Markov Chain Models (Part 2)

BMI/CS 576
www.biostat.wisc.edu/bmi576/
Mark Craven
craven@biostat.wisc.edu
Fall 2011

Higher order Markov chains

- the Markov property specifies that the probability of a state depends only on the probability of the previous state
- but we can build more "memory" into our states by using a higher order Markov model
- in an *n*th order Markov model

$$P(x_i \mid x_{i-1}, x_{i-2}, ..., x_1) = P(x_i \mid x_{i-1}, ..., x_{i-n})$$

Selecting the order of a Markov chain model

- higher order models remember more "history"
- · additional history can have predictive value
- · example:
 - predict the next word in this sentence fragment"... the___" (duck, end, grain, tide, wall, ...?)
 - now predict it given more history"... against the ___" (duck, end, grain, tide, wall, ...?)

"swim against the ___" (duck, end, grain, tide, wall, ...?)

Selecting the order of a Markov chain model

- but the number of parameters we need to estimate grows exponentially with the order
 - for modeling DNA we need $O(4^{n+1})$ parameters for an nth order model
- the higher the order, the less reliable we can expect our parameter estimates to be
 - estimating the parameters of a 2nd order Markov chain from the complete genome of *E. Coli*, we'd see each word > 72,000 times on average
 - estimating the parameters of an 8th order chain,
 we'd see each word ~ 5 times on average

Higher order Markov chains

- an nth order Markov chain over some alphabet A is equivalent to a first order Markov chain over the alphabet Aⁿ of n-tuples
- example: a 2nd order Markov model for DNA can be treated as a 1st order Markov model over alphabet AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT
- caveat: we process a sequence one character at a time
 A C G G T

$$AC \longrightarrow CG \longrightarrow GG \longrightarrow GT$$

A fifth-order Markov chain

$$P(gctaca) = P(gctac)P(a \mid gctac)$$

Inhomogenous Markov chains

- in the Markov chain models we have considered so far, the probabilities do not depend on our position in a given sequence
- in an *inhomogeneous* Markov model, we can have different distributions at different positions in the sequence
- consider modeling codons in protein coding regions

An inhomogeneous Markov chain

Example application

- CpG islands
 - CG dinucleotides are rarer in eukaryotic genomes than expected given the marginal probabilities of C and G
 - but the regions upstream of genes are richer in
 CG dinucleotides than elsewhere CpG islands
 - useful evidence for finding genes
- could predict CpG islands with Markov chains
 - one to represent CpG islands
 - one to represent the rest of the genome

CpG islands as a classification task

1. train two Markov models: one to represent CpG island sequence regions, another to represent other sequence regions (*null*)

- 2. given a test sequence, use two models to
 - determine probability that sequence is a CpG island
 - classify the sequence (CpG or null)

Markov chains for discrimination

- parameters estimated for CpG and null models
 - human sequences containing 48 CpG islands
 - 60,000 nucleotides

Markov chains for discrimination

· using Bayes' rule tells us

$$P(CpG \mid x) = \frac{P(x \mid CpG)P(CpG)}{P(x)}$$
$$= \frac{P(x \mid CpG)P(CpG)}{P(x \mid CpG)P(CpG) + P(x \mid null)P(null)}$$

• if we don't take into account prior probabilities of two classes (P(CpG) and P(null)) then we just need to compare $P(x \mid CpG)$ and $P(x \mid null)$

Markov chains for discrimination

- light bars represent negative sequences
- dark bars represent positive sequences (i.e. CpG islands)
- the actual figure here is not from a CpG island discrimination task, however

Figure from A. Krogh, "An Introduction to Hidden Markov Models for Biological Sequences" in Computational Methods in Molecular Biology, Salzberg et al. editors, 1998.