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Agenda 

High-throughput screening 

microarray data – origin, aims of analysis 

Hypothesis induction 

– traditional statistics vs learning patterns 

 Find significantly differentially expressed ... 

– genes 

– often an ill-posed problem 

– gene sets 

– apriori defined,  

– knowledge makes the analysis robust 

Methods (so far without annotations) 

– gene significance, clustering 
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Measuring RNA abundances 

• what is varied: individuals, strains, cell types, 
environmental conditions, disease states, etc. 

• what is measured: RNA quantities for thousands of 
genes, exons or other transcribed sequences 

genes 

mRNAs 

DNA microarryas (gene chips) 

Courtesy of Affymetrix  
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Hybridization 

Courtesy of Affymetrix  

Oligonucleotide arrays 

• given a gene to be measured, select different n-

mers for the gene 

• can also select n-mers for noncoding regions of the 

genome 

• selection criteria 

– specificity 

– hybridization properties 

– ease of manufacturing 

gene 

25-mers 
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Microarrays 

One-color vs two-color microarray 

Microarray Centre, Imperial College, London, http://microarray.csc.mrc.ac.uk/ 
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Microarray data 

Goals of microarray data analysis 

– Human disease diagnostics and treatment 

 disease predispositions/risk factors 

 monitor disease stage and treatment progress 

– Agricultural diagnostics and development 

 find plant pathogens to improve plant protection 

 efficiacy and economy in plant biotechnology 

– Analysis of food and GMOs 

 determine the integrity of food 

 detect alterations and contaminations 

 quantify GMOs 

– Drug discovery and drug development 
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Other measurements 

• in a similar manner, we can characterize cells in 
terms of protein or metabolite (small molecule) 
abundances, 

 

• this is not as common as mRNA profiling, however, 
because the technology for doing it is not as mature 

 

• also, there are miRNA, SNP or DNA methylation 
arrays. 

Ways of MA data analysis 

– predictive modeling: molecular classifiers 

 large potential applicability  

 but risk of low reliability and comprehensibility 

– e.g., 70% accuracy is not enough when explanation 

is missing 

– decision based on a large number of genes is 

expensive 

 SVM, RF, kNN, classification rules etc. 

 classifying samples: to which class does a given 

sample belong 

 classifying genes: to which functional class does a 

given gene belong 
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Ways of MA data analysis 

– rather simpler tasks of descriptive modeling 

 any genes with similar expression profiles? 

– clustering, bi-clustering 

– the genes potentially regulated together 

 any genes potentially discriminating among classes? 

– t-tests, SAM 

– potential risk factors 

 can we characterize these genes? 

– significant GO terms, pathways, locations 

(chromozomes) 

– focus on human disease diagnostics and treatment. 

 

 

 

 

ALL/AML dataset 

 distinguishing between two acute leukemia types 

– acute lymphoblastic leukemia (ALL) 

 largely a pediatric disease  

– acute myeloid leukemia (AML)  

 the most frequent leukemia form in adults 

 first published in 

– Golub et al.: Molecular classification of cancer: 

Class discovery and class prediction by gene 

expression monitoring. Science, pp. 531–537, 

1999.  

Affymetrix HU6800 microarray chip 

– probes for 7129 genes, 72 class-labeled samples 

– 47 ALL (65%) and 25 AML (35%) samples 
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ALL/AML data analysis 

Motol dataset 

 superficial bladder tumors 
– the prediction of tumour recurrence is inaccurate 

– use gene analysis to improve it 

 22 samples, ~ 35.000 genes 
– 12 positive (early recurrence) 

– 10 negative (without recurrence in 2 years) 

– Data size heuristics 
 S=SG(1+log10(F))   22  4 (1+log10(20000)) 

 S – samples needed, SG – sig. genes, F – features (genes) 

– bottlenecks 

 financial: MA of 12 samples costs around 0.3 MCZK 

 samples themselves: must have the same grade etc. 

 find significant genes 
– correlation between expression and the target variable 

– lack of data: annotations are needed 
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Classification? Often little sense… 

 69 decision stumps classifying train. data perfectly 

 

 

 

 

 

 consider random data 

– there is 0.25% probability that a random attribute 

splits the 7-5 data correctly 

– having 35.000 genes  96 false alarms expected 

 generalization (predictive) power? 

– none of these stumps is expected to fit. 

 

 

AK097814.1 

non-relapse relapse 

3.5 >3.5 

AY423226.1 

non-relapse relapse 

0.48 >0.48 

… 

t24 

0.025 = /2 0.025 = /2 
 

t24,0.975 

Significantly diff. expressed genes 

standard t-test (or Wilcoxon test) 

– for all the genes and their gene expression: 

 compute means (and sd) in both groups, 

H0 – the means are equal,  

Ha – the means disagree, 

 compute t, compare with T, determine p-value, 

 p (acceptable significance). 

