
Cybernetics and Artificial Intelligence (2017), lecture 12

Classification – Perceptron, k-nn and relationship to Bayesian
classifier

Dept. of Cybernetics
Czech Technical University in Prague

Matěj Hoffmann, Zdeněk Straka
Thanks to: Daniel Novák, Filip Železný

Motivation example – fish classification [Duda, Hart, Stork: Pattern Classification]

� Factory for fish processing

� 2 classes:

− salmon

− sea bass

� Features: length, width, lightness etc. from a camera

Last lecture – optimal fish classification using Bayes classifier

� Notation for classification problem

− Classes si ∈ S (e.g., salmon, sea bass)

− Features xi ∈ X or feature vectors (~xi) (also called attributes)

� Optimal classification of ~x:

δ∗(~x) = arg max
j
p(sj|~x)

� Choosing the most probable class for a given feature vector.

� Both likelihood and prior are taken into account – recall Bayes rule:

p(sj|x) =
p(x|sj)p(sj)

p(x)

� E.g., what if 95% of fish are salmon?

− Prior may become more relevant than features

Bayes classification in practice

� Usually we are not given P (s|~x)

� It has to be estimated from already classified examples – training data

� For discrete ~x, training examples (~x1, s1), (~x2, s2), . . . (~xl, sl)

− so-called i.i.d (independent, identically distributed) multiset

− every (~xi, s) is drawn independently from P (~x, s)

� Without knowing anything about the distribution, a non-parametric estimate:

P (s|~x) ≈ # examples where ~xi = ~x and si = s

examples where ~xi = ~x

� This is hard in practice:

− To reliably estimate P (s|~x), the number of examples grows exponentially with the number

of elements of ~x.

∗ e.g. with the number of pixels in images

∗ curse of dimensionality

∗ denominator often 0

− The computational curse would not manifest itself if components of ~x were statistically

independent, but that is rarely the case.

− Bayes classification provides a lower bound on classification error, but that is usually not

achievable because P (s|~x) is not known.

Alternatives: classification without (probability) density estimation

� In other words, seeking to separate classes on training set in feature space

� Examples

− Linear classifier

∗ Perceptron algorithm

− Quadratic classifier

− k-nn - k nearest neighbor

− SVM – Support Vector Machines

− Decision trees

Linear Classifier: Direct Learning

� Assume a binary classification problem, i.e. S = {s1, s2}.

� One discriminant function g(~x) enough: classify y =

{
s1, if g(~x) > 0;

s2, otherwise.

� We want
(
~bt~xi + c

)
> 0 if yi = s1 and

(
~bt~xi + c

)
< 0 otherwise.

� Same as requesting
(
~bt~zi + c

)
> 0 for all zi, where zi = xi if yi = s1 and zi = −xi otherwise.

� Let formally zn+1
i = 1 ∀i and ~w = [~b, c] (add c as the last component of ~w).

� Thus we can write simply g(~z) = ~wt~z and request ~wt~zi > 0 for all zi .

� Let

E(~w) =
∑
~zi∈M

−~wt~zi

where M is the set of ~zi that are misclassified.

Perceptron

� E(~b, c) is always non-negative.

� If E(~w) = 0 then all examples in D are correctly classified and D is linearly separable. We

want to find the minimum of E(~w).

� E(~w) is piece-wise linear. A gradient descent algorithm can be used to search for a

minimum.

� Gradient algorithm: go towards a minimum by making discrete steps in <n+1 in the direction

opposite to the gradient of E(~w).

∇(E(~w)) =

(
∂E(~w)

∂w1
,
∂E(~w)

∂w2
, . . .

∂E(~w)

∂wn+1

)
=
∑
zi∈M

−~z

� The perceptron gradient algorithm:

1. k = 0. Choose a random ~w.

2. k ← k + 1

3. ~w ← ~w + η(k)
∑

zi∈Mk
~z

4. if |η(k)
∑

zi∈Mk
~z| > θ go to 2

5. return ~w

� η - the learning rate, θ - an error threshold.

Perceptron: Linear separation

� If the two classes are linearly separable, the perceptron

algorithm will terminate in a finite number of steps with

zero training error.

