Sequence Assembly

BMI/CS 576
www.biostat.wisc.edu/bmi576/
Mark Craven
craven@biostat.wisc.edu
Fall 2011

The sequencing problem

We want to determine the identity of the base pairs that
make up:

— a single large molecule of DNA
— the genome of a single cell/individual organism
— the genome of a species

But we can’t (currently) “read” off the sequence of an
entire molecule all at once

The strategy: substrings

* We do have the ability to read or detect short pieces
(substrings) of DNA

— Sanger sequencing: 500-800 bp/read
— Latest technologies:

* 454 Genome Sequencer FLX: 250-600 bp/read
* lllumina Genome Analyzer: 35-150 bp/read

Shotgun sequencing fragment
assembly

Multiple copies of sample DNA

Randomly fragment DNA — ———'— - —

—_—— — — . — ——

Sequence sample of fragments

Assemble reads

Statistics for shotgun sequencing

Given: G — genome length (3:10° nts), L — read length
(500 nts), N — number of reads (tbd)

Calculate: coverage —a=NL/G

Questions tbd by stats (Lander-Waterman):

— How many contigs are there?

— How big are the contigs?

— How many reads are in each contig?

— How big are the gaps?

Requirement: 99% in contigs, 1% in gaps

— a=4.6, N=3-107, mean contig length 104,
100 reads/contig on average

The fragment assembly problem

Given: A set of reads (strings) {s;, Sy, ..., S,}

Do: Determine a large string s that “best explains” the
reads

What do we mean by “best explains™?
What assumptions might we require?

Shortest superstring problem

» Objective: Find a string s such that
— allreads s, s,, ..., S, are substrings of s
— Sis as short as possible

* Assumptions:
— Reads are 100% accurate

— Identical reads must come from the same location
on the genome

— “pest” = “simplest”

Shortest superstring example

* Given the reads:
{ACG, CGA, CGC, CGT, GAC, GCG, GTA, TCG}

* Whatis the shortest superstring you can come up with?

TCGACGCGTA (length 10)

Algorithms for shortest superstring
problem

* This problem turns out to be NP-complete
« Simple greedy strategy:
while # strings > 1 do

merge two strings with maximum overlap
loop

» Conjectured to give string with
length <2 X minimum length

» Other approaches are based on graph theory...

Graph basics

» agraph (G) consists of vertices (V) and edges (E)
G =(V,E)

» edges can either be directed (directed graphs)

@ 99‘@

» or undirected (undirected graphs)

@ ea\g

Vertex degrees

+ the degree of a vertex: the # of edges incident to that
vertex

» for directed graphs, we also have the notion of
— indegree: The number incoming edges
— outdegree: The number of outgoing edges

degree(v,) = 3
indegree(v,) = 1
outdegree(v,) = 2

Overlap graph

* One representation that is commonly used for
sequence assembly is an overlap graph

» For a set of sequence reads S, construct a directed
weighted graph G = (V,E,w)
— with one vertex per read (v; corresponds to s;)
— edges between all vertices (a complete graph)
— w(v;,v)) = overlap(s;,s;) = length of longest suffix of
s; that is a prefix of s;

Overlap graph example

. Let S={AGA, GAT, TCG, GAG}

Assembly as finding a Hamiltonian path

* Hamiltonian path: path through graph that visits each
vertex exactly once

Path: AGAGATCG

Shortest superstring as TSP

* minimize superstring length =»minimize weight of
Hamiltonian path in overlap graph with edge weights
negated

path: GAGATCG
path weight: -5
string length: 7

+ this is essentially the Traveling Salesman Problem (also
NP-complete)

Assembly as a Hamiltonian path

» finding Hamiltonian path is an NP-complete problem

* nevertheless overlap graphs are often used for
sequence assembly

— can detect repeats
— heuiristical hierarchical decomposition

* unitigs (no forks, no conflicts) solved first
— mate-pairs to scaffold

Sequencing by Hybridization (SBH)
SBH array has probes for all possible k-mers

For a given DNA sample, array tells us whether each k-mer
is PRESENT or ABSENT in the sample

the set of all k-mers present in a string S is called its
spectrum

Example DNA array

AA AC AG AT CA CCCG CTGAGCGGGT TA TC TG TT
AA

AC B
AG
AT B
CA
S: ACTGATGCAT =
CG
spectrum(S, 4) = cr .
{ACTG, ATGC, GA x
CTGA,GATG, 6c B
GCAT,TGAT, o
TGCA} o
TA
TC
E HE

T

de Bruijn graph

* in a de Bruijn graph
— edges represent k-mers that occur in spectrum(s, /)
— vertices correspond to (k-71)-mers

{ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT}

r——(o

GTG GCG
ATG TGC GCA
AT > TG > GC > CA
TGG GGC

10

de Bruijn graph

» Can we find a DNA sequence containing all k-mers?

