represent each data type using a matrix of kernel
similarity values. These matrices are then combined by
learning optimal relative weights for the different kernels.

Module-assisted methods

The prevalence of the modularity paradigm in molecular cell
biology has led to an extensive use of modules in prediction of
molecular functions. By functional module one typically means
a group of cellular components and their interactions that can
be attributed to a specific biological function (Hartwell et al,
1999). Instead of predicting functions for individual genes, a
module-assisted approach attempts to first identify coherent
groups of genes and then assign functions to all the genes in
each group. The module-assisted methods differ mainly in their
module detection technique. Once a module is obtained, simple
methods are usually used for function prediction within the
module. For example, every function shared by the majority of
the module’s genes is assigned to all the genes in the module.
Alternatively, a hypergeometric enrichment P-value is com-
puted for every function:

p ¼
Xm

i¼k

f
i

� �
n � f
m � i

� �
n
m

� �

where n is the number of nodes in the PPI network, f is the
number of genes in the network annotated with the function
and m is the module size. The functions enriched within the
module (i.e. obtaining P-value below some threshold) are then
predicted for all the genes in the module.

Table I A summary of functional annotation methods

Direct
Neighborhood based Schwikowski et al (2000)

Hishigaki et al (2001)
Chua et al (2006)

Graph theoretic Vazquez et al (2003)
Karaoz et al (2004)

Nabieva et al (2005)

Probabilistic Deng et al (2003)
Letovsky and Kasif (2003)

Integrating multiple data
sources

Joshi et al (2004)
Deng et al (2004)
Lee et al (2006)
Lanckriet et al (2004)
Tsuda et al (2005)

Module-assisted
Based solely on topology

General methods Bader and Hogue (2003)

Altaf-Ul-Amin et al (2006)

Sharan et al (2005)

Hierarchical
clustering-based

Arnau et al (2005)
Rives and Galitski (2003)
Maciag et al (2006)

Brun et al (2003)
Samanta and Liang (2003)

Graph clustering-
based

Spirin and Mirny (2003)
King et al (2004)
Pereira-Leal et al (2004)
Przulj et al (2004)
Dunn et al (2005)
Bu et al (2003)

Enright et al (2002)
Adamcsek et al (2006)

Expanding seed
complex

Asthana et al (2004)

Bader (2003)
Wu and Hu (2005)

Integrating gene
expression data

Networks active in a
specific condition

Balazsi et al (2005)
de Lichtenberg et al (2005)
Luscombe et al (2004)
Wachi et al (2005)

Expression analysis of
known pathways

Jansen et al (2002)
Simonis et al (2004)
Tornow and Mewes (2003)
Zien et al (2000)

Joint module
identification

Ideker et al (2002)
Hanisch et al (2002)
Cabusora et al (2005)
Segal et al (2003)

Integrating diverse
genomic data

Genetic interactions Kelley and Ideker (2005)
Phenotypic profiles Haugen et al (2004)
Heterogeneous data
sources

Tanay et al (2004)

Tanay et al (2005)

The last column represents the attributes of the corresponding algorithm: An
implementation of the algorithm with a graphical user interface is available
The algorithm uses interaction weights based on confidence levels For
module-assisted methods: the method can naturally produce overlapping
modules.
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Module finding algorithms can be divided into methods
using solely network topology information and methods that
utilize addition data sources, such as gene expression
measurements or deletion phenotypes. The algorithms vary
in their ability to detect overlapping modules and in the use of
interaction reliabilities. The exact definition of a functional
module also varies. The purpose of some algorithms is the
detection of molecular complexes, but others can also detect
sparser structures, such as signaling pathways (Steffen et al,

2002; Yeang et al, 2005; Scott et al, 2006). Here, we focus on
the former, as the latter methods are currently not aimed at
function prediction.

Detecting functional modules from network
topology

Several works focused on the detection of functional modules
based solely on protein interaction data. Most of the works
described below decompose the PPI network into subnetworks
based on some topological properties.

