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Agenda

— High-throughput screening
— microarray data — origin, aims of analysis
— Hypothesis induction
— traditional statistics vs learning patterns
— Find significantly differentially expressed ...
— genes
— often an ill-posed problem
— gene sets
— apriori defined,
— knowledge makes the analysis robust
— Methods (so far without annotations)
— gene significance, clustering




Measuring RNA abundances

* what is varied: individuals, strains, cell types,
environmental conditions, disease states, etc.

» what is measured: RNA quantities for thousands of
genes, exons or other transcribed sequences

DNA microarryas (gene chips)

Millions of DNA strands built up in each lacation E
ons on each GeneChip® array

Actual strand = 25 base pairs

Courtesy of Affymetrix




Hybridization

RNA fragments with fluorescent tags from sample to be tested

RNA fragment hybridizes with DNA on GeneChip® array

Courtesy of Affymetrix

Oligonucleotide arrays

given a gene to be measured, select different n-
mers for the gene

gene

LR

25-mers

can also select n-mers for noncoding regions of the
genome

selection criteria

— specificity

— hybridization properties
— ease of manufacturing




Microarrays
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Microarray Centre, Imperial College, London, http://microarray.csc.mrc.ac.uk/




Microarray data

Goals of microarray data analysis

— Human disease diagnostics and treatment

— disease predispositions/risk factors

— monitor disease stage and treatment progress
— Agricultural diagnostics and development

— find plant pathogens to improve plant protection

— efficiacy and economy in plant biotechnology
— Analysis of food and GMOs

— determine the integrity of food

— detect alterations and contaminations

— quantify GMOs
— Drug discovery and drug development




Other measurements

* in a similar manner, we can characterize cells in
terms of protein or metabolite (small molecule)
abundances,

 this is not as common as mRNA profiling, however,
because the technology for doing it is not as mature

+ also, there are miRNA, SNP or DNA methylation
arrays.

Ways of MA data analysis

— predictive modeling: molecular classifiers
— large potential applicability
— but risk of low reliability and comprehensibility
—e.g., 70% accuracy is not enough when explanation
is missing
— decision based on a large number of genes is
expensive
— SVM, RF, kNN, classification rules etc.
— classifying samples: to which class does a given
sample belong
— classifying genes: to which functional class does a
given gene belong




Ways of MA data analysis

— rather simpler tasks of descriptive modeling

— any genes with similar expression profiles?
— clustering, bi-clustering
—the genes potentially regulated together

— any genes potentially discriminating among classes?
—t-tests, SAM
— potential risk factors

— can we characterize these genes?

—significant GO terms, pathways, locations
(chromozomes)

— focus on human disease diagnostics and treatment.

ALL/AML dataset

—distinguishing between two acute leukemia types
— acute lymphoblastic leukemia (ALL)
—largely a pediatric disease
— acute myeloid leukemia (AML)
—the most frequent leukemia form in adults
—first published in

— Golub et al.: Molecular classification of cancer:
Class discovery and class prediction by gene
expression monitoring. Science, pp. 531-537,
1999.

— Affymetrix HU6800 microarray chip
— probes for 7129 genes, 72 class-labeled samples

— 47 ALL (65%) and 25 AML (35%) samples




ALL/AML data analysis
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Motol dataset

— superficial bladder tumors
— the prediction of tumour recurrence is inaccurate
— use gene analysis to improve it

—22 samples, ~ 35.000 genes
12 positive (early recurrence)
10 negative (without recurrence in 2 years)
Data size heuristics
— S=SG(1+log10(F)) — 22 ~ 4 (1+log10(20000))
— S —samples needed, SG - sig. genes, F — features (genes)
bottlenecks
— financial: MA of 12 samples costs around 0.3 MCZK
— samples themselves: must have the same grade etc.
—find significant genes
— correlation between expression and the target variable
— lack of data: annotations are needed




Classification? Often little sense ...

— 69 decision stumps classifying train. data perfectly

non-relapse relapse

—consider random data

— there is 0.25% probability that a random attribute
splits the 7-5 data correctly

— having 35.000 genes — 96 false alarms expected
—generalization (predictive) power?
— none of these stumps is expected to fit.

>3.5 <0. >0.48

non-relapse relapse

Significantly diff. expressed genes

—standard t-test (or Wilcoxon test)
— for all the genes and their gene expression:
—compute means (and sd) in both groups,
—H, — the means are equal,
—H, — the means disagree,
—compute t, compare with T, determine p-value,
— p<a (acceptable significance).
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Significantly diff. expressed genes

— bottleneck

— p-value = probability that a difference occurred by chance
— p<=0,=0.01 works when evaluating a small number of genes

— a microarray experiment for 10,000 genes may identify up

to 100 significant genes by chance

— multiple comparisons
— familywise error rate a is the probability of rejecting at least one

H, given that all H; are true
considering k independent comparisons:
- a=1-(1-a,)%, for a=0.01:

~1

1 5 10 50 100 500

1000

0.01 0.05 0.10 0.39 0.63 0.99

1.00

Multiple comparison strategies

—FWER - family-wise error rate
— o value — prob that at least one comparison is FP,
— Bonferroni correction

the simplest (and most conservative) approach,

— valid regardless correlation/dependence among comparisons,

o, value for each comparison equals to a/k,
too restrictive: 30.000 genes, a=0.01 - «,=3*10~7

