Applications of HMMs in Computational Biology

BMI/CS 576
www.biostat.wisc.edu/bmi576.html
Mark Craven
craven@biostat.wisc.edu

The protein classification task

Given: amino-acid sequence of a protein
Do: predict the family to which it belongs

GDLSTPDVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLGNGVLCVLAHHFGKEFTPPVQAAYAKVVAAGVANALAHKYH
Protein family - a simplified view

{A C A – – – A T G
 T C A A C T A T C
 A C A C – – A G C
 A G A – – – A T C
 A C C G – – A T C

family

A C A C – – A T C
A A A C – – A T C
T G C T – – A T C

query 1
query 2
query 3

An example from Krogh: An Introduction to HMMs for Biological Sequences, CMMB 1998.

Protein family - HMM

An example from Krogh: An Introduction to HMMs for Biological Sequences, CMMB 1998.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Probability ×100</th>
<th>Log odds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consensus</td>
<td>4.7</td>
<td>6.7</td>
</tr>
<tr>
<td>Original sequences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A C A – – – A T G</td>
<td>3.3</td>
<td>4.9</td>
</tr>
<tr>
<td>T C A A C T A T C</td>
<td>0.0075</td>
<td>3.0</td>
</tr>
<tr>
<td>A C A C – – A G C</td>
<td>1.2</td>
<td>5.3</td>
</tr>
<tr>
<td>A G A – – – A T C</td>
<td>3.3</td>
<td>4.9</td>
</tr>
<tr>
<td>A C C G – – A T C</td>
<td>0.59</td>
<td>4.6</td>
</tr>
<tr>
<td>Exceptional</td>
<td>0.0023</td>
<td>-0.97</td>
</tr>
</tbody>
</table>

An example from Krogh: An Introduction to HMMs for Biological Sequences, CMMB 1998.
Profile HMMs

- profile HMMs are used to model families of sequences

Delete states are silent; they account for characters missing in some sequences.

Insert states account for extra characters in some sequences.

Match states represent key conserved positions.

Insert and match states have emission distributions over sequence characters.

Multiple alignment of SH3 domain

Figure from A. Krogh, *An Introduction to Hidden Markov Models for Biological Sequences*
Profile HMMs

- to classify sequences according to family, we can train a profile HMM to model the proteins of each family of interest
- given a sequence \(x \), use Bayes’ rule to make classification

\[
P(c_i \mid x) = \frac{P(x \mid c_i)P(c_i)}{\sum_j P(x \mid c_j)P(c_j)}
\]

- use Forward algorithm to compute \(P(x \mid c_i) \) for each family \(c_i \)
Profile HMM accuracy

See Pfam database for a large collection profile HMMs

- classifying 2447 proteins into 33 families
- x-axis represents the median # of negative sequences that score as high as a positive sequence for a given family’s model
The gene finding task

Given: an uncharacterized DNA sequence
Do: locate the genes in the sequence, including the coordinates of individual *exons* and *introns*

Eukaryotic gene structure
Sources of evidence for gene finding

- **signals**: the sequence signals (e.g. splice junctions) involved in gene expression

- **content**: statistical properties that distinguish protein-coding DNA from non-coding DNA

- **conservation**: signal and content properties that are conserved across related sequences (e.g. syntenic regions of the mouse and human genome)

Gene finding: search by content

- encoding a protein affects the statistical properties of a DNA sequence

<table>
<thead>
<tr>
<th>Codon</th>
<th>a.a.</th>
<th>fraction per codon per a.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UUU</td>
<td>P</td>
<td>0.46</td>
</tr>
<tr>
<td>UUC</td>
<td>P</td>
<td>0.54</td>
</tr>
<tr>
<td>UUA</td>
<td>L</td>
<td>0.08</td>
</tr>
<tr>
<td>UUG</td>
<td>L</td>
<td>0.13</td>
</tr>
<tr>
<td>CUU</td>
<td>L</td>
<td>0.13</td>
</tr>
<tr>
<td>CUC</td>
<td>L</td>
<td>0.20</td>
</tr>
<tr>
<td>CUA</td>
<td>L</td>
<td>0.07</td>
</tr>
<tr>
<td>CUG</td>
<td>L</td>
<td>0.40</td>
</tr>
<tr>
<td>AUU</td>
<td>I</td>
<td>0.36</td>
</tr>
<tr>
<td>AUC</td>
<td>I</td>
<td>0.47</td>
</tr>
<tr>
<td>AUA</td>
<td>I</td>
<td>0.17</td>
</tr>
<tr>
<td>AUG</td>
<td>M</td>
<td>1.00</td>
</tr>
<tr>
<td>GUU</td>
<td>V</td>
<td>0.18</td>
</tr>
<tr>
<td>GUC</td>
<td>V</td>
<td>0.24</td>
</tr>
<tr>
<td>GUA</td>
<td>V</td>
<td>0.12</td>
</tr>
<tr>
<td>GUG</td>
<td>V</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Homo sapiens data from the Codon Usage Database
The GENSCAN HMM for Eukaryotic Gene Finding [Burge & Karlin ‘97]

Each shape denotes a functional unit of a gene or genomic region and is represented by a submodel in the HMM

Pairs of intron/exon units represent the different ways an intron can interrupt a coding sequence (after 1st base in codon, after 2nd base or after 3rd base)

Complementary submodel (not shown) detects genes on opposite DNA strand

GENSCAN uses a variety of submodel types

<table>
<thead>
<tr>
<th>sequence feature</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>exons</td>
<td>5th order inhomogenous</td>
</tr>
<tr>
<td>introns, intergenic regions</td>
<td>5th order homogenous</td>
</tr>
<tr>
<td>poly-A, translation initiation, promoter</td>
<td>0th order, fixed-length</td>
</tr>
<tr>
<td>splice junctions</td>
<td>tree-structured variable memory</td>
</tr>
</tbody>
</table>
Markov models & exons

- consider modeling a given coding sequence
- for each “word” we evaluate, we’ll want to consider its position with respect to the reading frame we’re assuming

reading frame

```
G C T A C G
C T A C G G
T A C G G A
```

- can do this using an inhomogeneous model

A fifth-order inhomogenous Markov chain

```
GCTAC AAAAA TTTTT CTACG CTACA CTACC CTACT
AAAAA TTTTT TACAG TACAA TACAC TACA T
```

```
transitions
to states in pos 2
```

```
start
AAAAA
CTACA
CTACC
CTACG
CTACT
GCTAC
TTTTT
```

```
position 2
```

```
AAAAA
CTACA
CTACC
CTACG
CTACT
GCTAC
TTTTT
```

```
position 3
```

```
AAAAA
TACAA
TACAC
TACAG
TACAT
GCTAC
TTTTT
```

```
position 1
```
Inference with the gene-finding HMM

given: an uncharacterized DNA sequence
find: the most probable path through the model for the sequence

• this path will specify the coordinates of the predicted genes (including intron and exon boundaries)
• the Viterbi algorithm is used to compute this path

Parsing a DNA sequence

The Viterbi path represents a parse of a given sequence, predicting exons, introns, etc
Other issues in Markov models

- there are many interesting variants and extensions of the models/algorithms we considered here (some of these are covered in BMI/CS 776)
 - separating length/composition distributions with *semi-Markov models*
 - modeling multiple sequences with *pair HMMs*
 - learning the *structure* of HMMs
 - going up the Chomsky hierarchy: *stochastic context free grammars*
 - discriminative learning algorithms (e.g. as in *conditional random fields*)
 - etc.