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Gene expression profiles 

•! we’ll assume we have a 2D matrix of gene expression 
measurements 

–! rows represent genes 

–! columns represent different experiments, time points, 
individuals etc. 

•! we’ll refer to individual rows or columns as profiles 

–! a row is a profile for a gene 

–! a column is a profile for an experiment, time point, etc. 



Expression profile example 

•! rows represent genes 

•! columns represent 

people with leukemia 

Expression profile example 

•! rows represent yeast 

genes 

•! columns represent 

time points in a given 

experiment 



Task definition: clustering gene 

expression profiles 

•! given: expression profiles for a set of genes or 

experiments/individuals/time points (whatever 

columns represent) 

•! do: organize profiles into clusters such that 

–! profiles in the same cluster are highly similar to 

each other 

–! profiles from different clusters have low similarity 

to each other 

figure from: Hack et al.  Genome Biology 6(13), 2005 

Clustering example 

•! pre-adipocyte (fat) cell development 

over 14-day time course 

•! clustering of 780 genes that are > 2-

fold upregulated or downregulated at ! 

4 time points 



Motivation for clustering 

•! exploratory data analysis 

–! understanding general characteristics of data 

–! visualizing data 

•! generalization 

–! infer something about an object (e.g. a gene) 

based on how it relates to other objects in the 
cluster 

•! everyone else is doing it 

The clustering landscape 

•! there are many different clustering algorithms 

•! they differ along several dimensions 

–! hierarchical vs. flat 

–! hard (no uncertainty about which profiles belong to 
a cluster) vs. soft clusters 

–! non-partitional (a profile can belong to multiple 
clusters) vs. partitional 

–! deterministic (same clusters produced every time 
for  a given data set) vs. stochastic  

–! distance (similarity) measure used 



Distance/similarity measures 
•! many clustering methods employ a distance 

(similarity) measure to assess the distance between 

–! a pair of profiles 

–! a cluster and a profile 

–! a pair of clusters 

•! given a distance value, it is straightforward to convert 

it into a similarity value 

•! not necessarily straightforward to go the other way 

•! we’ll describe our algorithms in terms of distances 

  

! 

dist(x,y) = exp("a # sim(x,y))

  

! 

sim(x,y) =
1

1+ dist(x,y)

Distance metrics 

•! properties of metrics 

•! some distance metrics 
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K-means clustering 

•! assume our profiles are represented by vectors of real values 

•! put k cluster centers in same space as profiles 

•! each cluster is represented by a vector 

•! consider an example in which our vectors have 2 dimensions 

+ + 

+ 

+ 

profile cluster center 
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µ j

K-means clustering 

•! each iteration involves two steps 

–! assignment of profiles to clusters 

–! re-computation of the means 

+ + 

+ 

+ 

+ + 

+ 

+ 

assignment re-computation of means 



K-means clustering: updating the means 

•! for a set of profiles that have been assigned to a 

cluster       , we re-compute the mean of the cluster as 

follows  
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K-means clustering 
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given : k, a set X = {
! 
x 1...
! 
x n} of profiles

select k initial cluster means 
! 
µ 1... 
! 
µ k

while stopping criterion not met do

      for all clusters c j  do

            c j =  
! 
x i |"f l  dist

! 
x i,
! 
µ j( ) < dist

! 
x i, 
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µ l( ) { }

      for all means 
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c j

! 
x i
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x i #c j

$

// determine which profiles are assigned to this cluster 

// update the cluster center 



K-means objective function 

•! residual sum of squares (RSS): measure of how well 

cluster means represent their members 

•! when Euclidean distance used, k-means locally 

minimizes this  quantity 

•! local optimum depends on starting positions for cluster 

means 
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K-means stopping criteria 

•! standard stopping criterion: assignment of profiles to 

clusters does not change (equivalently, cluster means do 

not change) 

•! for faster runtimes, can stop  

•! after a fixed number of iterations 

•! when RSS (or change in RSS) falls below a threshold 



K-means clustering example 

x1!

x2!

x3!

x4!

