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The protein classification task

Given: amino-acid sequence of a protein
Do: predict the family to which it belongs
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Protein family - a simplified view

ACA — — - ATG

TCA ACTATC
ACAC — — AGC /> family
AGA — — - ATC

AC CG--ATC

ACAC —-— - ATC queryl
AAAC--AT C query 2
TGCT — - ATC query3

An example from Krogh: An Introduction to HMMs for Biological Sequences, CMMB 1998.



Protein family - HMM
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Sequence Probability x 100 Log odds
Consensus A CAC--ATC 4.7 6.7
Original ACA---ATG 3.3 4.9
sequences T CAACTATC 0.0075 3.0
ACAC--AGC 1.2 5.3
AGA---ATC 3.3 49
ACCG--ATGC 0.59 4.6
Exceptional TG CT - - A GG 0.0023 -0.97

An example from Krogh: An Introduction to HMMs for Biological Sequences, CMMB 1998.




Profile HMMs

« profile HMMs are used to model families of sequences
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Multiple alignment of SH3 domain
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Figure from A. Krogh, An Introduction to Hidden Markov Models for Biological Sequences



A profile HMM trained for the SH3 domain
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Figure from A. Krogh, An Introduction to Hidden Markov Models for Biological Sequences



Profile HMMs

e to classify sequences according to family, we can train a
profile HMM to model the proteins of each family of interest

e given a seguence X, use Bayes’ rule to make classification
P(x|c;)P(c)
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Profile HMM accuracy

~

\. profile HMM-based
methods

BLAST-based
methods

MNumber of SCOP families with given performance

BLAST:SCOP-only —+—
BLAST:SCOP+SAM-T98-homologs —»—
SAM-TYE ——

. SVM-Fisher —5—

0 0.02 0.04 0.06 0.08 0.1
Median RFP

Figure from Jaakola et al., ISMB 1999

» classifying 2447proteins into 33 families

e X-axis represents the median # of negative sequences that
score as high as a positive sequence for a given family’s model



See Pfam database for a large
collection profile HMMs

« C ) pfam.sanger.ac.uk wN
For quick access, place your bookmarks here on the bookmarks bar. Import bookmarks now... [l other Bookmarks

/ wellcome trust
sanger HOME | SEARCH | BROWSE | FTP | HELP | ABOUT nm
Ml nstitute (o]

Pfam 25.0 (March 2011, 12273 families)

The Pfam database is 2 large collection of protein families, each represented by multiple sequence
alignments and hidden Markov models (HMMs). More...

QUICK LINKS YOU CAN FIND DATA IN PFAM IN VARIOUS WAYS...
SEQUENCE SEARCH Analyze your protein sequence for Pfam matches
VIEW A PFAM FAMILY  View Pfam family annotation and alignments
VIEW A CLAN See groups of related families
VIEW A SEQUENCE Look at the domain organisation of a protein sequence
VIEW A STRUCTURE Find the domains on a PDB structure
KEYWORD SEARCH Query Pfam by keywords

Enter any type of accession or 1D to jump to the page for a Pfam family or
dan, UniProt sequence, PDB structure, etc.

Or view the help pages for more information

Recent Pfam blog® posts EHide this

No, seriously, we’'ve mad release? (posted 1 April 2011)

Well, it should have been out about 6 months ago, but finally the long awaited Pfam release 25.0 is
here! Release 25.0 contains a total of 12273 families, with 384 new families and 21 families killed since
the latest release. Pfam 25.0 is based on UniProt release 2010_05. Those of you who follow Pfam
closely [...]

Who's who 2 (posted 22 March 2011)

It has been some time since we posted a blog, so, to keep you all on your toes, we are going behind
the scenes to reveal something about the minds that run Pfam... From the longest-serving member to
the newest recruit we have elicited a few key facts in the form of answers to some [...]

Job opportunities and staff chang XfamF (posted 1 September 2010)

We have been very sad to see a few people |eave the group recently. Rob Finn has been the dedicated
and hard working project leader of Pfam for many years. In fact as a summer student he is credited
with preparing most of the families for Pfam 2.0 [1]! We're expecting to see great things [...]

