Bioinformatika
Gene expression data analysis

Michael Anděl
Classification task

Challenge:

- samples \(10^1\) x features \(10^3\)

Classification task

Challenge:
- samples \((10^1) \times \text{features } (10^3)\)
- False hypotheses, overfitting

Golub et al.: *Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring.* Science, 1999
Classification task

Challenge:

- samples \((10^1) \times \text{features} (10^3)\)
- False hypotheses, overfitting
- Interpretability: are the expressed genes the causal ones?

What to do?

Classification task

Challenge:
- samples \((10^1) \times \text{features} \,(10^3)\)
- False hypotheses, overfitting
- Interpretability: are the expressed genes the causal ones?

What to do?
- Decrease number of hypotheses

Golub et al.: *Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring.* Science, 1999
Classification task

Challenge:
- samples \((10^1) \times (10^3)\)
- False hypotheses, overfitting
- Interpretability: are the expressed genes the causal ones?

What to do?
- Decrease number of hypotheses
- Analyze in terms of more abstract entities than genes, e.g. principal components

Golub et al.: *Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring.* Science, 1999
PCA – motivation

- $M \ldots$ # genes
- $N \ldots$ # samples
- $X (N \times M) \ldots$ GE data in the space of genes
- $V (M \times K) \ldots$ transformation basis, eigengenes
- $Z (N \times K) \ldots$ transformed GE data in the space of eigengenes
- $K \ldots$ # of eigengenes, i.e. the number of underlying concepts

Lee et al.: Learning the parts of objects by non-negative matrix factorization. Science, 1999
Assignment

Data:
- 7,129 GE profiles of 72 patients
- 25 samples: acute myeloid leukaemia (AML)
- 47 samples: acute lymphoblastic leukaemia (ALL)

Task:
- Construct decision model to differentiate these types of tumours. **Just complete the code in the script attached → ge_cv.m**
- Deadline - 19.5.
Assignment

Part I:

1. Learn a decision tree on subjected data. Use Matlab class ClassificationTree and its method fit.
2. Show the tree (method view) and enumerate its training accuracy.
3. How would you interpret this model? Which gene is crucial for the decision?
4. Is this gene really the one causing the cancer? Look up in the article Golub et al., 1999.
5. Estimate real accuracy of the tree. Use e.g., cross-validation (alternatively, you can split the data).
6. Compare it with the training accuracy.
Assignment

Part II:

1. Learn a basis-matrix V of the data. Use the attached function `pca.m`.

2. For a range of component numbers K:
 a) Project the original data X to the top K components of V. The result are data Z with reduced dimensionality: $Z = XV_{1:K,1:}$
 b) Create a tree out of these reduced data. Show it and enumerate its training accuracy.

3. Compare all the trees resulting from the reduced data and pick the “best” according to its accuracy and structure. Follow the Occam razor ;-)
Part II:

4. Estimate the **real** accuracy of the “best” chosen tree. Again, by e.g. crossvalidation.

5. Extract the genes active in the discriminative components. The *discriminative components* are those vectors of basis-matrix V, which refer to the features *your tree consists of*. To extract the **active** genes from a component use the function `mineGenes`.

6. Resulting **gene-sets** related to each of the discriminative component shall hopefully refer to some abstract biological processes. Use Gorilla to enrich these gene sets in **Gene-ontology** terms.

7. Make a story! Get inspired e.g. here ;-)