Clustering Gene Expression Data

BMI/CS 576 www.biostat.wisc.edu/bmi576/ Mark Craven craven@biostat.wisc.edu Fall 2011

Gene expression profiles

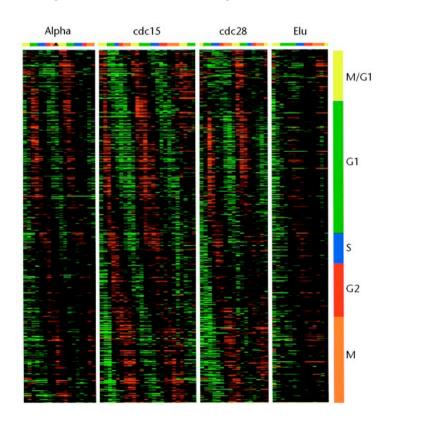
- we'll assume we have a 2D matrix of gene expression measurements
 - rows represent genes
 - columns represent different experiments, time points, individuals etc.
- we'll refer to individual rows or columns as profiles
 - a row is a profile for a gene
 - a column is a profile for an experiment, time point, etc.

Expression profile example

- rows represent genes
- columns represent people with leukemia

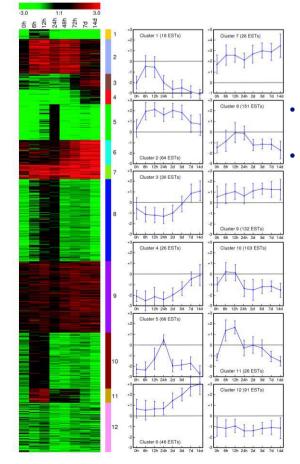
Expression profile example

- rows represent yeast genes
- columns represent time points in a given experiment



Task definition: clustering gene expression profiles

- given: expression profiles for a set of genes or experiments/individuals/time points (whatever columns represent)
- do: organize profiles into clusters such that
 - profiles in the same cluster are highly similar to each other
 - profiles from different clusters have low similarity to each other



Clustering example

pre-adipocyte (fat) cell development over 14-day time course clustering of 780 genes that are > 2fold upregulated or downregulated at \ge 4 time points

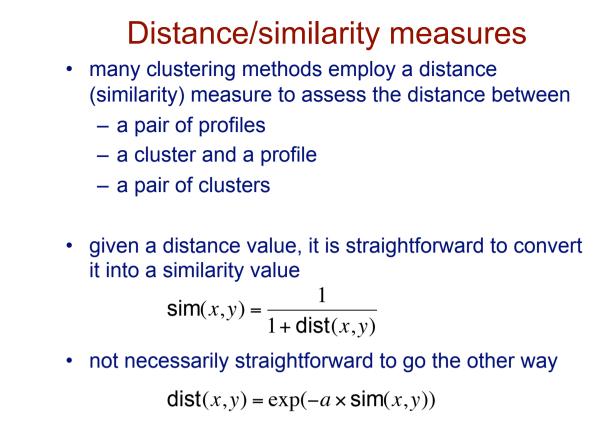
figure from: Hack et al. Genome Biology 6(13), 2005

Motivation for clustering

- exploratory data analysis
 - understanding general characteristics of data
 - visualizing data
- generalization
 - infer something about an object (e.g. a gene) based on how it relates to other objects in the cluster
- · everyone else is doing it

The clustering landscape

- there are many different clustering algorithms
- they differ along several dimensions
 - hierarchical vs. flat
 - hard (no uncertainty about which profiles belong to a cluster) vs. soft clusters
 - non-partitional (a profile can belong to multiple clusters) vs. partitional
 - deterministic (same clusters produced every time for a given data set) vs. stochastic
 - distance (similarity) measure used



we'll describe our algorithms in terms of distances

- properties of metrics $dist(x_i, x_j) \ge 0$ $dist(x_i, x_i) = 0$ $dist(x_i, x_j) = dist(x_j, x_i)$ $dist(x_i, x_j) \le dist(x_i, x_k) + dist(x_k, x_j)$
- some distance metrics

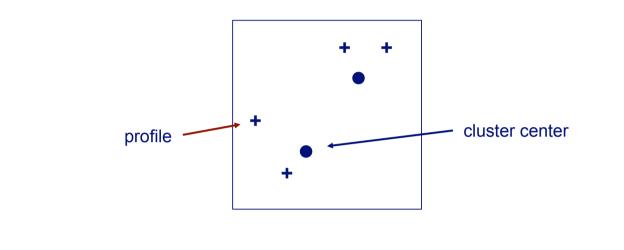
Manhattan dist
$$(x_i, x_j) = \sum_{e} |x_{i,e} - x_{j,e}|$$

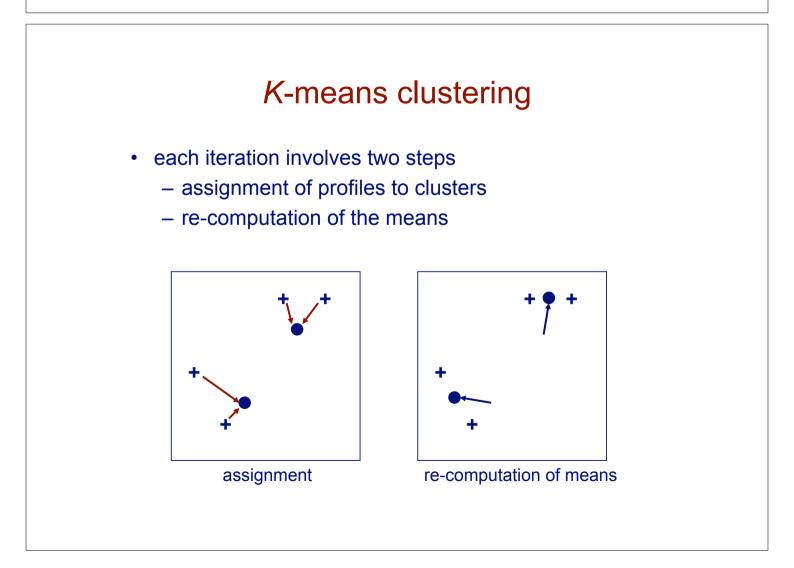
Euclidean dist $(x_i, x_j) = \sqrt{\sum_{e} (x_{i,e} - x_{j,e})^2}$

e ranges over the individual measurements for x_i and x_i

K-means clustering

- assume our profiles are represented by vectors of real values
- put k cluster centers in same space as profiles
- each cluster is represented by a vector $\vec{\mu}_i$
- consider an example in which our vectors have 2 dimensions





K-means clustering: updating the means

 for a set of profiles that have been assigned to a cluster c_j, we re-compute the mean of the cluster as follows

$$\vec{\mu}_j = \frac{1}{|c_j|} \sum_{\vec{x}_i \in c_j} \vec{x}_i$$

K-means clustering

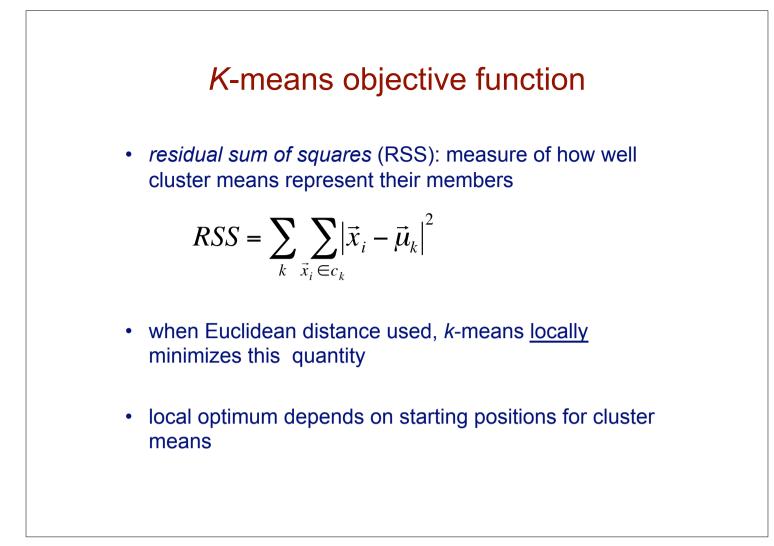
given : k, a set $X = {\vec{x}_1 ... \vec{x}_n}$ of profiles select k initial cluster means $\vec{\mu}_1 ... \vec{\mu}_k$ while stopping criterion not met do for all clusters c_i do

> // determine which profiles are assigned to this cluster $c_j = \left\{ \vec{x}_i \mid \forall f_l \operatorname{dist}(\vec{x}_i, \vec{\mu}_j) < \operatorname{dist}(\vec{x}_i, \vec{\mu}_l) \right\}$