The molecular complex detection algorithm (MCODE)
(Bader and Hogue, 2003) consists of three stages: vertex
weighting, complex prediction and an optional post-proces-
sing step. The weighting of nodes is based on the core
clustering coefficient (Box 1). Bader and Hogue (2003)
propose the use of this coefficient instead of the standard
clustering coefficient, as it increases the weights of heavily
interconnected graph regions while giving small weights to the
less connected vertices, which are abundant in the scale-free
protein interaction networks. Once the weights are computed,
the algorithm traverses the weighted graph in a greedy fashion
to isolate densely connected regions. The post-processing step
filters or adds proteins based on connectivity criteria. MCODE
has been used in several recent publications describing

Figure 2 Direct versus module-assisted approaches for functional annotation. The scheme shows a network in which the functions of some proteins are known (top),
where each function is indicated by a different color. Unannotated proteins are in white. In the direct methods (left), these proteins are assigned a color that is unusually
prevalent among their neighbors. The direction of the edges indicates the influence of the annotated proteins on the unannotated ones. In the module-assisted methods
(right), modules are first identified based on their density. Then, within each module, unannotated proteins are assigned a function that is unusually prevalent in the
module. In both methods, proteins may be assigned with several functions.

Figure 3 Correlation between protein functional distance and network
distance. X-axis: distance in the network. Y-axis: average functional similarity
of protein pairs that lie at the specified distance. The functional similarity of two
proteins is measured using the semantic similarity of their GO categories (Lord
et al, 2003).
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mapping of large-scale interaction networks (LaCount et al,
2005; Rual et al, 2005). It is available as a plug-in for the
Cytoscape network visualization software (Shannon et al,
2003).

Altaf-Ul-Amin et al (2006) use a similar approach: they
define a cluster property of a node n with respect to a cluster C
as the number of edges between n and the nodes of C divided
by that number averaged over the nodes of C. Starting from
single nodes, clusters are gradually grown as long as the
cluster property of the added nodes and the density of the
cluster both exceed a certain threshold.

Sharan et al (2005) proposed the NetworkBlast algorithm for
detecting protein modules in protein interaction networks.
Each candidate set of proteins is assigned a likelihood ratio
score that measures its fit to a protein complex model versus
the chance that its connections arise at random (Box 3).

A greedy network search algorithm is subsequently used for
the detection of high-scoring modules. The method can be
generalized to identify modules that are conserved over
several networks.

Hierarchical clustering-based methods

Several works described the use of hierarchical clustering for
module detection. A key decision in the use of this approach is
the selection of the similarity measure between protein pairs.
An intuitive similarity metric is based on pairwise distances
(Box 1) between proteins in the network. One of the problems
in using it in a hierarchical clustering setting is that the
distances between many protein pairs are identical (the ties
in proximity problem) (Arnau et al, 2005). Rives and
Galitski (2003) postulated that module members are likely to
have similar shortest path distance profiles. They therefore
used hierarchical clustering on the all-pair shortest path
distances matrix and outlined modules by manual inspection.
Although such an approach is impractical for genome-scale
networks, it has been successfully applied to focused
subnetworks, such as the network of interactions between
nuclear proteins and a regulatory network of filamentation
in Saccharomyces cerevisiae (Rives and Galitski, 2003). A
more sophisticated version of this approach was recently
applied to the gene expression machinery network (Maciag
et al, 2006). The authors used a special weighted form of
mutual clustering coefficient (Goldberg and Roth, 2003) for
quantifying similarities between proteins, and a modified
version of the k-means algorithm (Hartigan, 1975) was used
for cluster detection.

Arnau et al (2005) used the shortest path length between
proteins as a distance measure and attempted to overcome the
‘ties in proximity’ problem by obtaining multiple, equally valid
hierarchical clustering solutions with a random choice when
ties are encountered. The fraction of the solutions in which the
protein pair was clustered together was then used as a
similarity measure for clustering using standard hierarchical
algorithms. Additional similarity measures proposed for using
in a hierarchical clustering setting include Czekanovski–Dice
distance (Brun et al, 2003) and the statistical significance of the
number of common interaction partners (Samanta and Liang,
2003).

Graph clustering methods

Numerous graph-clustering algorithms have been applied
to the graph representing the binary interactions. Spirin and
Mirny (2003) proposed two such algorithms. The first
algorithm is based on superparamagnetic clustering (SPC)
(Blatt et al, 1996) and the second is a Monte Carlo algorithm
maximizing the density of the obtained clusters. Both
algorithms require the size of the sought clusters as input.
The SPC algorithm is specifically shown to perform well in
detecting dense structures loosely connected to other areas of
the network. In addition to detecting protein complexes, Spirin
and Mirny (2003) also show that their method is capable of
detecting sparsely connected functional modules, such as the
MAPK signaling cascade.

Box 1 Graph-theoretic concepts

A graph is a pair G¼(V,E), where V is a set of vertices (or nodes) and
E is a set of edges connecting pairs of vertices. In PPI networks, the
vertices represent proteins and the edges represent interactions.

The distance between two vertices in a graph is the number of edges on a
shortest path between them.