� A problem that is linearly non-separable in <n may be

separable after being transformed to<n′ n′ > n. For ex-

ample, new coordinates may contain all quadratic terms:

[x(1), . . . x(n), x2(1), x(1)x(2), x(1)x(3), . . . x2(n)]

� This is called basis expansion. A linear separation in

the expanded space corresponds to a non-linear (here

quadratic) separation in the original space <n.

� A linear separation method such as the perceptron may

be applied in the extended space, generating nonlinear

separation in the original space.

A perceptron scheme

A linearly non-separable

problem

Neighbor-based classification

� Assumption: similar objects fall in the same class.

� Similarity - small distance in X .

� A fuction, called a metric: ρ : X ×X → < such that ∀x, y, z

− ρ(x, y) ≥ 0

− ρ(x, x) = 0

− ρ(x, y) = ρ(y, x)

− ρ(x, z) ≤ ρ(x, y) + ρ(y, z)

� Examples:

− Euclidean metric for X = <n:

ρE(~x1, ~x2) =

√∑
i

(x1(i)− x2(i))2

− For X = {0, 1}n, ρ2E is equal to the Hamming metric, giving the number of non-equal

corresponding components.

k-NN

� k-nearest neighbor classification, k-NN.

� Given:

− k ∈ N
− Training examples: (~x1, s1), (~x2, s2), . . . (~xl, sl)

− Metric ρ : X ×X → <

� Goal: classify ~xl+1

� Approach: choose k nearest (to ~x by ρ) examples. Let the majority class therein be the class

for ~xl+1.

Classification flexibility

� How to choose k?

� A general trend: Consider a two-class problem (red/green) with noisy training examples

(some si misclassified).

k = 1: Good fit of training

data, small tolerance to noise.

Bayes classifier: less flexible

than 1-nn, more flexible than

15-nn.

k = 15: Poor fit to train-

ing data. Small sensitivity to

noise.

� Note: the shown Bayes classifier was constructed from known P (s|~x).

� Observation: with flexibility too large (small k) or too small (large k), one gets classifiers very

different from the optimal B/C.

� Optimal k somewhere in the middle. Still pending: how to determine the best value?

Validation

� Mean risk r(δ) of classifier δ corresponds to the relative frequency of its misclassifications

(convergence in the limit...), or ‘error rate’.

� Define training error TE(δ) as the error rate on v training data.

� Is TE(δ) a good estimate of r(δ)?

� Earlier: 1-nn is not a good classifier, despite having training error 0.

� TE(δ) is (usually) not a good estimate of r(δ) because it is biased. To estimate r(δ) in an

unbiased way:

− split available data into a training set (~x1, s1), . . . (~xl, sl) and an independent testing
set (~xl+1, sl+1), . . . (~xl+m, sl+m)

− (e.g. by a 75% - 25% split).

− Construct (train) classifier on the training set.

� Error rate on the testing set is an unbiased estimate of r(δ).

� Unbiased does not mean accurate.

Specific probability distributions

� Recap - optimal classification possible when

− Complete underlying (joint or conditional) probability distribution relating classes and fea-

tures is known

− using Bayes classifier

� However, this is difficult in practice.

� Remedy: assuming a specific probability distribution (with nice properties)

Distributional Assumption

� The normal density

N(x, µ, σ) =
1

σ
√

2π
exp
−(x− µ)2

2σ2

� Notable properties:

− Central limit theorem: The effect of a sum of a large number of small independent random

disturbances (however distributed) leads to the normal distribution.

− Of all densities f (x) of a random variable X with given mean and variance, the normal

density has the greatest entropy H(X) =
∫∞
−∞ f (x) log2 f (x)dx.

� Given a single real scalar attribute, the normal distribution assumption proposes that for
each class s, the conditional density of x is:

f (x|s) = N(x, µs, σs)

� Often, distributional parameters are explicitly shown in the conditional part:

f (x|s, µs, σs) = N(x, µs, σs)

Classifying under normal attribute distribution

� Under the normal distribution assumption, for Bayes optimal classification we proceed as

follows

arg max
s
f (s|x, µs, σs) = arg max

s

f (x|s, µs, σs)P (s)

f (x)
= arg max

s
f (x|s, ~φ)P (s)

= arg max
s

1

σs
√

2π
exp
−(x− µs)2

2σ2s
· P (s) = arg max

s
ln

(
1

σs
√

2π
exp
−(x− µs)2

2σ2s
· P (s)

)