for all means \vec{f}_j do

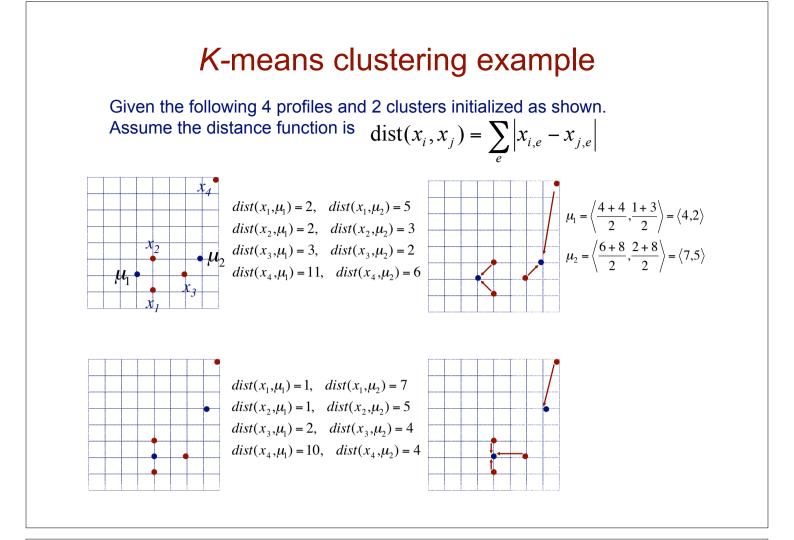
// update the cluster center

$$\vec{u}_j = \frac{1}{\left|c_j\right|} \sum_{\vec{x}_i \in c_j} \vec{x}_i$$

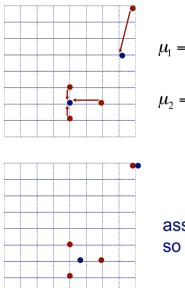


K-means stopping criteria

- standard stopping criterion: assignment of profiles to clusters does not change (equivalently, cluster means do not change)
- for faster runtimes, can stop
 - after a fixed number of iterations
 - when RSS (or change in RSS) falls below a threshold

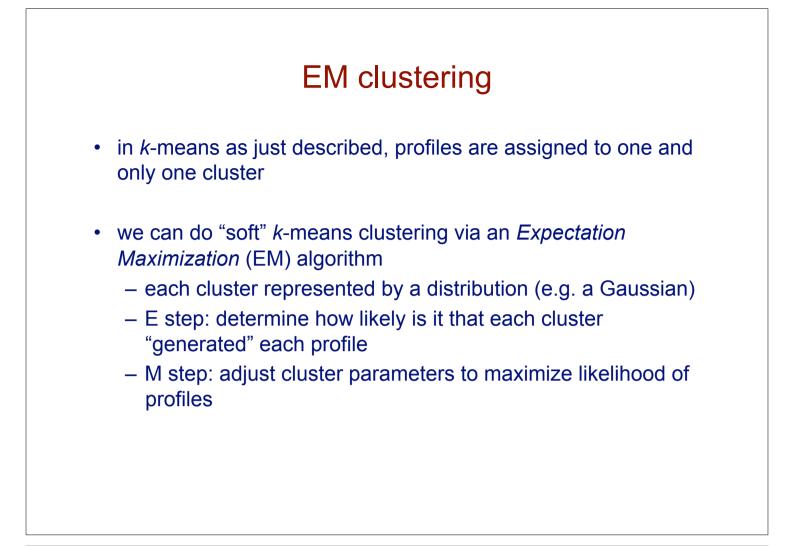


K-means clustering example (continued)



$$\mu_{1} = \left\langle \frac{4+4+6}{3}, \frac{1+3+2}{3} \right\rangle = \left\langle 4.67, 2 \right\rangle$$
$$\mu_{2} = \left\langle \frac{8}{1}, \frac{8}{1} \right\rangle = \left\langle 8, 8 \right\rangle$$

assignments remain the same, so the procedure has converged

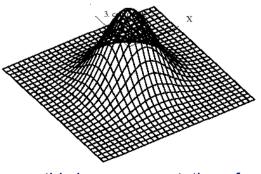


• in the EM approach, we'll represent each cluster using an *m*-dimensional multivariate Gaussian

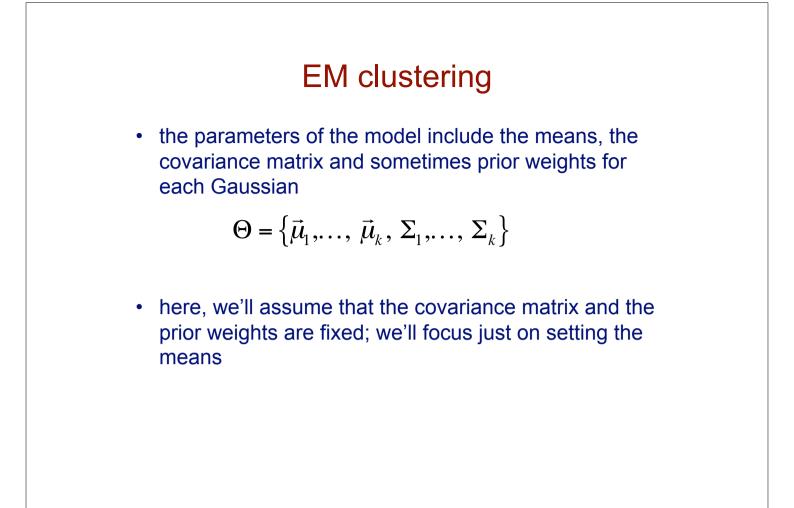
$$f_{j}(\vec{x}_{i}) = \frac{1}{\sqrt{(2\pi)^{m} |\Sigma_{j}|}} \exp\left[-\frac{1}{2}(\vec{x}_{i} - \vec{\mu}_{j})^{T} \Sigma_{j}^{-1}(\vec{x}_{i} - \vec{\mu}_{j})\right]$$

