Introduction to Phylogenetic Trees

BMI/CS 576
www.biostat.wisc.edu/bmi576.html
Mark Craven
craven@biostat.wisc.edu
Fall 2011

Phylogenetic inference: task definition

- Given
 - data characterizing a set of species/genes
- Do
 - infer a phylogenetic tree that accurately characterizes the evolutionary lineages among the species/genes

What is a tree?

undirected case: a graph without cycles

• directed case: underlying undirected graph is a tree (sometimes it is required that $indegree(v) \le 1$ for all v)

Phylogenetic tree basics

- leaves represent things (genes, species, individuals/ strains) being compared
 - the term taxon (taxa plural) is used to refer to these when they represent species and broader classifications of organisms
- internal nodes are hypothetical ancestral units
- in a rooted tree, path from root to a node represents an evolutionary path
 - the root represents the common ancestor
- an unrooted tree specifies relationships among things, but not evolutionary paths

Motivation

- why construct trees?
 - to understand lineage of various species
 - to understand how various functions evolved
 - to inform multiple alignments
 - to identify what is most conserved/important in some class of sequences

Example gene tree: globins

Example species tree: baboons

Image from Southwest National Primate Research Center

Genetic Analysis of Lice Supports Direct Contact between Modern and Archaic Humans D. Reed et al., *PLoS Biology* 2(11), November 2004.

Genetic Analysis of Lice Supports Direct Contact between Modern and Archaic Humans D. Reed et al., *PLoS Biology* 2(11), November 2004.

Genetic Analysis of Lice Supports Direct Contact between Modern and Archaic Humans D. Reed et al., *PLoS Biology* 2(11), November 2004.

- this phylogeny supports a theory of human evolution in which
 - H. erectus and the ancestors of
 H. sapiens had little or no
 contact for a long period of time
 - there was contact between H. erectus and H. sapiens as late as 30,000 years ago

Data for building trees

- · trees can be constructed from various types of data
 - distance-based: measures of distance between species/genes
 - character-based: morphological features (e.g. # legs), DNA/protein sequences
 - gene-order: linear order of orthologous genes in given genomes

Rooted vs. unrooted trees

Number of possible trees

- given n sequences, there are $\prod_{i=3}^{n} (2i-5)$ possible unrooted trees
- and $(2n-3)\prod_{i=3}^{n}(2i-5)$ possible rooted trees

Number of possible trees

# taxa (n)	# unrooted trees	# rooted trees
4	3	15
5	15	105
6	105	945
8	10,395	135,135
10	2,027,025	34,459,425

Phylogenetic tree approaches

- three general types of methods
 - distance: find tree that accounts for estimated evolutionary distances
 - parsimony: find the tree that requires minimum number of changes to explain the data
 - maximum likelihood: find the tree that maximizes the likelihood of the data