  

! 

dist(x1,µ1) = 2,   dist(x1,µ2) = 5

dist(x2,µ1) = 2,   dist(x2,µ2) = 3

dist(x3,µ1) = 3,   dist(x3,µ2) = 2

dist(x4 ,µ1) =11,   dist(x4 ,µ2) = 6
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dist(x1,µ1) =1,   dist(x1,µ2) = 7

dist(x2,µ1) =1,   dist(x2,µ2) = 5

dist(x3,µ1) = 2,   dist(x3,µ2) = 4

dist(x4 ,µ1) =10,   dist(x4 ,µ2) = 4

Given the following 4 profiles and 2 clusters initialized as shown.   
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K-means clustering example (continued) 

! 
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3
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µ
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,
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1
= 8,8

assignments remain the same, 

so the procedure has converged 



EM clustering 

•! in k-means as just described, profiles are assigned to one and 

only one cluster 

•! we can do “soft” k-means clustering via an Expectation 

Maximization (EM) algorithm 

–! each cluster represented by a distribution (e.g. a Gaussian) 

–! E step: determine how likely is it that each cluster 

“generated” each profile 

–! M step: adjust cluster parameters to maximize likelihood of 

profiles 

Representation of clusters 

•! in the EM approach, we’ll represent each cluster 

using an m-dimensional multivariate Gaussian 

where 
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is the mean of the Gaussian 

is the covariance matrix 

this is a representation of a  

Gaussian in a 2-D space 



EM clustering 

•! the parameters of the model include the means, the 

covariance matrix and sometimes prior weights for 

each Gaussian 

•! here, we’ll assume that the covariance matrix and the 

prior weights are fixed; we’ll focus just on setting the 
means 
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EM clustering 

•! the EM algorithm tries to set the parameters of the 

Gaussians,      , to maximize the log likelihood of the data, X!
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EM clustering: hidden variables 

•! on each iteration of  k-means clustering, we had to 

assign each profile to a cluster 

•! in the EM approach, we’ll use hidden variables to 

represent this idea 

•! for each profile       we have a set of hidden variables 

•! we can think of        as being 1 if        is a member of 

cluster j and 0 otherwise 
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EM clustering: the E-step 

•! recall that         is a hidden variable which is 1 if       

generated        and 0 otherwise 

•! in the E-step, we compute the expected value of this 

hidden variable 
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EM clustering: the M-step 

•! given the expected values, we re-estimate the means 

of the Gaussians 

•! can also re-estimate the covariance matrix and prior 

weights, if we’re varying them 
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EM clustering example 

Consider a one-dimensional clustering problem in which the data given 

are: 

        x1 = -4 

        x2 = -3 

        x3 = -1 

        x4 = 3 

        x5 = 5 

The initial mean of the first Gaussian is 0 and the initial mean of the 

second is 2.  The Gaussians have fixed width; their density function is: 

where      denotes the mean (center) of the Gaussian. 
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EM clustering example  
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EM clustering example: E-step  
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EM clustering example: M-step  
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EM clustering example 
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•! here we’ve shown just one step of the EM procedure 

•! we would continue the E- and M-steps until convergence 



Computational complexity  

•! k-means and EM have time complexity             for 

each iteration 

–! reassignment step: compute k ! n distances 

–! recomputation step: loop through n profiles 

updating k means 
! 

O(kn)

EM and k-Means clustering 

•! both will converge to a local optimum 

•! both are sensitive to initial positions (means) of clusters, 

thus it’s often beneficial to run multiple times with different 

starting positions 

•! have to choose value of k for both 



Choosing the value of k!

•! we can run k-means/EM multiple times with different 

values of k 

•! Can we pick the best clustering by seeing which run 

results in the best value of the objective function? 
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•! No – the objective function will generally improve as k 

increases.  The best value will be with k = n. 

Choosing the value of k!

•! an alternative is to add a penalty for complexity 

" determines how much weight 

is put on complexity 
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•! e.g. the Akaike Information Criterion sets " = 2M where M 

is the number of elements in each profile 



Cross validation to select k 

•! using cross validation, we can use held-aside data to 
assess the objective function for different values of k 

compute objective function 

on held-aside data 

to evaluate clustering 

clustering clustering clustering 

•! then run method on all data once we’ve picked k 

figure from: West et al.  PNAS 103, 2006 

Hierarchical clustering 

example 

•! clustering of related cancers and an 

inflammatory disorder 

TGCT: Tenosynovial giant-cell tumor 

PVNS: pigmented villonodular synovitis 

SFT: solitary fibrous tumor 

DTF: desmoid-type fibromatosis 



Hierarchical clustering:  

a dendogram 

leaves represent profiles (e.g. genes) 

height of bar indicates  

degree of distance  
within cluster 
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Hierarchical clustering 

•! can do top-down (divisive) or bottom-up (agglomerative) 

•! in either case, we maintain a matrix of distance (or similarity) 

scores for all pairs of 

–! expression profiles 

–! clusters (formed so far) 

–! profiles and clusters 



Bottom-up hierarchical clustering 
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return tree with root node 
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// each instance is initially its own cluster, and a leaf in tree 

// find least distant pair in C  

// create a new cluster for pair  

Haven’t we seen this already?   

•! this algorithm is very similar to UPGMA and neighbor 
joining; there are some differences 

•! what tree represents 
–! phylogenetic inference: tree represents hypothesized 

sequence of evolutionary events; internal nodes represent 
hypothetical ancestors 

–! clustering: inferred tree represents similarity of instances; 
internal nodes don’t represent ancestors 

•! form of tree 
–! UPGMA: rooted tree 

–! neighbor joining: unrooted 

–! hierarchical clustering: rooted tree 

•! how distances among clusters are calculated 
–! UPGMA: average link 

–! neighbor joining: based on additivity 

–! hierarchical clustering: various 



Distance between two clusters  

•! the distance between two clusters can be determined in 

several ways 

–! single link: distance of two most similar profiles 

–! complete link: distance of two least similar profiles 

–! average link: average distance between profiles 

{ }dist( , ) min dist( , ) | ,
u v u v
c c a b a c b c= ! !

{ }dist( , ) max dist( , ) | ,
u v u v
c c a b a c b c= ! !

{ }dist( , ) avg dist( , ) | ,
u v u v
c c a b a c b c= ! !

Complete-link vs. single-link distances 
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Updating distances efficiently  

•! if we just merged       and        into       , we can determine 

distance to each other cluster        as follows 

–! single link: 

–! complete link: 

–! average link: 

! 

dist(c j ,ck ) = min dist(cu ,ck ),dist(cv ,ck ){ }

! 

dist(c j ,ck ) = max dist(cu ,ck ),dist(cv ,ck ){ }
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Computational complexity  

•! the naïve implementation of hierarchical clustering has     

time complexity, where n is the number of instances 

–! computing the initial distance matrix takes             time 

–! there are          merging steps 

–! on each step, we have to update the distance matrix           

and select the next pair of clusters to merge 
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)( 2
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Computational complexity  

•! using more sophisticated data structures to maintain the 

pairwise distance data we improve the time complexity 

–! for single-link clustering, we can update and pick the 

next pair in           time, resulting in an                

algorithm 

–! for complete-link and average-link we can do these 

steps  in                   time resulting in an                               

method 

)(nO )( 2
nO

)log( nnO )log( 2
nnO

Flat clustering from a hierarchical clustering 

cutting here results 

in 2 clusters 

cutting here results 

in 4 clusters 

•! we can always generate a flat clustering from a hierarchical 

clustering by “cutting” the tree at some distance threshold 



Evaluating clustering results 

•! given random data without any “structure”, clustering 
algorithms will still return clusters 

•! the gold standard: do clusters correspond to natural 
categories? 

•! do clusters correspond to categories we care about?    
(there are lots of ways to partition the world) 

Evaluating clustering results 

•! external validation 

–! E.g. do genes clustered together have some common function? 

•! internal validation 

–! How well does clustering optimize intra-cluster similarity and inter-
cluster dissimilarity? 

•! relative validation 

–! How does it compare to other clusterings using these criteria? 

–! E.g. with a probabilistic method (such as EM) we can ask: how 
probable does held-aside data look as we vary the number of 
clusters. 



Internal validation 
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•! there are many different measures for assessing internal validation 

•! one such measure is the Silhouette index 
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•! can determine if a cluster seems to be correlated with other 

relevant information 

•! e.g. do the genes have 

–! binding sites for common regulators 

–! shared functional annotations 

one cluster 

Gene Ontology 

terms associated 

with the genes 

regulators associated 

with genes 



The Gene Ontology 
•! a controlled vocabulary of more than 30K concepts describing 

molecular functions, biological processes, and cellular components 

Comments on clustering 

•! there many different ways to do clustering; we’ve 

discussed just a few methods 

•! hierarchical clusters may be more informative, but 

they’re more expensive to compute 

•! clusterings are hard to evaluate in many cases 