The diameter of a graph is the maximum distance between any two of its
vertices.

The neighborhood of a vertex is the set of vertices connected to it.

The n-neighborhood of a vertex is the set of vertices whose distance
from it is at most n.

A clique in a graph is a fully connected subgraph, that is, a subgraph in
which every two vertices are connected by an edge.

The degree of a vertex is the number of its neighbors.

A cut in a graph is a partition of the vertices into two non-overlapping sets.
A multiway cut is a partition of the vertices into several disjoint sets.
The value of the cut is the number of edges going between different sets.

Network flow: Imagine a graph as a network of interconnected pipes.
Suppose water gets into one or more vertices (sources) from the outside,
and can exit the network at certain other vertices (sinks). Then, it will spread
in the pipes and reach other nodes, until it exits at sinks. The capacities of
the edges (i.e., how much the pipe can carry per unit time) and the input at
the sources determine the amount of flow along every edge (i.e., how much
each pipe actually carries) and the amount exiting at each sink. In the context
of a PPI network, by considering proteins that have a certain function as
sources and simulating flow in the network, the amount of flow at edges and
sinks can be used to annotate additional proteins.

The density of a graph is the fraction of edges it actually has out of all
possible vertex pairs. Hence, the density of G¼(V,E) is 2|E|/(|V|(|V|�1)),
and a clique graph has the maximum possible density, that is, 1.

The clustering coefficient of a vertex is the density of its neighborhood
(Watts and Strogatz, 1998).

A graph is called a k-core if the minimal degree in it is k.

Core clustering coefficient: For a parameter k, the core clustering
coefficient of a vertex is the density of the largest k-core of its immediate
neighborhood (Bader and Hogue, 2003).

An adjacency matrix of a graph G¼(V,E) is a matrix AjV j	jV j ¼ faijg
where aij¼1 if and only if vi and vj are neighbors. As PPI networks usually do
not contain loops, in our context aii¼0.

A graph is called bipartite if its vertices can be partitioned into two disjoint
sets such that no edge connects two vertices of the same set.
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Przulj et al (2004) used the highly connected subgraphs (HCS)
algorithm (Hartuv and Shamir, 2000) to determine complexes in
PPI data. A highly connected subgraph is defined as a subgraph
with n nodes such that more than n/2 edges must be removed in
order to disconnect it. It can be shown that this property ensures
that the diameter of the subgraph (Box 1) is at most two, and that
it is at least half as dense as a clique of the same size. The HCS
algorithm finds a minimum cut (Box 1) in the graph and uses it
to partition the graph. This process is repeated recursively until
highly connected components are reached.

The restricted neighborhood search clustering (RNSC)
algorithm proposed by King et al (2004) partitions the
node set of the network into clusters based on a cost function
that is used to evaluate the partitioning. The algorithm
starts with a random cluster assignment and proceeds by
reassigning nodes, so as to maximize the partition’s score.
In addition, a tabu list is maintained to avoid cycling back
to previously explored partitions. Finally, the clusters
are filtered based on their size, density and functional
homogeneity.

The Markov clustering (MCL) algorithm (Enright et al, 2002)
has been recently proposed for complex detection in PPI data

(Krogan et al, 2006). The algorithm simulates flow on the PPI
graph by constructing its adjacency matrix (Box 1) and
computing its successive powers to increase the contrast
between regions with high flow and regions with a low flow.
This process can be shown to converge towards a partition
of the graph into high-flow regions corresponding to protein
complexes, separated by regions of no flow.

Additional graph clustering techniques applied include
clique percolation (Adamcsek et al, 2006), graph flow
simulation (Pereira-Leal et al, 2004), edge-betweenness
clustering (Dunn et al, 2005) and spectral methods (Bu et al,
2003).

Expansion of complex seeds

In contrast to finding complexes de novo in the protein
interaction network, several works attempted prediction of
new members for partially known protein complexes. The
Complexpander software (Asthana et al, 2004) receives a
particular ‘core’ set of proteins and produces a list of candidate
proteins, ranked by the probability of membership in the
complex. This approach approximates the probability that a

Box 2 Function prediction using the MRF method

The Markov random field (MRF) model provides a probabilistic framework for simulating the mutual influence of random variables via a neighborhood system. Given
a network of influence, the state of any random variable is assumed to be independent of all other random variable states given those of its immediate neighbors. In
the function prediction setting, each random variable corresponds to a protein, and its states correspond to certain functional annotations. The joint distribution of the
random variables can be shown to factorize over the cliques (Box 1) of the network (Besag, 1974). That is, the probability of a certain assignment of discrete states
x¼(x1,y,xN) is

pðxÞ ¼ 1

Z
exp f�HðxÞg ¼ 1

Z
exp �

X
c2C

HcðxcÞ
( )

where N is the total number of variables, Z is a normalizing constant, C is the set of all cliques in the network, Hc is a potential function associated with clique c and
xc is the assignment of states to the members of c.

