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Literature, demos

� Duda, Hart, Stork: Pattern Classification http://www.crc.ricoh.com/~stork/DHS.html

� Ch. Bishop, Pattern Recognition and Machine Learning http://research.microsoft.

com/en-us/um/people/cmbishop/prml/

� Kotek, Vysoký, Zdráhal: Kybernetika 1990

� Classification toolbox

http://stuff.mit.edu/afs/sipb.mit.edu/user/arolfe/matlab/

� Statistical Pattern Recognition Toolbox

http://cmp.felk.cvut.cz/cmp/software/stprtool/
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(Re)introducing probability

� Markov Decision Processes - uncertainty about outcome of actions

� Now: uncertainty may be also associated with states

− Different states may have different prior probabilities

− The states s ∈ S may not be directly observable

∗ They need to be inferred from features x ∈ X

� This is addressed by the rules of probability (such as Bayes theorem) and leads on to

− Bayesian classification

− Bayesian decision making



Example for illustration – picking fruits from boxes [Bishop (2006) - Ch. 1.2]

� red box: 2 apples, 6 oranges

� blue box: 3 apples, 1 orange

� Scenario: Pick a box (say red box in 40% cases), then pick a fruit at random

� Questions:

− What is the overall probability that the selection procedure will pick an apple?

− Given that we have chosen an orange, what is the probability that the box we chose was

the blue one?



Rules of probability and notation

� random variables X, Y

� xi where i = 1, ...,M – values taken by variable X

� yj where j = 1, ..., L – values taken by variable Y

� p(X = xi, Y = yi) – probability that X takes the value xi, Y takes yi

− joint probability

� p(X = xi) – probability that X takes the value xi

� Sum rule of probability :

− p(X = xi) =
∑L

j=1 p(X = xi, Y = yj)

− p(X = xi) is sometimes called marginal probability – obtained by marginalizing / summing

out the other variables

− general rule, compact notation: p(X) =
∑

Y p(X, Y )

∗ to denote a distribution over random variables



Rules of probability and notation 2

� Conditional probability : p(Y = yj|X = xi)

� Product rule of probability

− p(X = xi, Y = yi) = p(Y = yj|X = xi)p(X = xi)

− general rule, compact notation: p(X, Y ) = p(Y |X)p(X)

∗ to denote a distribution over random variables

� Bayes theorem

− from p(X, Y ) = p(Y,X) and product rule

p(Y |X) =
p(X|Y )p(Y )

p(X)

posterior =
likelihood× prior

evidence

� back to fruits and boxes



Motivation example – fish classification [Duda, Hart, Stork: Pattern Classification]

� Factory for fish processing

� 2 classes:

− salmon

− sea bass

� Features: length, width, lightness etc. from a camera

———————————————————————————————-



Fish classification in feature space

� Linear, quadratic, k-nearest neighbor classifier (next lecture)

� Feature frequency per class shown using histograms

� Classification errors due to histogram overlap



Fish – classification using probability

� direct classification in feature space may not be optimal

− ignoring statistical dependendencies that may be available

� E.g., what if 95% of fish are salmon?

− Prior may become more relevant than features

� Notation for classification problem

− Classes si ∈ S (e.g., salmon, sea bass)

− Features xi ∈ X or feature vectors (~xi) (also called attributes)

� Optimal classification of ~x:

δ∗(~x) = argmax
j
p(sj|~x)

� We thus choose the most probable class for a given feature vector.

� Both likelihood and prior are taken into account – recall Bayes rule:

p(sj|x) =
p(x|sj)p(sj)

p(x)



Bayes classification in practice

� Usually we are not given P (s|~x)

� It has to be estimated from already classified examples – training data

� For discrete ~x, training examples (~x1, s1), (~x2, s2), . . . (~xl, sl)

− so-called i.i.d (independent, identically distributed) multiset

− every (~xi, s) is drawn independently from P (~x, s)

� Without knowing anything about the distribution, a non-parametric estimate:

P (s|~x) ≈ # examples where ~xi = ~x and si = s

# examples where ~xi = ~x

� This is hard in practice:

− To reliably estimate P (s|~x), the number of examples grows exponentially with the number

of elements of ~x.

∗ e.g. with the number of pixels in images

∗ curse of dimensionality

∗ denominator often 0

− Bayes classification provides a lower bound on classification error, but that is usually not

achievable because P (s|~x) is not known.



Näıve Bayes classification

� For efficient classification we must thus rely on additional assumptions.

� In the exceptional case of statistical independence between ~x components for each

class s it holds

P (~x|s) = P (x(1)|s) · P (x(2)|s) · . . .

� Use simple Bayes law and maximize:

P (s|~x) = P (~x|s)P (s)
P (~x)

=
P (s)

P (~x)
P (x(1)|s) · P (x(2)|s) · . . . =

� No combinatorial curse in estimating P (s) and P (x(i)|s) separately for each i and s.

� No need to estimate P (~x). (Why?)

� N.B. P (s) may be provided apriori.

� näıve = when used despite statistical dependence btw. x(i)’s.



Decision making under uncertainty

� An important feature of intelligent systems

− make the best possible decision

− in uncertain conditions.

� Example: Take a tram OR subway from A to B?

− Tram: timetables imply a quicker route, but adherence uncertain.

− Subway: longer route, but adherence almost certain.

� Example: where to route a letter with this ZIP?

− 15700? 15706? 15200? 15206?

� What is the optimal decision?

� Both examples fall into the same framework.



Example [Kotek, Vysoký, Zdráhal: Kybernetika 1990]

� Wife coming back from work. Husband pondering what to cook for dinner.

� 3 dishes (decisions) in his repertoire:

− nothing . . . don’t bother cooking ⇒ no work but makes wife upset

− pizza . . . microwave a frozen pizza ⇒ not much work but won’t impress

− g.T.c. . . . general Tso’s chicken ⇒ will make her day, but very laborious.

� Husband quantifies the degree of hassle incurred by the individual options. This depends on

how his wife is feeling on her way home. