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MOtivatiOH example - fiSh CIaSSification [Duda, Hart, Stork: Pattern Classification]

I Preprocessing |
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Feature extraction

Vo

Classification

"salmon" "sea bass"

m Factory for fish processing
m 2 classes:

— salmon

— sea bass

m Features: length, width, lightness etc. from a camera



Last lecture — optimal fish classification using Bayes classifier

= Notation for classification problem

Classes s; € S (e.g., salmon, sea bass)

Features z; € X or feature vectors (;) (also called attributes)
m Optimal classification of
§(7) = arg max p(s;|7)
J
s Choosing the most probable class for a given feature vector.

m Both likelihood and prior are taken into account — recall Bayes rule:

= E.g., what if 95% of fish are salmon?

Prior may become more relevant than features



Bayes classification in practice

Usually we are not given P(s|7)

It has to be estimated from already classified examples — training data

s For discrete Z, training examples (71, s1), (79, $2), . . . (¥, 81)

so-called i.i.d (independent, identically distributed) multiset
every (7, s) is drawn independently from P(Z, s)

Without knowing anything about the distribution, a non-parametric estimate:

P(s|) ~ # examples where &; = ¥ and s; = s

# examples where z; = &
= This is hard in practice:
To reliably estimate P(s|¥), the number of examples grows exponentially with the number
of elements of .
* e.g. with the number of pixels in images
* curse of dimensionality
* denominator often 0

The computational curse would not manifest itself if components of T were statistically
independent, but that is rarely the case.

Bayes classification provides a lower bound on classification error, but that is usually not
achievable because P(s|Z) is not known.



Alternatives: classification without (probability) density estimation

= In other words, seeking to separate classes on training set in feature space

s Examples
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Linear Classifier: Direct Learning

= Assume a binary classification problem, i.e. S = {s1,$2}.

sy, if g(Z) > 0;

= One discriminant function ¢(Z) enough: classify y = { 5y, otherwise.

s We want (gtfz + c) > 0 if y; = 51 and (l;tfl + c) < 0 otherwise.

—

= Same as requesting <btz_} + c) > () for all z;, where z; = z; if y; = s1 and z; = —x; otherwise.

= Let formally z/"** =1 Vi and @ = b, ] (add c as the last component of ).

—

and request w'Z; > 0 for all z; .

E —'Z

zeM

|
s Thus we can write simply ¢g(2) = W'z

m Let

where M is the set of Z; that are misclassified.



Perceptron

= E(b, c) is always non-negative.

m If E(w) = 0 then all examples in D are correctly classified and D is linearly separable. We
want to find the minimum of ().

m (W) is piece-wise linear. A gradient descent algorithm can be used to search for a
minimum.

= Gradient algorithm: go towards a minimum by making discrete steps in "™ in the direction
opposite to the gradient of E(w).

— (aE(@ aE(w)WaE@)) Sy

8’(1}1 8w2

= [he perceptron gradient algorithm:

1. k = 0. Choose a random .

2. k+—k+1

3. W~ w+n(k) Y, cnr,

4.if In(k) >_,.car, 21 > 0 go to

5. return W

= 7] - the learning rate, 6 - an error threshold.



Perceptron: Linear separation

m If the two classes are linearly separable, the perceptron
algorithm will terminate in a finite number of steps with
zero training error.

m A problem that is linearly non-separable in & may be
separable after being transformed to R n' > n. For ex-
ample, new coordinates may contain all quadratic terms:

[2(1),...2(n), 2*(1), z(Dz(2), z(D)z(3), ... 2*(n)]

m This is called basis expansion. A linear separation in
the expanded space corresponds to a non-linear (here
quadratic) separation in the original space R".

m A linear separation method such as the perceptron may
be applied in the extended space, generating nonlinear
separation in the original space.

A linearly non-separable

problem



Neighbor-based classification

m Assumption: similar objects fall in the same class.
m Similarity - small distance in X.

m A fuction, called a metric: p: X x X — R such that Vz, vy, 2

p(z,y) >0
p(z,z)
p(z,y)

— 0
= p(y, )
p(z,2) < p(z

y) + p(y, 2)

= Examples:

Euclidean metric for X = R"™:

For X = {0,1}", p% is equal to the Hamming metric, giving the number of non-equal
corresponding components.



E-NN

m k-nearest neighbor classification, .-NN.

= Given:

ke N
Training examples: (%1, s1), (T2, $2), - .. (27, 1)
Metricp: X x X — R

s Goal: classify 771

s Approach: choose k nearest (to 7 by p) examples. Let the majority class therein be the class
for ;1.



Classification flexibility

s How to choose k7?

= A general trend: Consider a two-class problem (red/green) with noisy training examples

(some s; misclassified).

: .. Bayes classifier: less flexible & = 15: Poor fit to train-
k = 1. Good fit of training _ _ o
: than 1-nn, more flexible than  ing data. Small sensitivity to
data, small tolerance to noise. ’
15-nn. noise.

s Note: the shown Bayes classifier was constructed from known P(s|Z).

s Observation: with flexibility too large (small k) or too small (large k), one gets classifiers very

different from the optimal B/C.

s Optimal & somewhere in the middle. Still pending: how to determine the best value?



Validation

s Mean risk r(6) of classifier § corresponds to the relative frequency of its misclassifications
(convergence in the limit...), or ‘error rate’.

s Define training error T E()) as the error rate on v training data.

Is TE(J) a good estimate of r(4)?

Earlier: 1-nn is not a good classifier, despite having training error 0.

TE(6) is (usually) not a good estimate of () because it is biased. To estimate () in an
unbiased way:

split available data into a training set (71, s1),... (7}, s;) and an independent testing
set (fl—}-l) Sl—|—1)7 S (fl—{—ma Sl—f-m)
(e.g. by a 75% - 25% split).