where

- $\vec{\mu}_{j}$ is the mean of the Gaussian
- Σ_{j} is the covariance matrix



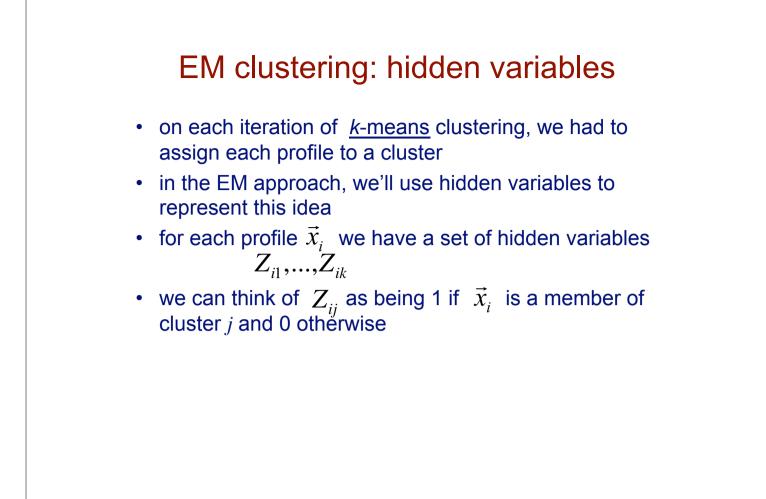
this is a representation of a Gaussian in a 2-D space



EM clustering

 the EM algorithm tries to set the parameters of the Gaussians, Θ, to maximize the log likelihood of the data, X

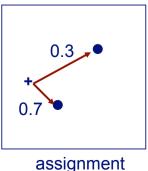
$$\Theta = \arg \max_{\Theta} \log \prod_{i=1}^{n} P(\vec{x}_i | \Theta)$$
$$= \arg \max_{\Theta} \sum_{i=1}^{n} \log P(\vec{x}_i | \Theta)$$
$$= \arg \max_{\Theta} \sum_{i=1}^{n} \log \sum_{j=1}^{k} f_j(\vec{x}_i)$$



EM clustering: the E-step

- recall that Z_{ij} is a hidden variable which is 1 if f_j generated \vec{x}_i and 0 otherwise
- in the E-step, we compute the expected value of this hidden variable

$$h_{ij} = P(Z_{ij} = 1 | \vec{x}_i) = \frac{f_j(\vec{x}_i)}{\sum_{l=1}^k f_l(\vec{x}_i)}$$



EM clustering: the M-step

 given the expected values, we re-estimate the means of the Gaussians

$$\vec{\mu}_j = \frac{\sum_i h_{ij} \vec{x}_i}{\sum_i h_{ij}}$$

 can also re-estimate the covariance matrix and prior weights, if we're varying them

EM clustering example

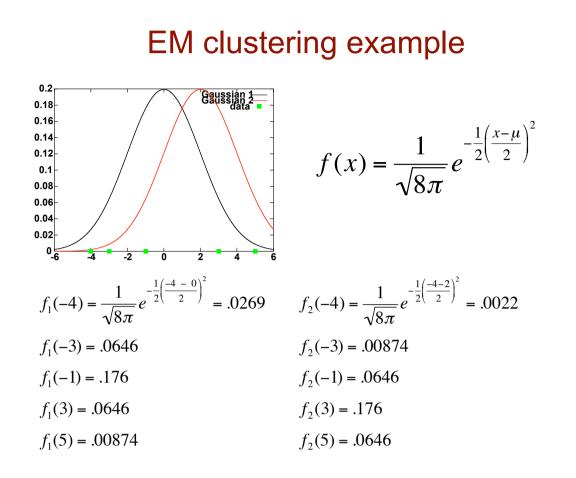
Consider a one-dimensional clustering problem in which the data given are:

 $x_1 = -4$ $x_2 = -3$ $x_3 = -1$ $x_4 = 3$ $x_5 = 5$

The initial mean of the first Gaussian is 0 and the initial mean of the second is 2. The Gaussians have fixed width; their density function is:

$$f(x) = \frac{1}{\sqrt{8\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{2}\right)^2}$$

where μ denotes the mean (center) of the Gaussian.



