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Higher order Markov chains

the Markov property specifies that the probability of a state
depends only on the probability of the previous state

but we can build more “memory” into our states by using a
higher order Markov model

in an nth order Markov model

P(x,Ix,_,x_5,.x))=P(x, | x_,..0x,_,)




Selecting the order of a
Markov chain model

* higher order models remember more “history”
 additional history can have predictive value
« example:

— predict the next word in this sentence fragment
“...the__ " (duck, end, grain, tide, wall, ...?)

— now predict it given more history
“...against the " (duck, end, grain, tide, wall, ...?)

“swim against the __” (duck, end, grain, tide, wall, ...?)

Selecting the order of a
Markov chain model

» but the number of parameters we need to estimate
grows exponentially with the order
— for modeling DNA we need O(4""") parameters
for an nth order model

» the higher the order, the less reliable we can expect
our parameter estimates to be
— estimating the parameters of a 2" order Markov
chain from the complete genome of E. Coli, we'd
see each word > 72,000 times on average

— estimating the parameters of an 8t order chain,
we’'d see each word ~ 5 times on average




Higher order Markov chains

* an nth order Markov chain over some alphabet A is
equivalent to a first order Markov chain over the alphabet
A" of n-tuples

« example: a 2" order Markov model for DNA can be
treated as a 1st order Markov model over alphabet

AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT,
TA, TC, TG, TT

» caveat: we process a sequence one character at a time
ACGGT

AC |—|CG|—|GG|—|GT

A fifth-order Markov chain

ctaca

ctacc
ctacg
ctact

begin

P(gctac) o
gctac

P(gctaca) = P(gctac)P(algctac)




Inhomogenous Markov chains

* in the Markov chain models we have considered so
far, the probabilities do not depend on our position
in a given sequence

* in an inhomogeneous Markov model, we can have
different distributions at different positions in the
sequence

« consider modeling codons in protein coding regions

An inhomogeneous Markov chain
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Example application

 CpG islands

— CG dinucleotides are rarer in eukaryotic genomes
than expected given the marginal probabilities of C
and G

— but the regions upstream of genes are richer in
CG dinucleotides than elsewhere — CpG islands

— useful evidence for finding genes

» could predict CpG islands with Markov chains
— one to represent CpG islands
— one to represent the rest of the genome

CpG islands as a classification task

1. train two Markov models: one to represent CpG island
sequence regions, another to represent other sequence
regions (null)

2. given a test sequence, use two models to
« determine probability that sequence is a CpG island
» classify the sequence (CpG or null)




Markov chains for discrimination

» parameters estimated for CpG and null models
— human sequences containing 48 CpG islands
— 60,000 nucleotides
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Markov chains for discrimination

P(CpGlx)=

using Bayes’ rule tells us

P(x 1 CpG)P(CpG)

P(x)

P(x |CpG)P(CpG)

~ P(x 1CpG)P(CpG) + P(x | null)P(null)

if we don’t take into account prior probabilities of two

classes ( P(CpG) and P(null) ) then we just need to
compare P(x|CpG) and P(x|null)




Markov chains for discrimination
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Figure from A. Krogh, “An Introduction to Hidden Markov Models for Biological Sequences” in Computational
Methods in Molecular Biology, Salzberg et al. editors, 1998.