𝑡 =
𝑋 1 − 𝑋 2

𝑆𝑋1𝑋2
1
𝑛1

+
1
𝑛2
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Significantly diff. expressed genes 

 bottleneck 

– p-value = probability that a difference occurred by chance 

– p<=α
i
=0.01 works when evaluating a small number of genes 

 a microarray experiment for 10,000 genes may identify up 

to 100 significant genes by chance 

multiple comparisons 

– familywise error rate αisthe probability of rejecting at least one 

H
0
 given that all H

0
 are true 

– considering k independent comparisons:  

– α=1-(1-α
i
)k, for α

i
=0.01: 

k 1 5 10 50 100 500 1000
α 0.01 0.05 0.10 0.39 0.63 0.99 1.00

Multiple comparison strategies 

 FWER – family-wise error rate 

  value – prob that at least one comparison is FP, 

 Bonferroni correction  

– the simplest (and most conservative) approach, 

– valid regardless correlation/dependence among comparisons, 

– i value for each comparison equals to /k, 

– too restrictive: 30.000 genes, =0.01  i=3*10-7 

Holm–Bonferroni method 

– start by ordering the p-values in increasing order, 

– compare the smallest p-value to α/k, 

– compare the second smallest p-valuetoα/(k-1) etc. , 

– continue until the next hypothesis cannot be rejected, 

– stop and accept all hypotheses that have not been rejected yet, 

– step-wise method, has more power than Bonferroni. 
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Significantly diff. expressed genes 
 genetic mutations BRCA1 and BRCA2 [Hedenfalk, Efron] 

 BRCA1 and BRCA2 increase breast cancer risk 

 are tumors with BRCA1 or BRCA2 observed genetically different?  

 15 samples (7/8), 3226 genes studied, Wilcoxon test used 

Significant analysis of microarrays (SAM) 

 computes false detection rate (FDR) 

– permutations of the repeated measurements to 

estimate the percentage of genes identified by chance 

Tusher, Tibshirani, Chu: Significance analysis of microarrays applied to the ionizing radiation response 

 

relative difference in gene exp. 

gene-specific scatter s(i) 

small constant s0 

t test ~ d(i)>c, d(i)<-c 

instead compare with dE: 

 

the same statistic averaged over  

multiple balanced random partitions 

 

d(i)-dE(i)≥∆ (image ∆=1.2) 
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Significant analysis of microarrays (SAM) 

 truly significant genes (ALL/AML) 

 no significant genes found (Motol – bladder relapse) 

Heterogeneous data fusion 

s
a
m

p
le

s
 

genes 

gene expression 

gene ontology 

texts (scientific journals, PubMed) interaction graphs (pathways, TF networks) 

sample 

class 

sample annotation 

(tissue, anamnesis, measurements) 
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Understanding of gene groups 

 

 

 web tools such as David, eGOn, Ingenuine pathways 

 occurrence of specific subgroups (GO terms, pathways, 
diseases etc.) 

TERM1 - Structural molecule activity (Molecular function) - active in nonrelapse 

 

Relapse group 

9118, INA, Internexin neuronal intermediate filament protein, alpha 

 

Nonrelapse group 

857, CAV1, Caveolin 1, caveolae protein, 22kDa; 1278, COL1A2, Collagen, type I, 
alpha 2; 1281, COL3A1, Collagen, type III, alpha 1; 1289, COL5A1, Collagen, type V, 
alpha 1; 1292, COL6A2, Collagen, type VI, alpha 2; 1293, COL6A3, Collagen, type VI, 
alpha 3; 1306, COL15A1, Collagen, type XV, alpha 1; 80781, COL18A1, Collagen, type 
XVIII, alpha 1; 11117, EMILIN1, Elastin microfibril interfacer 1; 2192, FBLN1, Fibulin 
1; 25900, HOM-TES-103, Hypothetical protein LOC25900, isoform 3; 25984, KRT23, 
Keratin 23 (histone deacetylase inducible); 3908, LAMA2, Laminin, alpha 2 (merosin, 
congenital muscular dystrophy); 4131, MAP1B, Microtubule-associated protein 1B; 
4629, MYH11, Myosin, heavy chain 11, smooth muscle; 10398, MYL9, Myosin, light 
chain 9, regulatory; 23037, PDZD2, PDZ domain containing 2; 64711, RPS2, 
Ribosomal protein S2; 7148, TNXB, Tenascin XB; 7461, WBSCR1, Williams-Beuren 
syndrome chromosome region 1 

Gene-set expression analysis 

 Find significantly expressed subjects  

– ... rather than genes 

– subjects such as pathways, GO terms 

Overview of methods [Goeman, Buhlmann, 2007] 

– competitive vs self-contained tests 

H
0
comp: The genes in the set G are at most as 

often differentially expressed as the genes in its 

complement Gc. 

H
0
self: No genes in G are differentially expressed. 

– gene vs subject sampling 

 gs: study distributions where gene is the basic unit 

 ss: compare the actual subject with other often 

randomly samples subjects 
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Competitive gene sampling 

 Steps: 

– Apply t-test (or other) for diff. expression of genes. 

– Apply a cut-off to separate diff. expressed genes 

•  either threshold p-values (p<α), 

•  or take k genes with smallest p-values. 

–  Count frequencies in 2x2 table. 

–  Do a test of independence 

•  Chi-squared test 

•  Hypergeometric test  

  (Fisher's exact test) 

 

Self-contained subject sampling 

 Steps (see Tian et al.: Discovering statistically significant 

pathways in expression profiling studies): 

–  Apply t-test (or other) for diff. expression of genes 

•  t
i
 measures association of gene i with phenotype 

–  Average association measure over the gene set G 

 

 

m
G
 is size of G, n is the total gene number, 

G
i
 is 1 if gene i is from G otherwise it is 0. 

–  P-times randomly permute phenotypes 

  get {E*
1
,...,E*

P
} to estimate the null distribution of E

G
. 

–  Find the p-value of the gene set G: 

   the proportion of P runs which satisfies E*
x
>E

G
. 
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Pathways – KEGG example 

Rapaport et al. 
 model-based contribution 

– network topology – close genes likely to be co-expressed 

– microarray samples = signals  Fourier tranform + spectral graph 

analysis to remove high-frequency component 

– low-freq component: close genes in the network with similar 

expression – modular rather than single gene expression 

– filters out noise  new sample expression profile 