EM clustering example: E-step

$$\begin{split} h_{11} &= \frac{f_1(x_1)}{f_1(x_1) + f_2(x_1)} = \frac{.0269}{.0269 + .0022} \\ h_{21} &= \frac{f_1(x_2)}{f_1(x_2) + f_2(x_2)} = \frac{.0646}{.0646 + .00874} \\ h_{31} &= \frac{.176}{.176 + .0646} \\ h_{41} &= \frac{.0646}{.0646 + .176} \\ h_{51} &= \frac{.00874}{.00874 + .0646} \end{split}$$

$$h_{12} = \frac{f_2(x_1)}{f_1(x_1) + f_2(x_1)} = \frac{.0022}{.0269 + .0022}$$

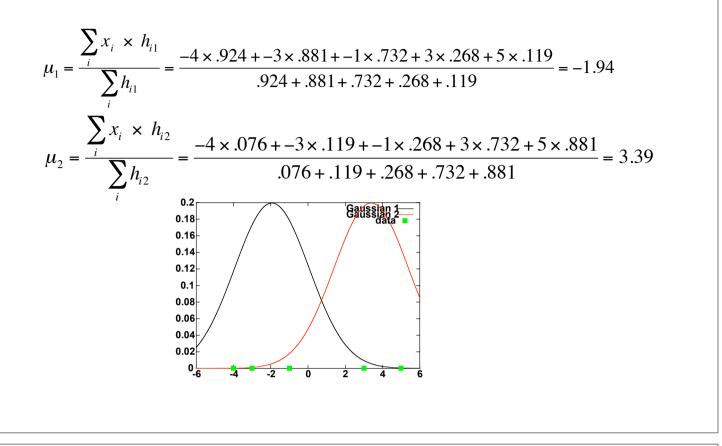
$$h_{22} = \frac{.00874}{.0646 + .00874}$$

$$h_{32} = \frac{.0646}{.176 + .0646}$$

$$h_{42} = \frac{.176}{.0646 + .176}$$

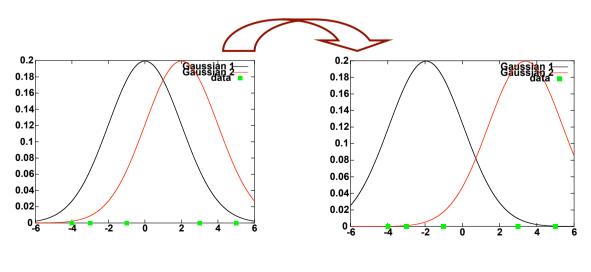
$$h_{52} = \frac{.0646}{.00874 + .0646}$$

EM clustering example: M-step



EM clustering example

· here we've shown just one step of the EM procedure



we would continue the E- and M-steps until convergence

Computational complexity

- *k*-means and EM have time complexity *O*(*kn*) for each iteration
 - reassignment step: compute $k \times n$ distances
 - recomputation step: loop through *n* profiles updating *k* means

EM and *k*-Means clustering

- both will converge to a local optimum
- both are sensitive to initial positions (means) of clusters, thus it's often beneficial to run multiple times with different starting positions
- have to choose value of k for both

Choosing the value of *k*

- we can run k-means/EM multiple times with different values of k
- Can we pick the best clustering by seeing which run results in the best value of the objective function?

$$k = \operatorname{arg\,max}_{k,\Theta} \sum_{i=1}^{n} \log P(\vec{x}_i | k, \Theta)$$
 for EM

$$k = \arg\min_{k,\Theta} \sum_{k} \sum_{\vec{x}_i \in c_k} \left| \vec{x}_i - \vec{\mu}_k \right|^2 \quad \text{for } k\text{-means}$$