= arg max
s

−1

2
lnσ2s −

1

2
ln 2π+︸ ︷︷ ︸

can drop

−(x− µs)2

2σ2s
+ lnP (s)


= arg max

s

(
−1

2
lnσ2s −

1

2σ2s

(
x2 − 2xµs + µ2s

)
+ lnP (s)

)
= arg max

s
asx

2 + bsx + cs

where

as = −1
2 lnσ2s bs = µs

σ2s
cs = −1

2 lnσ2s −
µ2s
2σ2s

+ lnP (s)

� A quadratic discriminant function thus defined for each s ∈ S,

gs(x) = asx
2 + bsx + cs

Using discriminant functions: for a given x, classify into maxs gs(x).

Normal distribution, same std. deviation σ for each class

� Simple case: same std. deviations. Example: s = {male, female}, x = height.

� Since ∀s σs = σ, further simplification is possible

max
s
P (s|x, µs, σ) = max

s

− x2

2σ2
+︸ ︷︷ ︸

can drop

1

2σ2
(
2xµs − µ2s

)
+ lnP (s)

 = max
s

(bs · x + cs)

where bs = µs
σ2

and cs = − µ2s
2σ2

+ lnP (s).

� Here, the discriminant function is linear:

gs(x) = bsx + cs

The multivariate case

� The multivariate case (~x now a n-component real vector, ~x ∈ <n)

N(x, ~µ,Σ) =
1√

(2π)n det(Σ)
exp

[
−1

2
(~x− ~µ)t|Σ|(~x− ~µ)

]

Σ =


σ1,1 σ2,1 . . . σn,1
σ1,2 σ2,2 . . . σn,2

...

σ1,n σ2,n . . . σn,n

 . . . the covariance matrix:
σi,j = (xi − µi)(xj − µj)
σi,i = σ2i

� Normal distribution assumption: f (x|s, ~µ,Σ) = N(x, ~µs,Σs) for each class s.

� Quadratic discriminant function gs(x) = ~xtAs~x+~btsx+cs where

As = −1
2Σ
−1
s

~bs = Σ−1s µs cs = −1
2µ

t
sΣ
−1
s µs − 1

2 ln det(Σs) + lnP (s)

� Special Case:∀s Σs = Σ: Linear discriminant function gs(x) = ~btsx + cs where

~bs = Σ−1s µs cs = −1
2µ

t
sΣ
−1
s µs + lnP (s)

Linear vs. Quadratic Discrimination

� Left: linear discrimination in <2. Points where gs(~x) is maximal for a given s form convex

regions with piece-wise linear boundaries.

� Right: quadratic discrimination in <2. Points where gs(~x) is maximal for a given s form

regions with piece-wise quadratic boundaries.

Parameter estimation

� Assuming f (~x|s) normal: how does it help learning? Instead of estimating the unknown

density function f , we only estimate parameters of the normal distribution f (~x|s, ~µ,Σ)

� That is, estimate ~µs and Σs for each class s.

� Several options (next lecture)

− Maximum Likelihood

− Maximum Aposteriori

− Bayesian inference

Unsupervised learning

� Until now:

− labeled samples (~x, s) – features and category membership

− supervised learning

� Unlabeled samples → unsupervised learning

� Why? [Duda, Hart, Stork: Pattern Classification, Ch. 10]

1. labeled data sets are costly

2. useful features can be extracted without supervision

3. intrinsic structure in the data – e.g. natural clusters

Clustering

� (a) k-means, (b) fuzzy clustering, (c) probability using probability mixture, (d) hierarchical

clustering (dendrogram)

K-means

� with n input patterns

� searching for centers (means µ) of k clusters

1. begin Initialize n, k, µ1, µ2, . . . , µk

2. do classify n samples according to

nearest µi

3. update µi

4. until no change µi

5. return µ1, µ2, . . . , µk

6. end

Hierarchical clustering

� agglomerative: bottom-up → merging

� divisive: top-down → splitting

1. begin Initializek, k̂ ← n,Di ← {Xi}, i = 1, . . . , n

2. do k̂ = k̂ − 1

3. find nearest clusters. Di a Dj
4. until k = k̂

5. return k clusters

6. end

� dmin(x, x
′
) = min ‖x− x′‖, x ∈ Di, x

′ ∈ Di

Hierarchical clustering - example