Inference in this general model is computationally hard, hence it is common to assign 0 potentials to all cliques of size greater than 2, and further homogenize the
model by associating the same potential function with all cliques of the same size. For such a homogeneous second-order MRF, we have

HðxÞ ¼
X
v2V

H1ðxfvgÞ þ
X

ðu;vÞ2E

H2ðxfu;vgÞ

Deng et al (2003) treat one function at a time. To obtain a second-order MRF model, they assume that the probability of a 0/1 annotation over the entire network
is proportional to exp(aN01+bN11+N00), where a,b are parameters for weighting the contributions of the different terms and Nij is the number of interacting pairs
with assignment i,j (unordered). Combining the a priori probability of an assignment with N1 1 s, which depends on the frequency f of the function and is
proportional to ðf=ð1 � fÞÞN1 , they obtain a homogeneous second-order MRF for which

HðxÞ ¼ � log
f

1 � f

� �X
v2V

xfvg � b
X

ðu;vÞ2E

xfugxfvg � a
X

ðu;vÞ2E

½xfugð1 � xfvgÞ þ xfvgð1 � xfugÞ
 �
X

ðu;vÞ2E

ð1 � xfugÞð1 � xfvgÞ

Hence, the probability that protein v is assigned with the function given the annotations of its neighbors N(v) is

Pðxfvg ¼ 1jxNðvÞÞ ¼ logit log
f

1 � f
þ bNðv; 1Þ þ aðNðv; 1Þ � Nðv; 0ÞÞ � Nðv; 0Þ

� �

where N(v,i) is the number of neighbors of v that are assigned with iA{0,1} and logit is the logistic function logit(x)¼1/(1+e�x). Deng et al (2003) estimate the two
parameters of the model using a quasi-likelihood method and apply Gibbs sampling to infer the unknown functional annotations.
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given candidate protein is co-complexed with the core by the
probability that a path consisting of stable protein interactions
exists between the candidate and a member of the core. The
algorithm assigns a weight to each pair of proteins, represent-
ing the probability that they interact directly and stably. These
weights are then used to estimate the probability that two
proteins are connected by a path, by generating a collection of
random networks and counting how many of them contain
a short path between the protein pair.

For a similar problem, an algorithm called SEEDY was
proposed by Bader (2003). SEEDY constructs complexes
by adding proteins to a given seed, as long as the reliability
of the most reliable path from a candidate to the seed does
not fall below a given threshold. The reliability of a path
in SEEDY is defined as the product of the reliabilities of its
edges.

Wu and Hu (2005) proposed an algorithm that detects
‘community structures’ (Girvan and Newman, 2002) for a

given protein seed, in a network without edge reliabilities. The
algorithm first identifies a ‘core’ by a heuristic search for a
maximum clique containing the seed, and then expands it
through a breadth-first-search graph traversal (Cormen et al,
1990) with additional vertices, such that it will meet a certain
‘community’ criterion.

Integrated analysis of interactions and expression
profiles

Several studies have integrated PPI data with diverse additional
sources to infer modular structures. These modular structures
can serve as potent function predictors, and also shed light on
the interplay between the different sources of information.

Microarray technologies (Schena et al, 1995), which measure
expression levels on a genome-wide scale, are currently
the largest source of high-throughput genomic information.
A natural question is the relation between transcription
pattern similarity of a pair of genes and the existence of
a protein interaction between their products. As shown in
both simple and complex organisms (Ge et al, 2001; Hahn et al,
2005), genes of interacting proteins tend to share similar
expression patterns. Following this observation, the use of
both information sources together for analysis of functional
modules has been an appealing concept adopted by many
research groups.

One line of works proposed a two-step approach: extraction of
a group of genes that are highly expressed in a certain condition,
and then analysis of the topological properties of PPI networks
induced by these genes (Luscombe et al, 2004; Balazsi et al, 2005;
de Lichtenberg et al, 2005; Wachi et al, 2005). Other works used
the reverse approach by analyzing the expression coherence of
known pathways or complexes (Zien et al, 2000; Jansen et al,
2002; Tornow and Mewes, 2003; Simonis et al, 2004).