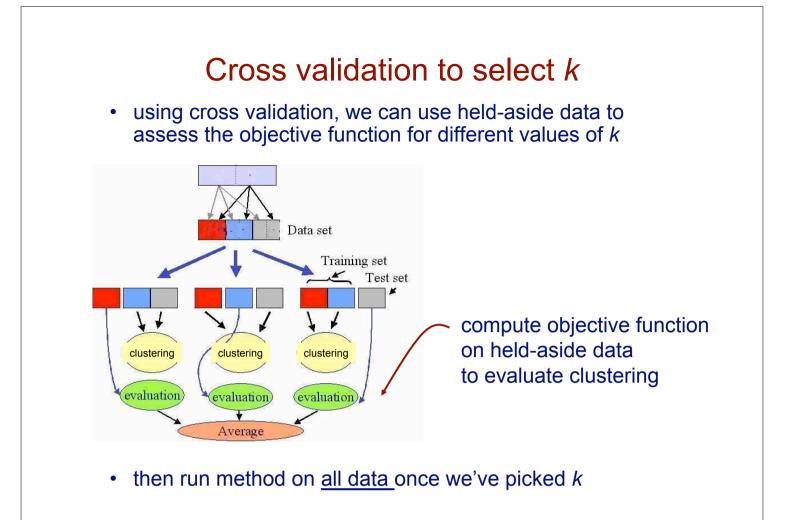
No – the objective function will generally improve as k increases. The best value will be with k = n.

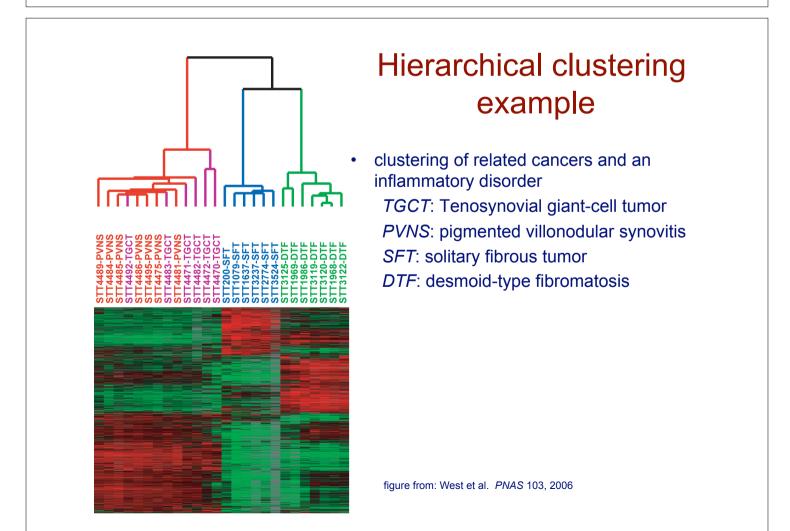
Choosing the value of *k*

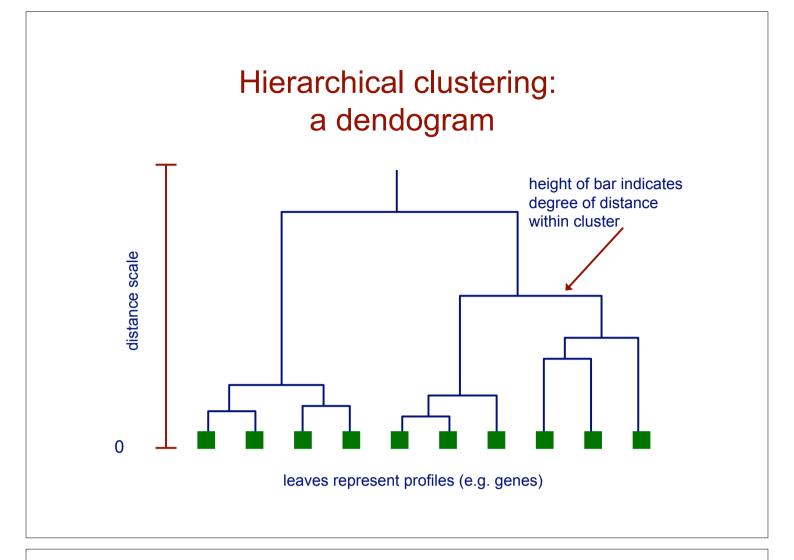
an alternative is to add a penalty for complexity

$$k = \arg\min_{k,\Theta} \sum_{k} \sum_{\vec{x}_i \in c_k} \left| \vec{x}_i - \vec{\mu}_k \right|^2 + \frac{\lambda \cdot k}{\lambda \text{ determines how much weight}}$$

• e.g. the Akaike Information Criterion sets $\lambda = 2M$ where M is the number of elements in each profile







Hierarchical clustering

- can do top-down (divisive) or bottom-up (agglomerative)
- in either case, we maintain a matrix of distance (or similarity) scores for all pairs of
 - expression profiles
 - clusters (formed so far)
 - profiles and clusters

Bottom-up hierarchical clustering

given:a set $X = \{x_1...x_n\}$ of instances for i := 1 to n do $c_i := \{x_i\}$ // each instance is initially its own cluster, and a leaf in tree $C := \{c_1...c_n\}$ j := nwhile |C| > 1j := j+1 $(c_a, c_b) := \underset{(c_u, c_v)}{\operatorname{argmin}} \operatorname{dist}(c_u, c_v)$ // find least distant pair in C $c_j = c_a \cup c_b$ // create a new cluster for pair add a new node j to the tree joining a and b $C := C - \{c_a, c_b\} \cup \{c_j\}$ return tree with root node j

Haven't we seen this already?

