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The sequencing problem 

• We want to determine the identity of the base pairs that 

make up: 

– a single large molecule of DNA 

– the genome of a single cell/individual organism 

– the genome of a species 

 

 

• But we can’t (currently) “read” off the sequence of an 

entire molecule all at once 
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The strategy: substrings 

• We do have the ability to read or detect short pieces 

(substrings) of DNA 

 

– Sanger sequencing: 500-800 bp/read 

 

– Latest technologies: 

• 454 Genome Sequencer FLX: 250-600 bp/read 

• Illumina Genome Analyzer: 35-150 bp/read 

 

 

Shotgun sequencing fragment 

assembly 

Multiple copies of sample DNA 

Randomly fragment DNA 

Sequence sample of fragments 

Assemble reads 
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Statistics for shotgun sequencing 

• Given: G – genome length (3109 nts), L – read length 

(500 nts), N – number of reads (tbd) 

• Calculate: coverage – a=NL/G 

• Questions tbd by stats (Lander-Waterman):  

– How many contigs are there? 

– How big are the contigs? 

– How many reads are in each contig? 

– How big are the gaps? 

• Requirement: 99% in contigs, 1% in gaps 

– a=4.6, N=3107, mean contig length 104,  

100 reads/contig on average 
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The fragment assembly problem 

• Given: A set of reads (strings) {s1, s2, … , sn } 

• Do: Determine a large string s that “best explains” the 

reads 

 

• What do we mean by “best explains”? 

• What assumptions might we require? 

Shortest superstring problem 

• Objective: Find a string s such that 

– all reads s1, s2, … , sn are substrings of s 

– s is as short as possible 

 

• Assumptions: 

– Reads are 100% accurate 

– Identical reads must come from the same location 

on the genome 

– “best” = “simplest” 
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Shortest superstring example 

• Given the reads:  

{ACG, CGA, CGC, CGT, GAC, GCG, GTA, TCG} 

 

• What is the shortest superstring you can come up with? 

TCGACGCGTA (length 10) 

 

Algorithms for shortest superstring 

problem 

• This problem turns out to be NP-complete 

• Simple greedy strategy: 

  while # strings > 1 do 

   merge two strings with maximum overlap 

  loop 

 

• Conjectured to give string with 

    length ≤ 2 × minimum length 

 

• Other approaches are based on graph theory… 
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Graph basics 

• a graph (G) consists of vertices (V) and edges (E) 

G = (V,E) 

 

• edges can either be directed (directed graphs) 

 

 

 

 

• or undirected (undirected graphs) 

 

 

 

1 1 

2 2 

4 4 3 3 

1 1 

2 2 

4 4 3 3 

Vertex degrees 

• the degree of a vertex: the # of edges incident to that 

vertex 

• for directed graphs, we also have the notion of  

– indegree: The number incoming edges  

– outdegree: The number of outgoing edges 

1 1 

2 2 

4 4 3 3 

degree(v2) = 3 
indegree(v2) = 1 
outdegree(v2) = 2 
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Overlap graph 

• One representation that is commonly used for 

sequence assembly is an overlap graph 

 

• For a set of sequence reads S, construct a directed 

weighted graph G = (V,E,w) 

– with one vertex per read (vi corresponds to si) 

– edges between all vertices (a complete graph) 

– w(vi,vj) = overlap(si ,sj ) = length of longest suffix of 

si that is a prefix of sj 

 

Overlap graph example 

• Let S = {AGA, GAT, TCG, GAG} 

AGA AGA 

GAT GAT TCG TCG 

GAG GAG 

2 

2 

0 

0 

1 
0 

0 

1 

1 

2 

0 

1 
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Assembly as finding a Hamiltonian path 

• Hamiltonian path: path through graph that visits each 

vertex exactly once 

 

AGA AGA 

GAT GAT TCG TCG 

GAG GAG 

2 

2 

0 

0 

1 
0 

0 

1 

1 

2 

0 

1 

Path: AGAGATCG 

Shortest superstring as TSP 

• minimize superstring length minimize weight of 
Hamiltonian path in overlap graph with edge weights 
negated 

 

 

 

 

 

 

 

 

 

• this is essentially the Traveling Salesman Problem (also 
NP-complete) 

 

AGA AGA 

GAT GAT TCG TCG 

GAG GAG 

-2 

-2 

0 

0 

-1 
0 

0 

-1 

-1 

-2 

0 

-1 
path: GAGATCG 
path weight: -5 
string length: 7 
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Assembly as a Hamiltonian path 

• finding Hamiltonian path is an NP-complete problem 

 

• nevertheless overlap graphs are often used for 

sequence assembly 

– can detect repeats 

– heuristical hierarchical decomposition  

• unitigs (no forks, no conflicts) solved first 

– mate-pairs to scaffold 

 

Sequencing by Hybridization (SBH) 

• SBH array has probes for all possible k-mers 

 

• For a given DNA sample, array tells us whether each k-mer 

is PRESENT or ABSENT in the sample 

 

• the set of all k-mers present in a string S is called its 

spectrum 
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Example DNA array 
AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT 

AA 

AC X 

AG 

AT X 

CA 

CC 

CG 

CT X 

GA X 

GC X 

GG 

GT 

TA 

TC 

TG X X 

TT 

S: ACTGATGCAT 

 

spectrum(S, 4) =  

{ACTG, ATGC, 

CTGA,GATG, 

GCAT,TGAT, 

TGCA} 

de Bruijn graph 

{ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT} 

AT AT CA CA 

CG CG 

GC GC 

GG GG 

GT GT 

TG TG 
ATG TGC 

TGG GGC 

GCA 

GCG 

CGT 

GTG 

 

• in a de Bruijn graph 

– edges represent k-mers that occur in spectrum(s, l) 

– vertices correspond to (k-1)-mers 
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de Bruijn graph 

• Can we find a DNA sequence containing all k-mers?  