Several approaches have been proposed for identifying
functional modules by simultaneous analysis of the network
and the expression data. Ideker et al (2002) introduced a
framework for identification of active subnetworks, that is,
connected regions of the network that show significant
changes in expression over a particular subset of the
conditions. This method uses P-values calculated for
every measurement in the expression data to derive a
statistical score for every candidate subnetwork, and utilizes
simulated annealing to search for high-scoring subnetworks.
A similar methodology was recently employed by (Cabusora
et al (2005), using shortest-paths algorithms for module
finding.

The co-clustering methodology (Hanisch et al, 2002) uses a
distance function that combines similarity of gene expression
patterns and network topology. The network distance between
two nodes is an edge-weighted version of their topological
distance in the network. The expression distance is based on
the Pearson correlation between the expression patterns. The
two distances are combined into a similarity score using a
logistic function, and hierarchical clustering is applied to the
matrix of the combined distances.

Segal et al (2003) provided a probabilistic formulation,
in which a module is a group of genes with high pairwise
similarities and with a significant portion of the possible

Box 3 Detecting dense subgraphs using maximum likelihood scoring

Maximum likelihood-based scoring has been used for detecting molecular
complexes in NetworkBlast (Sharan et al, 2005) and for integration of
heterogeneous data through biclustering in SAMBA (Tanay et al, 2002,
2004, 2005). For a given subnetwork H, this technique compares the
probabilities of two alternatives: (i) H has dense structure (the subnetwork
model) and (ii) H is random (null model).

When assigning a score to a complex, in the subnetwork model, every
possible interaction in the subnetwork exists with some high probability b,
independently of other protein pairs. In the null model, every two proteins u,v
are connected with probability pu,v that depends on their degrees. pu,v can
be estimated by generating a collection of random networks preserving the
degree of every protein and calculating the fraction of networks in which an
interaction between u and v exists. The log-likelihood ratio of the two
alternatives for a set of proteins C with a set of interactions E(C) is thus

LðCÞ ¼
X

ðu;vÞ2EðCÞ
log

b
pu;v

þ
X

ðu;vÞ=2EðCÞ
log

1 � b
1 � pu;v

In case edge reliabilities are available, it is possible to incorporate them into
the subnetwork scoring model by assessing the probability of the available
observations, given that the protein pair u,v interacts (P(Ou,v)|Tu,v)) and
does not interact (P(Ou,v)|Fu,v)). The log-likelihood score then becomes

LðCÞ ¼
X

ðu;vÞ2EðCÞ
log

bPðOu;vjTu;vÞ þ ð1 � bÞPðOu;vjFu;vÞ
pu;vPðOu;vjTu;vÞ þ ð1 � pu;vÞPðOu;vjFu;vÞ

In the SAMBA algorithm (Tanay et al, 2002), a bipartite graph represents the
genomic data: nodes on side A represent genes and nodes on side B
represent different properties (Figure 4). A likelihood ratio is used to score a
potential bicluster (A,B) by summing over all the edges between A and B:

LðCÞ ¼
X

ðu;vÞ2EðA;BÞ
log

b
pu;v

þ
X

ðu;vÞ=2EðA;BÞ
log

1 � b
1 � pu;v

Using these scores, optimization algorithms based on hashing (Tanay et al,
2002) and local search (Sharan et al, 2005) can be used to detect high-
scoring subnetworks.
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interactions. A probabilistic graphical model was used to
extract a pre-specified number of modules from gene expres-
sion measurements combined with a protein interaction data
set. This method thus produces groups of genes that are both
coexpressed and exhibit a dense interaction pattern.

Integrated analysis of interactions and diverse
genomic data

Kelley and Ideker (2005) described the first module-assisted
integration of protein interaction data with genetic interaction
data. Synthetic lethality and synthetic sickness are interactions
between two nonessential genes whose combined deletion is
lethal or produces a severe growth effect, respectively. Kelley
and Ideker (2005) addressed the question of whether genetic
interactions occur mostly within or between different path-
ways by identifying statistically significant modular structures
in the combined network of physical (protein–protein and
protein–DNA) and genetic interactions. By defining pathways
as dense subnetworks in the physical interaction network,
Kelley and Ideker (2005) show that genetic interactions occur
between pathways much more often than within pathways.
The modular structures led to better function prediction than
using physical interactions alone.

