
1

Sequence Assembly

BMI/CS 576

www.biostat.wisc.edu/bmi576/

Mark Craven

craven@biostat.wisc.edu

Fall 2011

The sequencing problem

• We want to determine the identity of the base pairs that

make up:

– a single large molecule of DNA

– the genome of a single cell/individual organism

– the genome of a species

• But we can’t (currently) “read” off the sequence of an

entire molecule all at once

2

The strategy: substrings

• We do have the ability to read or detect short pieces

(substrings) of DNA

– Sanger sequencing: 500-800 bp/read

– Latest technologies:

• 454 Genome Sequencer FLX: 250-600 bp/read

• Illumina Genome Analyzer: 35-150 bp/read

Shotgun sequencing fragment

assembly

Multiple copies of sample DNA

Randomly fragment DNA

Sequence sample of fragments

Assemble reads

3

5

Statistics for shotgun sequencing

• Given: G – genome length (3109 nts), L – read length

(500 nts), N – number of reads (tbd)

• Calculate: coverage – a=NL/G

• Questions tbd by stats (Lander-Waterman):

– How many contigs are there?

– How big are the contigs?

– How many reads are in each contig?

– How big are the gaps?

• Requirement: 99% in contigs, 1% in gaps

– a=4.6, N=3107, mean contig length 104,

100 reads/contig on average

4

The fragment assembly problem

• Given: A set of reads (strings) {s1, s2, … , sn }

• Do: Determine a large string s that “best explains” the

reads

• What do we mean by “best explains”?

• What assumptions might we require?

Shortest superstring problem

• Objective: Find a string s such that

– all reads s1, s2, … , sn are substrings of s

– s is as short as possible

• Assumptions:

– Reads are 100% accurate

– Identical reads must come from the same location

on the genome

– “best” = “simplest”

5

Shortest superstring example

• Given the reads:

{ACG, CGA, CGC, CGT, GAC, GCG, GTA, TCG}

• What is the shortest superstring you can come up with?

TCGACGCGTA (length 10)

Algorithms for shortest superstring

problem

• This problem turns out to be NP-complete

• Simple greedy strategy:

 while # strings > 1 do

 merge two strings with maximum overlap

 loop

• Conjectured to give string with

 length ≤ 2 × minimum length

• Other approaches are based on graph theory…

6

Graph basics

• a graph (G) consists of vertices (V) and edges (E)

G = (V,E)

• edges can either be directed (directed graphs)

• or undirected (undirected graphs)

1 1

2 2

4 4 3 3

1 1

2 2

4 4 3 3

Vertex degrees

• the degree of a vertex: the # of edges incident to that

vertex

• for directed graphs, we also have the notion of

– indegree: The number incoming edges

– outdegree: The number of outgoing edges

1 1

2 2

4 4 3 3

degree(v2) = 3
indegree(v2) = 1
outdegree(v2) = 2

7

Overlap graph

• One representation that is commonly used for

sequence assembly is an overlap graph

• For a set of sequence reads S, construct a directed

weighted graph G = (V,E,w)

– with one vertex per read (vi corresponds to si)

– edges between all vertices (a complete graph)

– w(vi,vj) = overlap(si ,sj) = length of longest suffix of

si that is a prefix of sj

Overlap graph example

• Let S = {AGA, GAT, TCG, GAG}

AGA AGA

GAT GAT TCG TCG

GAG GAG

2

2

0

0

1
0

0

1

1

2

0

1

8

Assembly as finding a Hamiltonian path

• Hamiltonian path: path through graph that visits each

vertex exactly once

AGA AGA

GAT GAT TCG TCG

GAG GAG

2

2

0

0

1
0

0

1

1

2

0

1

Path: AGAGATCG

Shortest superstring as TSP

• minimize superstring length minimize weight of
Hamiltonian path in overlap graph with edge weights
negated

• this is essentially the Traveling Salesman Problem (also
NP-complete)

AGA AGA

GAT GAT TCG TCG

GAG GAG

-2

-2

0

0

-1
0

0

-1

-1

-2

0

-1
path: GAGATCG
path weight: -5
string length: 7

9

Assembly as a Hamiltonian path

• finding Hamiltonian path is an NP-complete problem

• nevertheless overlap graphs are often used for

sequence assembly

– can detect repeats

– heuristical hierarchical decomposition

• unitigs (no forks, no conflicts) solved first

– mate-pairs to scaffold

Sequencing by Hybridization (SBH)

• SBH array has probes for all possible k-mers

• For a given DNA sample, array tells us whether each k-mer

is PRESENT or ABSENT in the sample

• the set of all k-mers present in a string S is called its

spectrum

10

Example DNA array
AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

AA

AC X

AG

AT X

CA

CC

CG

CT X

GA X

GC X

GG

GT

TA

TC

TG X X

TT

S: ACTGATGCAT

spectrum(S, 4) =

{ACTG, ATGC,

CTGA,GATG,

GCAT,TGAT,

TGCA}

de Bruijn graph

{ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT}

AT AT CA CA

CG CG

GC GC

GG GG

GT GT

TG TG
ATG TGC

TGG GGC

GCA

GCG

CGT

GTG

• in a de Bruijn graph

– edges represent k-mers that occur in spectrum(s, l)

– vertices correspond to (k-1)-mers

11

de Bruijn graph

• Can we find a DNA sequence containing all k-mers?