Construct (train) classifier on the training set.

Error rate on the testing set is an unbiased estimate of r(§).

Unbiased does not mean accurate.



Specific probability distributions

s Recap - optimal classification possible when

Complete underlying (joint or conditional) probability distribution relating classes and fea-
tures is known

using Bayes classifier
= However, this is difficult in practice.

s Remedy: assuming a specific probability distribution (with nice properties)



Distributional Assumption

= [he normal density
1 —(x — p)?
exp

N =
(xJ /,L, 0-) o 27'(' 20_2

= Notable properties:

Central limit theorem: The effect of a sum of a large number of small independent random
disturbances (however distributed) leads to the normal distribution.

Of all densities f(x) of a random variable X with given mean and variance, the normal
density has the greatest entropy H(X) = [~ f(x)log, f(z)dx.

= Given a single real scalar attribute, the normal distribution assumption proposes that for
each class s, the conditional density of z is:

f(%’S) — N(x,,us,as)

s Often, distributional parameters are explicitly shown in the conditional part:

f(x|s,,us, US) = N($>N5708>



Classifying under normal attribute distribution

m Under the normal distribution assumption, for Bayes optimal classification we proceed as
follows

f(x‘salustS)P(S)

arg max f(s|z, ps, 05) = arg max (o) — arg max f(z|s, ) P(s)
S S €T s
1 —(x — p,)° ( 1 — (& — p,)° )
= arg max ex - P(s) = argmaxIn ex - P(s
| | (x— )’
—argmax | —=Ino? —=In 27+ (@ — s +In P(s)
s 2 2 202
— — 5
can drop
_ Loy 1 2 _ 2
= argmax | —=Ino, — — (2° — 2zp, + p7) + In P(s) | = argmaxa,x” + bz + ¢4
s 2 202 ° 5
where
2
as = —3Ino? bszg—g csz—%lnaz—%‘éHnP(s)

m A quadratic discriminant function thus defined for each s € S,

gs(x) = a,x® + byx + ¢4

Using discriminant functions: for a given x, classify into max; g(x).



Normal distribution, same std. deviation o for each class

= Simple case: same std. deviations. Example: s = {male, female}, x = height.

same std. deviation

Abremae E)U,M,qLE

m Since Vs o, = o, further simplification is possible

2
1
max P (s|z, pts, 0) = max S (2zps — p2) + In P(s) | = max (b -z + c)
5 5 202 202 s
——
can drop
where b, = 55 and ¢, = —% + In P(s).

m Here, the discriminant function is linear:

gs(r) = b + ¢



The multivariate case

= The multivariate case (& now a n-component real vector, & € R")

1 1

N(x, i,X%) = exp | —=(Z — @)'|2|(Z — [
(, i, ) NEET] S(@ = A)|[E[(& ~ A)
011 021 ... Opl
¥ | 712 022 e On2 . the covariance matrix: CA (3232 i)l = i)
O'm‘ = Uz’
O'Ln 0-2,71 . O?’L,’I’L

= Normal distribution assumption: f(x|s, i, 3) = N(x, jis, 25) for each class s.

() + In P(s)

m Special Case:Vs >3 = X: Linear discriminant function

gs(x) = bz + ¢, where

b, = )Py cs = =l g + In P(s)



Linear vs. Quadratic Discrimination
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m Left: linear discrimination in 2. Points where g,(¥) is maximal for a given s form convex
regions with piece-wise linear boundaries.

= Right: quadratic discrimination in ®?. Points where ¢,(Z) is maximal for a given s form
regions with piece-wise quadratic boundaries.



Parameter estimation

s Assuming f(Z]s) normal: how does it help learning? Instead of estimating the unknown
density function f, we only estimate parameters of the normal distribution f(Z]s, ji, 3)

= That is, estimate [i; and 3, for each class s.
s Several options (next lecture)

Maximum Likelihood
Maximum Aposteriori

Bayesian inference



Unsupervised learning

s Until now:

labeled samples (¥, s) — features and category membership

supervised learning
= Unlabeled samples — unsupervised learning

s Why? [Duda, Hart, Stork: Pattern Classification, Ch. 10]

1. labeled data sets are costly
2. useful features can be extracted without supervision

3. intrinsic structure in the data — e.g. natural clusters



Clustering

= (a) k-means, (b) fuzzy clustering, (c) probability using probability mixture, (d) hierarchical
clustering (dendrogram)

&

(b)
1 2 3
a 0.4 0.1 0.5
b 0.1 0.8 0.1
c 0.3 0.3 0.4
d 0.1 0.1 0.8
= 0.4 0.2 0.4 ’J_l
f 0.1 0.4 0.5
g 0.7 0.2 0.1 r—l . rj
h 0.5 0.4 0.1 gaciedkbjfh

—
™
—

(d)



K-means

= with n input patterns

= searching for centers (means p) of k clusters

A EY]

1. begin Initialize n, k, p1, pto, - - ., fhp

2. do classify n samples according to

nearest i
. update y;

. until no change ;

. return g, po, ... g

S O B~ W

. end




Hierarchical clustering

m agglomerative: bottom-up — merging

= divisive: top-down — splitting

1. begin Initializek, k < n, D; < {X;},i=1,....n
dok=Fk—1

find nearest clusters. D; a D;

A

until & =k

return k clusters

A

end

O dmm(sc,x/) = min ||z — SC/H v €D, 2 €D,



Hierarchical clustering - example

Level | — d 100

Level 2 _, L L_T 90
Level 3 — S0 o
2
Level 4 — 70 3
Level 5 — 60l =
<
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Level 7 — 40 -g
Level 8 — 30 §
20 7
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