Another source of rich genomic information that is becom-
ing increasingly available is the collection of phenotypes of
strains containing a deletion for a single nonessential gene and
exposed to diverse conditions (Brown et al, 2006). Haugen et al
(2004) measured deletion phenotypes along with expression
profiles in the arsenic response of S. cerevisiae. The data were
then integrated with a metabolic network and a physical

network using the ActiveModules algorithm (Ideker et al,
2002). This type of integration was used to reveal proteins
central to the arsenic response and to provide network-based
explanations to the differences between the phenotypically
sensitive pathways and the differentially expressed ones.

Tanay et al (2004) described an integrative framework
allowing the integration of protein interaction data with gene
expression, phenotypic sensitivity and transcription factor
(TF) binding, using the SAMBA biclustering algorithm (Tanay
et al, 2002). SAMBA models the genomic data as a bipartite
graph (Box 1), where nodes on one side represent genes and
that on the other side represent different properties derived
from the genomic data (Figure 4). For protein interaction data, a
property represents the presence of an interaction with a specific
protein. A gene expression experiment is represented by several
properties corresponding to different expression level ranges. A
TF property represents the binding of the gene promoter by the
TF. The bipartite graph is weighted using a maximum likelihood-
based score (Box 3). Heavy subgraphs in the bipartite graph
correspond to groups of genes that manifest a common behavior
across a large set of heterogeneous experiments. This approach
was experimentally shown to provide accurate function predic-
tion, and was later extended to analyze a compendium of some
2000 distinct experiments in S. cerevisiae, yielding 1200
statistically significant modules (Tanay et al, 2005).

Performance comparison

The availability of such a wide range of methods calls for a
comprehensive comparison among them. Below we summar-
ize some of the key comparisons reported so far.

Strong 
induction

Medium 
induction

Medium 
repression

Strong 
repression

p1 p2 p3 p4

Strong 
binding to 
TF T

Medium 
binding to 
TF T

High 
sensitivity

Medium 
sensitivity High-confidence 

interaction
Medium-confidence 
interaction

p1

Strong 
confidence in complex 

membership with protein P 

Medium  
confidence in complex 

membership with protein P 

p2

p1 p2 p1 p2

p1 p2

Gene g

Genes Properties

Gene expression

TF binding Phenotypes Protein interactions

Complex membership
A B

Figure 4 Integration of multiple data sources using the SAMBA framework. In the SAMBA framework (Tanay et al, 2004), different gene characteristics are
represented by properties (A). Quantitative characteristics, such as gene expression levels, are discretized first. The genes and the properties are represented by nodes
in a bipartite graph (B), where edges connect genes with the properties they have. The SAMBA algorithm seeks modules consisting of a subset of genes and a subset
of properties, such that these subsets are densely connected in the graph.
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Direct methods

For direct methods, no systematic comparison has been
reported so far, but some information on the performance of
the different methods can be gleaned from comparisons made
in the annotation studies reviewed above, one of which we
describe below.

Several measures have been suggested to evaluate the
quality of a direct annotation method (see e.g., Deng et al,
2003; Nabieva et al, 2005). All these measures are close
variants of the one proposed by in Deng et al (2003). The latter
is based on measuring the precision and recall of an
annotation, computed in a leave-one-out setting (i.e., the
known annotation of a single protein at a time is hidden and
predicted using the network and the annotations of all other
proteins), taking into account multiple annotations per
protein. Specifically, let ni be the number of known functions
for protein i, let mi be the number of predicted functions for the
protein when hiding its true annotations and let ki the overlap
between the two sets. The precision and recall of the
predictions are defined as

Precision ¼

P
i

kiP
i

mi
Recall ¼

P
i

kiP
i

ni

A discussion of other measures that are applicable if the Gene
Ontology (GO) annotation is used and of weighted matches
between known and predicted functions based on their
positions in the GO hierarchy (Ashburner et al, 2000) appears
in Deng et al (2004).

Chua et al (2006) compared several schemes, including
neighborhood counting (Schwikowski et al, 2000), the w2

method of Hishigaki et al (2001), the MRF method of Deng et al
(2003) and the flow-based method of Nabieva et al (2005). (To
avoid possible bias, we do not report here on the method of
Chua et al (2006), which was also included in the compar-
ison.) Each method was applied to the MIPS interaction set
(Mewes et al, 2002) using the GO annotation, and was
evaluated using the precision and recall measures. The MRF
method outperformed the others by a significant margin,
whereas the other three methods exhibited similar perfor-
mance. These results were consistent across the three main
MIPS categories: cellular role, biochemical function and
subcellular localization. The advantage of MRF is probably
owing to the use of a more sophisticated probabilistic model.

