Heuristic Methods for Sequence Database Searching

BMI/CS 576 www.biostat.wisc.edu/bmi576/ Mark Craven craven@biostat.wisc.edu Fall 2011

Heuristic alignment motivation

- ullet O(mn) too slow for large databases with high query traffic
- heuristic methods do fast approximation to dynamic programming
 - FASTA [Pearson & Lipman, 1988]
 - BLAST [Altschul et al., 1990;
 Altschul et al., Nucleic Acids Research 1997]

Heuristic alignment motivation

- consider the task of searching UniProtKB/Swiss-Prot against a query sequence:
 - say our query sequence is 362 amino-acids long
 - most recent release of DB contains 188,719,038 amino acids
 - finding local alignments via dynamic programming would entail $O(10^{11})$ matrix operations
- many servers handle thousands of such queries a day (NCBI > 500,000)

Heuristic alignment

- heuristic algorithm: a problem-solving method which isn't guaranteed to find the optimal solution, but which is efficient and finds good solutions
- key heuristics in BLAST
 - look for seeds of high scoring alignments
 - use dynamic programming selectively
- key tradeoff made: sensitivity vs. speed sensitivity $y = \frac{\# \text{ significan } t \text{ matches } \text{ detected}}{\# \text{ significan } t \text{ matches } \text{ in } DB}$

Overview of BLAST (Basic Alignment Search Tool)

- given: query sequence q, word length w, word score threshold T, segment score threshold S
 - compile a list of "words" (of length w) that score at least T when compared to words from q
 - scan database for matches to words in list
 - extend all matches to seek high-scoring alignments
- return: alignments scoring at least S

Determining query words

Given:

query sequence: QLNFSAGW word length w = 2 (default for protein usually w = 3) word score threshold T = 9

Step 1: determine all words of length *w* in query sequence

QL LN NF FS SA AG GW

Determining query words

Step 2: determine all words that score at least *T* when compared to a word in the query sequence

words from sequence query words w/ T≥9
QL QL=9
LN LN=10

NF NF=12, NY=9

...

SA none

...

Scanning the database

- search database for all occurrences of query words
- approach:
 - index database sequences into table of words (pre-compute this)
 - index query words into table (at query time)

Extending hits in original BLAST

- · extend hits in both directions (without allowing gaps)
- terminate extension in one direction when score falls certain distance below best score for shorter extensions

return segment pairs scoring at least S

Sensitivity vs. running time

- the main parameter controlling the sensitivity vs. running-time trade-off is T (threshold for what becomes a query word)
 - small T: greater sensitivity, more hits to expand
 - large T: lower sensitivity, fewer hits to expand

BLAST programs

Program	Query	Database
BLASTP	Protein	Protein
BLASTN	DNA	DNA
BLASTX	Translated DNA	Protein
TBLASTN	Protein	Translated DNA
TBLASTX	Translated DNA	Translated DNA

BLAST results

```
Score
                                                                                         (Bits) Value
Sequences producing significant alignments:
                                                                                                     9e-18 G
gb AAN84548.1 beta globin chain variant [Homo sapiens]
                                                                                          90.6
                                                                                                     1e-17 UG
gb|AAK29639.1|AF349114_1 beta globin chain variant [Homo sapiens
                                                                                         90.6
                                                                                                    1e-17 UG
gb AAF00489.1 AF181989 1 hemoglobin beta subunit variant [Hom... 90.6
                                                                                                    1e-17 G
1e-17
| gb | AAA35952.1 | beta-globin | demoglobin beta [synthetic construct]
                                                                                                     1e-17 UG
gb AAR96398.1 hemoglobin beta [Homo sapiens]
                                                                                          90.1
                                                                                                     1e-17 G
| qb | AAL68978.1 | AF083883_1 | mutant beta-globin [Homo sapiens] | qb | AAX29557.1 | hemoglobin beta [synthetic construct]
                                                                                                     1e-17 UG
ref NP 000509.1 beta globin [Homo sapiens] >ref NP 508242.1 ... sp P02024 HBB GORGO Hemoglobin subunit beta (Hemoglobin beta cha
                                                                                                     2e-17 UG
2e-17
| gb | AAD19696.1 | hemoglobin beta chain [Homo sapiens] | emb | CAA26204.1 | beta-globin [Pan troglodytes]
                                                                                                     2e-17 G
gb AAN16468.1 hemoglobin beta chain variant Hb.Sinai-Bel Air [H 89.7
                                                                                                     2e-17 G
gb ABG47031.1 hemoglobin [Homo sapiens]
                                                                                          89.7
| gb | ABA19233.1 | hemoglobin beta [Homo sapiens] | emb | CAA43421.1 | beta-globin [Gorilla gorilla]
                                                                                                     2e-17 G
gb AAY46275.1 beta globin chain [Homo sapiens]
                                                                                          89.3
gb AAK20080.1 mutant beta globin [Homo sapiens]
                                                                                                     2e-17
                                                                                          89.3
                                                                                                    3e-17 G
gb AAN11321.1 hemoglobin beta chain variant Hb-I_Toulouse [Homo 89.3

        gb AAG46184.1
        mutant beta-globin [Homo sapiens] >gb AAG46185...
        88.9

        gb ABX52138.1
        hemoglobin, beta (predicted) [Papio anubis]
        88.4

        gb AAD30656.1
        mutant beta-globin [Homo sapiens]
        88.0

                                                                                                     6e-17 G
pdb | 1HBA | B Chain B, High-Resolution X-Ray Study Of Deoxyhemog... 86.7
```

BLAST comments

- · it's heuristic: may miss some good matches
- it's fast: empirically, 10 to 50 times faster than Smith-Waterman
- PSI-BLAST can detect more distant relationships among protein sequences, but the process of generalizing the query can also lead it astray
- large impact:
 - NCBI's BLAST server handles more than 500,000 queries a day
 - most used bioinformatics program in the world