- this algorithm is very similar to UPGMA and neighbor joining; there are some differences
- what tree represents
 - phylogenetic inference: tree represents hypothesized sequence of evolutionary events; internal nodes represent hypothetical ancestors
 - clustering: inferred tree represents similarity of instances; internal nodes don't represent ancestors
- form of tree
 - UPGMA: rooted tree
 - neighbor joining: unrooted
 - hierarchical clustering: rooted tree
- how distances among clusters are calculated
 - UPGMA: average link
 - neighbor joining: based on additivity
 - hierarchical clustering: various

Distance between two clusters

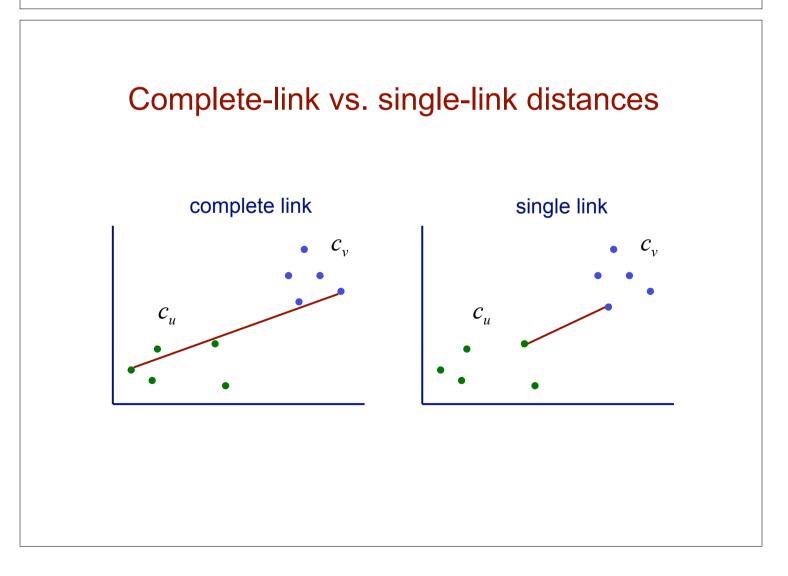
 the distance between two clusters can be determined in several ways

 single link: distance of two most similar profiles

$$\operatorname{dist}(c_u, c_v) = \min\left\{\operatorname{dist}(a, b) \mid a \in c_u, b \in c_v\right\}$$

- *complete link*: distance of two least similar profiles dist(c_u, c_v) = max {dist(a, b) | $a \in c_u, b \in c_v$ }

- *average link*: average distance between profiles $dist(c_u, c_v) = avg \left\{ dist(a, b) | a \in c_u, b \in c_v \right\}$



Updating distances efficiently

- if we just merged C_u and C_v into C_j , we can determine distance to each other cluster C_k as follows
 - single link:

$$dist(c_i, c_k) = \min\{dist(c_u, c_k), dist(c_v, c_k)\}$$

- complete link:

$$dist(c_i, c_k) = \max\{dist(c_u, c_k), dist(c_v, c_k)\}$$

- average link:

$$\operatorname{dist}(c_j, c_k) = \frac{|c_u| \times \operatorname{dist}(c_u, c_k) + |c_v| \times \operatorname{dist}(c_v, c_k)}{|c_u| + |c_v|}$$

Computational complexity

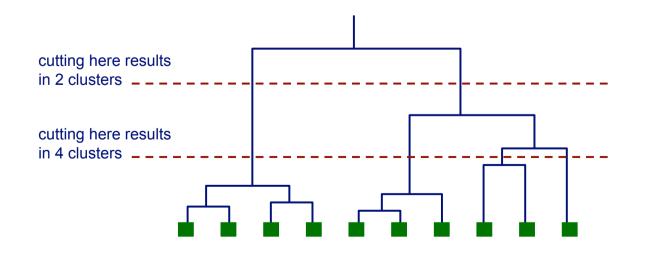
- the naïve implementation of hierarchical clustering has $O(n^3)$ time complexity, where *n* is the number of instances
 - computing the initial distance matrix takes $O(n^2)$ time
 - there are O(n) merging steps
 - on each step, we have to update the distance matrix O(n)and select the next pair of clusters to merge $O(n^2)$

Computational complexity

- using more sophisticated data structures to maintain the pairwise distance data we improve the time complexity
 - for single-link clustering, we can update and pick the next pair in O(n) time, resulting in an $O(n^2)$ algorithm
 - for complete-link and average-link we can do these steps in $O(n \log n)$ time resulting in an $O(n^2 \log n)$ method

Flat clustering from a hierarchical clustering

• we can always generate a flat clustering from a hierarchical clustering by "cutting" the tree at some distance threshold



Evaluating clustering results

- given random data without any "structure", clustering algorithms will still return clusters
- the gold standard: do clusters correspond to natural categories?
- do clusters correspond to categories we care about? (there are lots of ways to partition the world)

Evaluating clustering results

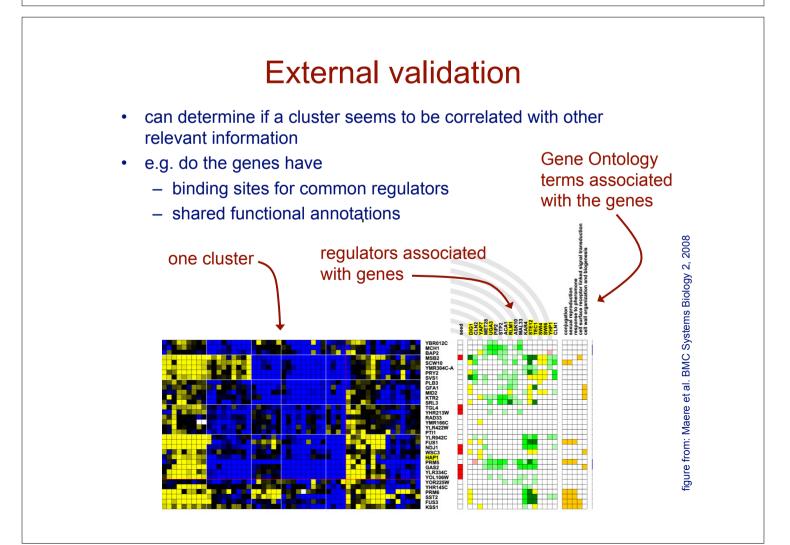
- external validation
 - E.g. do genes clustered together have some common function?
- internal validation
 - How well does clustering optimize intra-cluster similarity and intercluster dissimilarity?
- relative validation
 - How does it compare to other clusterings using these criteria?
 - E.g. with a probabilistic method (such as EM) we can ask: how probable does held-aside data look as we vary the number of clusters.

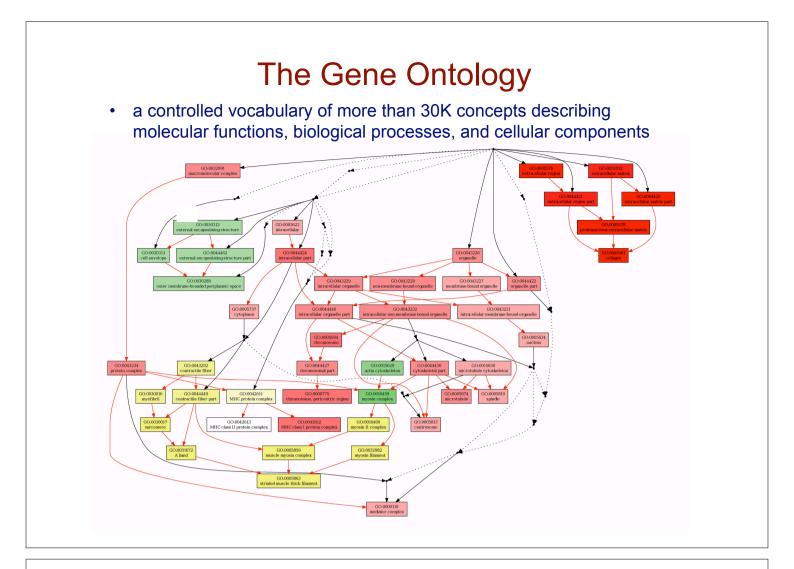
Internal validation

- there are many different measures for assessing internal validation
- one such measure is the Silhouette index

$$\frac{1}{k} \sum_{k} \left(\frac{1}{|c_k|} \sum_{\vec{x}_i \in c_k} \frac{b(\vec{x}_i) - a(\vec{x}_i)}{\max[b(\vec{x}_i), a(\vec{x}_i)]} \right)$$

- $a(\vec{x}_i)$ average distance from \vec{x}_i to other instances in same cluster
- $b(\vec{x}_i)$ average distance from \vec{x}_i to instances in next closest cluster





Comments on clustering

- there many different ways to do clustering; we've discussed just a few methods
- hierarchical clusters may be more informative, but they're more expensive to compute
- clusterings are hard to evaluate in many cases