Module-assisted methods

One of the obstacles to systematic evaluation of the different
module-assisted methods for functional annotation is the lack
of agreed upon technique for function prediction within a
module. However, if one considers a module as a functional
unit whose member proteins have identical functions, then
one could evaluate a module-assisted method by the fit
between the produced modules and either the MIPS complexes
catalog (Mewes et al, 2002) or GO categories (Ashburner et al,
2000), using measures similar to those described in the Direct
methods section. A systematic quantitative evaluation of four
module-assisted clustering algorithms has been presented
recently by Brohee and van Helden (2006): RNSC, SPC,

MCODE and MCL. As the authors of this study were not
involved in the development of any of the algorithms, the
chances of inadvertent evaluation bias are low. Brohee and
van Helden (2006) used a test graph constructed by
representing 220 known complexes as cliques in the graph
and generated 41 altered graphs by random addition or
removal of edges in different proportions. The parameters of
each of the clustering algorithms were then tuned based
on this data set using a statistic combining detection sensitivity
and specificity. In addition, the four module-assisted techni-
ques were applied to six PPI graphs formed based on high-
throughput experiments, and their performance was evaluated
by their success in recovering known complexes.

The authors found that the MCL algorithm is remarkably
robust to graph alternations. MCL had the best performance
on both simulated and real data sets, whereas RNSC was
relatively less sensitive to suboptimal parameters. MCODE and
SPC were shown to be clearly inferior under most conditions.
The comparative analysis also highlighted intrinsic strengths
and weaknesses of the algorithms. MCODE performed best on
random data, by detecting the fewest false positives, owing to
its ability to report complexes covering only part of the
network, rather than partitioning all the nodes into complexes.
SPC tended to generate ‘mega-complexes’ of very large size,
thus obtaining very high sensitivity but very low specificity.
Notably, this comparison used unweighted networks, whereas
the MCL and SPC algorithms can deal with weighted graphs
and are likely to give better performances if weights are
assigned to reflect the reliability of the interactions (Pereira-
Leal et al, 2004).

Comparing direct and module-assisted methods

To the best of our knowledge, no systematic comparison of
network-based function prediction, covering both direct and
module-assisted methods, has been undertaken to date. In
a simplistic comparison of two basic methods (Figure 5), we
found that a simple neighbor-counting method has a higher
specificity in predicting functions when compared to the more
involved module-assisted MCODE algorithm. This may be
explained by the focus of MCODE on processes imposing
subgraphs with a dense interaction pattern. A more com-
prehensive analysis alongside the development of better
prediction techniques will highlight these differences.

Discussion

Efforts for network-based function prediction have been going
on for over 6 years now, since the introduction of molecular
techniques capable of mapping protein interactions on a
genome-wide scale. Despite the large number of techniques
suggested for functional annotation using networks, systema-
tic annotation is still mostly based on other data sources, such
as sequence homology. Several goals, reviewed below, have to
be accomplished in order for the network-based functional
annotation tools to become widely used.

Despite the large number of different algorithms developed
for both direct and module-assisted function prediction, the
implementations of only a small fraction of them are publicly
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accessible. Only a handful, such as MCODE (Bader and Hogue,
2003), PRODISTIN (Baudot et al, 2006), CFinder (Adamcsek
et al, 2006) and NetworkBlast (http://www.pathblast.org/),
are currently supported with a graphical interface. Networks
are highly visualizable, and as the human eye is better in
pattern detection than any computer, a good graphical inter-
face will help make such computational tools widely used by
the biological community.

Although the field has advanced considerably in recent
years on the methodological side, comprehensive comparisons
of the plethora of available annotation methods, similar to
that performed by Brohee and van Helden (2006), are greatly
in need. Such systematic evaluation efforts were recently
performed in other fields, for example, discovery of TF-binding
sites (Tompa et al, 2005), biclustering of expression data
(Prelic et al, 2006) and protein structure prediction (Kryshta-
fovych et al, 2005), which has a long and successful history of
community evaluations. Owing to the fundamental differences
between the different annotation types, such as biological
process and molecular complexes, it is clear that different
methods are best suited for different types of annotation. An
important prerequisite for a comprehensive comparison is the
definition of golden standards for functional annotation. In
most of the studies described here, the MIPS complexes catalog
and Gene Ontology were used as a benchmark for prediction
success. However, both data sets are currently not compre-

hensive and some annotations are found in one but not in the
other.