• In a de Bruijn graph, can we find a path that visits

every edge of the graph exactly once?

Seven Bridges of Königsberg

Euler answered the question: “Is there a

walk through the city that traverses each

bridge exactly once?”

12

Properties of Eulerian graphs

• cycle: a path in a graph that starts/ends on the same
vertex

• Eulerian cycle: a path that visits every edge of the graph
exactly once

• Theorem: A connected graph has an Eulerian cycle if
and only if each of its vertices are balanced

• A vertex v is balanced if indegree(v) = outdegree(v)

• There is a linear-time algorithm for finding Eulerian
cycles!

Eulerian cycle algorithm

• start at any vertex v, traverse unused edges until

returning to v

• while the cycle is not Eulerian

– pick a vertex w along the cycle for which there are

untraversed outgoing edges

– traverse unused edges until ending up back at w

– join two cycles into one cycle

13

Finding cycles

1) start at arbitrary vertex 2) start at vertex along cycle with

untraversed edges

Finding cycles

3) join cycles 4) start at vertex along cycle with

untraversed edges

14

Finding cycles

5) join cycles

Joining cycles

v v

w

v

w

15

Assembly as finding Eulerian paths

• Eulerian path: path that visits every edge exactly once

• we can frame the assembly problem as finding Eulerian paths in a

de Bruijn graph

• resulting sequences contain all k-mers

AT AT CA CA

CG CG

GC GC

GG GG

GT GT

TG TG
ATG TGC

TGG GGC

GCA

GCG

CGT

GTG

• assembly: ATGGCGTGCA or ATGCGTGGCA

Eulerian paths

AT AT CA CA

CG CG

GC GC

GG GG

GT GT

TG TG

• a vertex v is semibalanced if |indegree(v) – outdegree(v)| = 1

• a connected graph has an Eulerian path if and only if it

contains at most two semibalanced vertices

16

Eulerian path  Eulerian cycle

• If a graph has an Eulerian Path starting at w and

ending at x then

– All vertices must be balanced, except for w and x

which may have |indegree(v) – outdegree(v)| = 1

– If and w and x are not balanced, add an edge

between them to balance

• Graph now has an Eulerian cycle which can be

converted to an Eulerian path by removal of the

added edge

Eulerian path  Eulerian cycle

AT AT CA CA

CG CG

GC GC

GG GG

GT GT

TG TG

17

Sequence assembly in practice

• approaches are based on these ideas, but include a

lot of heuristics

• “best” approach varies depending on length of reads,

amount of repeats in the genome, availability of

paired-end reads

Paired end reads

cut many times at

random

genome

reads are sequenced

ends of each fragment
known distance

~500 bp ~500 bp

• one approach to reducing ambiguity in assembly is to

use paired end reads

18

Paired end reads

The Velvet assembler

• based on de Bruijn graphs

• includes additional tricks for

– reducing the size of the graph

– trying to correct for errors in sequences

– taking advantage of paired-end reads

19

Compressing the graph in Velvet

de Bruijn

Graph
Potential Genomes

AAGACTCCGACTGGGACTTT

CTC CGA

GGA CTG

TCC CCG

GGG TGG

AAG AGA GAC ACT CTT TTT

reads

AAGACTGGGACTCCGACTTT

AAGA

ACTC

ACTG

ACTT

AGAC

CCGA

CGAC

CTCC

CTGG

CTTT

GACT

GGAC

GGGA

TCCG

TGGG

• human genome: ~ 3B nodes, ~10B edges

Compressing the graph in Velvet

CTCCG

A

CTGGGA

AAGA GAC ACT CTTT

CTC CGA

GGA CTG

TCC CCG

GGG TGG

AAG AGA GAC ACT CTT TTT

collapse linear subgraphs

20

Error correction in Velvet

errors at end of read

• trim off ‘dead-end’ tips

errors in middle of read

• pop bubbles

chimeric edges

• clip short, low

coverage nodes

B* B* A C

B B

B’

A C

B B A

D

B B A

B B

B’

A

C

B B A

D C

x x

Summary

• The sequencing problem

– Sequencing in vitro

– Sequence assembly in silico

• De novo versus resequencing

• Approaches: greedy, overlap graph, Euler trail

– Reads, contigs, scaffolding

– Assembly validation

• Statistical, viewers, comparative methods

• Still open problem

– Costs, efficiency, reliability