 

• In a de Bruijn graph, can we find a path that visits 

every edge of the graph exactly once? 

Seven Bridges of Königsberg 

Euler answered the question: “Is there a 

walk through the city that traverses each 

bridge exactly once?” 
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Properties of Eulerian graphs 

• cycle: a path in a graph that starts/ends on the same 
vertex 

 

• Eulerian cycle: a path that visits every edge of the graph 
exactly once 

 

• Theorem: A connected graph has an Eulerian cycle if 
and only if each of its vertices are balanced 

 

• A vertex v is balanced if indegree(v) = outdegree(v) 

 

• There is a linear-time algorithm for finding Eulerian 
cycles! 

Eulerian cycle algorithm 

• start at any vertex v, traverse unused edges until 

returning to v 

• while the cycle is not Eulerian 

– pick a vertex w along the cycle for which there are 

untraversed outgoing edges 

– traverse unused edges until ending up back at w 

– join two cycles into one cycle 
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Finding cycles 

1) start at arbitrary vertex 2) start at vertex along cycle with  

untraversed edges 

Finding cycles 

3) join cycles 4) start at vertex along cycle with  

untraversed edges 
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Finding cycles 

5) join cycles 

Joining cycles 

v v 

w 

v 

w 
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Assembly as finding Eulerian paths 
 

• Eulerian path: path that visits every edge exactly once 

• we can frame the assembly problem as finding Eulerian paths in a 

de Bruijn graph 

• resulting sequences contain all k-mers 

AT AT CA CA 

CG CG 

GC GC 

GG GG 

GT GT 

TG TG 
ATG TGC 

TGG GGC 

GCA 

GCG 

CGT 

GTG 

 

• assembly: ATGGCGTGCA  or  ATGCGTGGCA 

Eulerian paths 

AT AT CA CA 

CG CG 

GC GC 

GG GG 

GT GT 

TG TG 

 

•  a vertex v is semibalanced if  |indegree(v) – outdegree(v)| = 1 

 

• a connected graph has an Eulerian path if and only if it 

contains at most two semibalanced vertices 
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Eulerian path  Eulerian cycle 

• If a graph has an Eulerian Path starting at w and 

ending at x then 

– All vertices must be balanced, except for w and x 

which may have |indegree(v) – outdegree(v)| = 1 

– If and w and x are not balanced, add an edge 

between them to balance 

• Graph now has an Eulerian cycle which can be 

converted to an Eulerian path by removal of the 

added edge 

Eulerian path  Eulerian cycle 

AT AT CA CA 

CG CG 

GC GC 

GG GG 

GT GT 

TG TG 
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Sequence assembly in practice 

• approaches are based on these ideas, but include a 

lot of heuristics 

• “best” approach varies depending on length of reads, 

amount of repeats in the genome, availability of 

paired-end reads 

Paired end reads 

cut many times at 

random 

genome 

reads are sequenced 

ends of each fragment 
known distance 

~500 bp ~500 bp 

• one approach to reducing ambiguity in assembly is to 

use paired end reads 
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Paired end reads 

The Velvet assembler 

• based on de Bruijn graphs 

• includes additional tricks for 

– reducing the size of the graph 

– trying to correct for errors in sequences 

– taking advantage of paired-end reads 
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Compressing the graph in Velvet 

de Bruijn 

Graph 
Potential Genomes 

AAGACTCCGACTGGGACTTT 

CTC CGA 

GGA CTG 

TCC CCG 

GGG TGG 

AAG AGA GAC ACT CTT TTT 

reads 

AAGACTGGGACTCCGACTTT 

AAGA 

ACTC 

ACTG 

ACTT 

AGAC 

CCGA 

CGAC 

CTCC 

CTGG 

CTTT 

GACT 

GGAC 

GGGA 

TCCG 

TGGG 

• human genome: ~ 3B nodes, ~10B edges 

Compressing the graph in Velvet 

CTCCG

A 

CTGGGA 

AAGA GAC ACT CTTT 

CTC CGA 

GGA CTG 

TCC CCG 

GGG TGG 

AAG AGA GAC ACT CTT TTT 

collapse linear subgraphs 
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Error correction in Velvet 

errors at end of read 

• trim off ‘dead-end’ tips 

 

 

errors in middle of read 

• pop bubbles 

 

 

 

chimeric edges 

• clip short, low 

coverage nodes 

B* B* A C 

B B 

B’ 

A C 

B B A 

D 

B B A 

B B 

B’ 

A 

C 

B B A 

D C 

x x 

Summary 

• The sequencing problem 

– Sequencing in vitro 

– Sequence assembly in silico 

• De novo versus resequencing 

• Approaches: greedy, overlap graph, Euler trail 

– Reads, contigs, scaffolding 

– Assembly validation 

• Statistical, viewers, comparative methods 

• Still open problem 

– Costs, efficiency, reliability 

 

 