Although several methods described above use diverse
functional genomic data sources, they are still greatly out-
numbered by methods utilizing only the network topology.
Owing to the increasing accessibility of microarray technology,
gene expression measurements have become widely available
for diverse conditions across species. As of August 2006,
almost 95 000 and 45 000 hybridization samples were avail-
able in Gene Expression Omnibus and ArrayExpress data-
bases, respectively. This huge body of data is currently poorly
exploited by integrative annotation methods, as most of them
focus on expression data derived in a single study. Following
the success of several methods integrating expression data
from multiple studies (Ihmels et al, 2002; Lee et al, 2004; Segal
et al, 2005; Tanay et al, 2005), we expect that techniques based
on large compendia of expression data and protein interaction
networks will significantly increase the accuracy of functional
annotation. Additional large-scale genomic data, such as
deletion phenotypes (Brown et al, 2006), proteomic measure-
ments (Kislinger et al, 2006) and protein cellular localization
(Huh et al, 2003), can also be used in an integrative
framework. Data of a high diversity and dimensionality have
been integrated using biclustering (Tanay et al, 2005) and
kernel-based methods (Lanckriet et al, 2004).

This review focused on methods aimed at genome-scale
functional annotation using network data from a single
species. Several additional studies developed methods for
detection of functional modules in slightly different contexts.
In particular, specific algorithms were developed for detection
of molecular complexes from lists of proteins identified in
biochemical purification experiments, rather than from binary
interaction networks (Krause et al, 2003; Hollunder et al, 2005;
Scholtens et al, 2005; Gavin et al, 2006). Another set of works
attempted to identify evolutionarily conserved functional
modules via the integration of networks from multiple
organisms (Kelley et al, 2003; Sharan et al, 2005; Campillos
et al, 2006; Flannick et al, 2006; Gandhi et al, 2006; see also
the review in Sharan and Ideker, 2006).

Which methods should be used by a newcomer to the field? As
mentioned above, the limited information about the comparative
performance of the methods presented here makes it difficult to
decide which method should be used in a specific setting. When
using only PPI data, our initial and limited comparison does seem
to indicate that direct methods are currently slightly superior to
module-assisted ones, with MRF and MCL being the leading
techniques for direct and module-assisted function prediction,
respectively. New techniques should thus be compared to these
methods to prove their superiority. If the goal is actual function
prediction rather than methodological improvement, the use is
mainly limited to methods that are implemented as a tool with
a graphical user interface or available as a web server (Table I).
As to methods integrating multiple data sources, no comparative
assessment is currently available.

When using interaction networks, whether as a sole
information source or in conjunction with other data sources,
the current limitations of these data have to be recognized. The
currently available protein interaction data are known to be
both noisy (von Mering et al, 2002) and partial (Hart et al,
2006). In addition, as large-scale interaction mappings are

Figure 5 Performance comparison of a direct method versus a module-
assisted one. Two receiver operating characteristic (ROC) curves comparing the
accuracy of a neighborhood-counting method (Schwikowski et al, 2000) and
of the MCODE method (Bader and Hogue, 2003) in predicting GO Biological
Process annotations using a PPI network obtained from BioGRID (Stark et al,
2006). A ROC curve is commonly used to assess prediction performance by
plotting the true positive rate versus the false positive rate when varying the
prediction threshold. In the neighborhood-counting variant used here, a protein
is assigned with a function if the hypergeometric enrichment P-value for the
function in the protein’s direct neighborhood is below a certain threshold. MCODE
clusters were obtained using the Cytoscape plug-in with the ‘node score cutoff’
parameter set to 0.05 and the other parameters at their default values. Using
MCODE, we predict a function for a protein if that function’s P-value in the
protein’s module is below a certain threshold. Each ROC curve was obtained by
varying the threshold. Only proteins assigned to at least one MCODE cluster
were used in the analysis for both methods.
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conducted only in a single growth condition or in a single
tissue type, interaction data currently lack any spatial or
temporal information. Clearly, for some functional annota-
tions, the relevant interactions may occur only under specific
conditions in a specific time point. In addition, not every
functional aspect of the protein is expected to be manifested
in its interaction pattern. Some proteins, such as metabolic
enzymes, are most functional on their own without the need
for cooperation from other proteins.

Despite these caveats, analysis of interaction networks is a
young, promising and very active research area. The utiliza-
tion of such networks for function prediction is just one of a
plethora of possible ways by which this rich source of
information can be exploited. Although techniques for net-
work-based function prediction have been continuously
improving, there is still a lot of room for improvement, both
in terms of the methodologies and in terms of their evaluation.
We expect that improved, more accurate methods that are
made readily accessible to the biological community will make
interaction networks a prevalent instrument for functional
annotation, among their many other important uses.
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