Citing Pfam Mirrors
If you find Pfam useful, please consider citing the reference The fellowing are official Pfam mirror
that describes this work: sites:

The Pfe rotein ilies da 5e67: R.D. Finn, 1. Mistry, J. 8 WTSL, UK
Tate, P. Coggill, A. Heger, 1.E. Pollington, O.L. Gavin, P. SBC. Sacid®
Gunesekaran, G. Ceric, K. Forslund, L. Holm, E.L. ™ IFRC, USAS®
Sonnhammer, S.R. Eddy, A. Bateman =
Nucleic Acids Research (2010) Database Issue 38:D211-222

Comments or questions on the site? Send a mall to pfam-help@sanger.ac.uk
The Wellcome Trust

N




The gene finding task

Given: an uncharacterized DNA sequence

Do: locate the genes in the sequence, including the
coordinates of individual exons and introns
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Eukaryotic gene structure

Startcodon  codons  ponor site

oo« »ATGCCCTTCTCCAACAG




Sources of evidence for gene finding

 signals: the sequence signals (e.g. splice junctions)
iInvolved Iin gene expression

e content: statistical properties that distinguish protein-
coding DNA from non-coding DNA

« conservation: signal and content properties that are
conserved across related sequences (e.g. syntenic
regions of the mouse and human genome)



Gene finding: search by content

e encoding a protein affects the statistical properties of

a DNA sequence
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CAU H 0.42
CAC H 0.58
CAA Q 0.27
CAG Q 0.73

ARU N 0.47
ARC N 0.53
ARA K 0.43
AAG K 0.57

GAU D 0.46
GAC D 0.54
GAA E 0.42
GAG E 0.58

UGU C 0.46
UGC C 0.54
UGA * 0.47
UGG W 1.00

CGU R 0.08
CGC R 0.18
CGA R 0.11
CGG R 0.20

AGU § 0.15
AGC S 0.24
AGA R 0.21
AGG R 0.21

GGU G 0.16
GGC G 0.34
GGA G 0.25
GGG G 0.25

[Cocdon/a.a./fraction per codon per a.a.]
Homo sapiens data from the Codon Usage Database



The GENSCAN HMM for Eukaryotic
Gene Finding [Burge & Karlin ‘97]

Each shape denotes a functional unit of e e @
a gene or genomic region and is

represented by a submodel in the HMM < ‘(4‘

Pairs of intron/exon units represent /

the different ways an intron can interrupt
a coding sequence (after 15t base in codon,
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GENSCAN uses a variety of
submodel types

sequence feature model

exons 5t order inhomogenous

introns, intergenic regions 5t order homogenous

poly-A, translation initiation, Ot order, fixed-length

promoter

splice junctions tree-structured variable memory




Markov models & exons

e consider modeling a given coding sequence

« for each “word” we evaluate, we’ll want to consider its position
with respect to the reading frame we’re assuming

reading frame

A

GCTACGGAGCTTCGGAGC
GCTACG Gis in 3" codon position
CTACGG Gis in 1st position
TACGGA A'is in 2"d position

e can do this using an inhomogeneous model



A fifth-order iInhomogenous Markov chain
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Inference with the gene-finding HMM

given: an uncharacterized DNA sequence

find: the most probable path through the model for the
sequence

« this path will specify the coordinates of the predicted
genes (including intron and exon boundaries)

 the Viterbi algorithm is used to compute this path



Parsing a DNA sequence

The Viterbi path represents @

a parse of a given seguence, lw,"(‘
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ACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGAGAGCATCGATCGGATCGAGGAGGAGCCTATATAAATCAA




Other i1ssues In Markov models

e there are many interesting variants and extensions of
the models/algorithms we considered here (some of
these are covered in BMI/CS 776)

— separating length/composition distributions with
semi-Markov models

— modeling multiple sequences with pair HMMs
— learning the structure of HMMs

— going up the Chomsky hierarchy: stochastic
context free grammars

— discriminative learning algorithms (e.g. as in
conditional random fields)

— eflc.