* In a de Bruijn graph, can we find a path that visits
every edge of the graph exactly once?

Seven Bridges of Konigsberg

Euler answered the question: “Is there a
walk through the city that traverses each
bridge exactly once?”

11

Properties of Eulerian graphs

cycle: a path in a graph that starts/ends on the same
vertex

Eulerian cycle: a path that visits every edge of the graph
exactly once

Theorem: A connected graph has an Eulerian cycle if
and only if each of its vertices are balanced

A vertex v is balanced if indegree(v) = outdegree(v)

There is a linear-time algorithm for finding Eulerian
cycles!

Eulerian cycle algorithm

+ start at any vertex v, traverse unused edges until
returning to v

+ while the cycle is not Eulerian

— pick a vertex w along the cycle for which there are
untraversed outgoing edges

— traverse unused edges until ending up back at w
— join two cycles into one cycle

12

1) start at arbitrary vertex

Finding cycles

2) start at vertex along cycle with
untraversed edges

T

3) join cycles

Finding cycles

4) start at vertex along cycle with
untraversed edges

=0

13

5) join cycles

Finding cycles

QR

Joining cycles

14

Assembly as finding Eulerian paths

» Eulerian path: path that visits every edge exactly once

» we can frame the assembly problem as finding Eulerian paths in a
de Bruijn graph

* resulting sequences contain all k-mers

CGT

T CG

GCA

@)
>
5
y
3 @
o
o)
_|
o)
@]
\ 4
3 ®)
g o
y

* assembly: ATGGCGTGCA or ATGCGTGGCA

Eulerian paths

* avertex vis semibalanced if |indegree(v) — outdegree(v)| = 1

* aconnected graph has an Eulerian path if and only if it
contains at most two semibalanced vertices

15

Eulerian path = Eulerian cycle

» |f a graph has an Eulerian Path starting at w and
ending at x then

— All vertices must be balanced, except for w and x
which may have |indegree(v) — outdegree(v)| = 1

— If and w and x are not balanced, add an edge
between them to balance

» Graph now has an Eulerian cycle which can be
converted to an Eulerian path by removal of the
added edge

Eulerian path = Eulerian cycle

16

Sequence assembly in practice

* approaches are based on these ideas, but include a
lot of heuristics

* “best” approach varies depending on length of reads,
amount of repeats in the genome, availability of
paired-end reads

Paired end reads

* one approach to reducing ambiguity in assembly is to
use paired end reads

genome

l l l l l cutmrzr;)(/jct)inr:esat

reads are sequenced

. ends of each fragment
known distance ™.

~500 bp ~500 bp

17

Paired end reads

575,000 576,000 577,000 578,000 579,000 580,000 581,000 582,000 583,000 584,000

Genomic position

The Velvet assembler

* based on de Bruijn graphs

* includes additional tricks for
— reducing the size of the graph
— trying to correct for errors in sequences
— taking advantage of paired-end reads

18

Compressing the graph in Velvet

reads de Bruijn Potential Genomes

Graph
AAGA AAGACTCCGACTGGGACTTT
ACTC

ACTG AAGACTGGGACTCCGACTTT
ACTT
AGAC
CCGA

(G,
CTCC

CTGG

& G
GACT

GGAC
GGGA
TCCG
TGGG

* human genome: ~ 3B nodes, ~10B edges

Compressing the graph in Velvet

O—@R
o

collapse linear subgraphs '

19

Error correction in Velvet

errors at end of read B
N

* trim off ‘dead-end’ tips LAl

A B
— e — > —

errors in middle of read ,
* pop bubbles A 7T N ¢©

A B* C
@ > e — @

. . A B A B
chimeric edges ey | = —
. \‘X
* clip short, low —re—e— || > — > —»
coverage nodes c D c b
Summary

» The sequencing problem
— Sequencing in vitro
— Sequence assembly in silico
» De novo versus resequencing

— Reads, contigs, scaffolding
— Assembly validation

 Still open problem
— Costs, efficiency, reliability

» Approaches: greedy, overlap graph, Euler trail

« Statistical, viewers, comparative methods

20