— Holm-Bonferroni method

start by ordering the p-values in increasing order,
compare the smallest p-value to a/k,

compare the second smallest p-value to a/(k-1) etc. ,
continue until the next hypothesis cannot be rejected,

stop and accept all hypotheses that have not been rejected yet,

step-wise method, has more power than Bonferroni.
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Significantly diff. expressed genes

— genetic mutations BRCA1 and BRCA2 [Hedenfalk, Efron]

— BRCA1 and BRCAZ increase breast cancer risk

— are tumors with BRCA1 or BRCA2 observed genetically different?
— 15 samples (7/8), 3226 genes studied, Wilcoxon test used
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Figure 2. mooxon statislicse%r 3226 genes ngm a breast cancer study

Significant analysis of microarrays (SAM)

—computes false detection rate (FDR)

— permutations of the repeated measurements to
estimate the percentage of genes identified by chance
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Tusher, Tibshirani, Chu: Significance analysis of microarrays applied to the ionizing radiation response
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Significant analysis of microarrays (SAM)

— truly significant genes (ALL/AML)
—no significant genes found (Motol — bladder relapse)
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Heterogeneous data fusion

texts (scientific journals, PubMed) interaction graphs (pathways, TF networks)

NEUROLOGY

THEUNSEEN
UNIVERSE

samples

sample annotation sample

(tissue, anamnesis, measurements) class

gene ontology

gene expression
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Understanding of gene groups

— web tools such as David, eGOn, Ingenuine pathways

— occurrence of specific subgroups (GO terms, pathways,
diseases etc.)

TERM1 - Structural molecule activity (Molecular function) - active in nonrelapse

Relapse group
9118, INA, Internexin neuronal intermediate filament protein, alpha

Nonrelapse group

857, CAV1, Caveolin 1, caveolae protein, 22kDa; 1278, COL1A2, Collagen, type I,
alpha 2; 1281, COL3A1, Collagen, type III, alpha 1; 1289, COL5A1, Collagen, type V,
alpha 1; 1292, COL6A2, Collagen, type VI, alpha 2; 1293, COL6A3, Collagen, type VI,
alpha 3; 1306, COL15A1, Collagen, type XV, alpha 1; 80781, COL18A1, Collagen, type
XVIII, alpha 1; 11117, EMILIN1, Elastin microfibril interfacer 1; 2192, FBLN1, Fibulin
1; 25900, HOM-TES-103, Hypothetical protein LOC25900, isoform 3; 25984, KRT23,
Keratin 23 (histone deacetylase inducible); 3908, LAMA2, Laminin, alpha 2 (merosin,
congenital muscular dystrophy); 4131, MAP1B, Microtubule-associated protein 1B;
4629, MYH11, Myosin, heavy chain 11, smooth muscle; 10398, MYL9, Myosin, light
chain 9, regulatory; 23037, PDZD2, PDZ domain containing 2; 64711, RPS2,
Ribosomal protein S2; 7148, TNXB, Tenascin XB; 7461, WBSCR1, Williams-Beuren
syndrome chromosome region 1

Gene-set expression analysis

— Find significantly expressed subjects
— ... rather than genes
— subjects such as pathways, GO terms

— Overview of methods [Goeman, Buhlmann, 2007]
— competitive vs self-contained tests

—H,°™P: The genes in the set G are at most as
often differentially expressed as the genes in its
complement G°.

—H,**": No genes in G are differentially expressed.
— gene vs subject sampling
—gs: study distributions where gene is the basic unit

—ss: compare the actual subject with other often
randomly samples subjects
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Competitive gene sampling

— Steps:

— Apply t-test (or other) for diff. expression of genes.
— Apply a cut-off to separate diff. expressed genes

« either threshold p-values (p<a),

» or take k genes with smallest p-values.
— Count frequencies in 2x2 table.
— Do atest of independence

e Chi-squared test x*= %~

ge{G,GC} de{D,DC}

* Hypergeometric test

/ 9
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Differentially Non-differentially Total
expressed gene expressed gene

In gene set My p Mg pe M
Not in gene set Mep Mgepe e
Total np mp n

Self-contained subject sampling

— Steps (see Tian et al.: Discovering statistically significant
pathways in expression profiling studies):
— Apply t-test (or other) for diff. expression of genes
+ t,measures association of gene i/ with phenotype
— Average association measure over the gene set G

1 n
FEg=— Z G x t;
me o7

—my,, is size of G, n is the total gene number,
- G;is 1if gene iis from G otherwise it is 0.
— P-times randomly permute phenotypes

get{E,,....E "5} to estimate the null distribution of E.

— Find the p-value of the gene set G:
the proportion of P runs which satisfies E", >E .
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Pathways — KEGG example
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Rapaport et al.

— model-based contribution

— network topology — close genes likely to be co-expressed

— microarray samples = signals — Fourier tranform + spectral graph
analysis to remove high-frequency component

— low-freq component: close genes in the network with similar
expression — modular rather than single gene expression

— filters out noise — new sample expression profile
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reception Jow-requency componert high-frequency companeri

(signal) (noise)

microarmay smoolh component high-frequency companent

15



