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Bayesian networks 

•! a BN is a Directed Acyclic Graph (DAG) in which 

–! the nodes  denote random variables 

–! each node X  has a conditional probability 
distribution (CPD) representing P(X | Parents(X) ) 

•! the intuitive meaning of an arc from X to Y is that X 
directly influences Y 

•! formally: each variable X is independent of its non-
descendants given its parents 



Probabilistic model of lac operon 

•! suppose we represent the system by the following 
discrete variables 

L (lactose)   present, absent 

G (glucose)   present, absent 

I (lacI)    present, absent 
C (CAP)    present, absent 

I-active (lacI unbound)  present, absent 

C-active (CAP bound)  present, absent 

Z (lacZ)    high, low, absent 

•! suppose (realistically) the system is not completely 
deterministic 

•! the joint distribution of the variables could be 
specified by 26 ! 3 =  192  parameters 

A Bayesian network for the lac system 
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A Bayesian network for the lac system 

Z 

L G C I 

I-active C-active 

L I absent present 

absent absent 0.9 0.1 

absent present 0.1 0.9 

present absent 0.9 0.1 

present present 0.9 0.1 

I-active C-active absent low high 

absent absent 0.1 0.8 0.1 

absent present 0.1 0.1 0.8 

present absent 0.8 0.1 0.1 

present present 0.8 0.1 0.1 

P ( Z | I-active, C-active ) 

P ( I-active | L, I ) 

absent present 

0.9 0.1 

P ( L ) 

We also have CPDs 

for I, G, C, C-active 

Bayesian networks 

•! a BN provides a factored representation of the joint 

probability distribution 

  

! 

P(L,I,Ia,G,Ca,Z) =

                            P(L) " P(I) "

                            P(Ia | L,I) "

                               P(G) " P(C)"

                             P(Ca |G,C) "

                             P(Z | Ia,Ca)

Z 

L G C I 

I-active C-active 

•! this representation of the joint distribution can be specified 

with 36 parameters  (vs. 192 for the unfactored representation) 



Representing CPDs for discrete variables 

A B C t f 

t t t 0.9 0.1 

t t f 0.9 0.1 

t f t 0.9 0.1 

t f f 0.9 0.1 

f t t 0.8 0.2 

f t f 0.5 0.5 

f f t 0.5 0.5 

f f f 0.5 0.5 

P( D | A, B, C ) 

P( D | A, B, C ) 

A 

Pr(D = t) = 0.9 

f t 

B 

Pr(D = t) = 0.5 

f t 

C 

Pr(D = t) = 0.5 Pr(D = t) = 0.8 

f t 

•! CPDs can be represented using tables or trees 

•! consider the following case with Boolean variables A, B, C, D 

Representing CPDs for continuous variables 

•! we can also model the distribution of continuous 

variables in Bayesian networks 

•! one approach: linear Gaussian models 

•! X normally distributed around a mean that depends 

linearly on values of its parents u
i!
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Pr(X | u1,...,uk ) ~ N(a0 + a
i
" u

i

i
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P(X | u1)



The parameter learning task 

•! Given: a set of training instances, the graph structure of a BN 

•! Do: infer the parameters of the CPDs 

•! this is straightforward when there aren’t missing values, 
hidden variables 

L G I C I-active C-active Z 

present present present present absent absent low 

present present present present absent absent absent 

absent present present present present absent high 

... 

Z 

L G C I 

I-active C-active 

The structure learning task 

•! Given: a set of training instances 

•! Do: infer the graph structure (and perhaps the 
parameters of the CPDs too) 

L G I C I-active C-active Z 

present present present present absent absent low 

present present present present absent absent absent 

absent present present present present absent high 

... 


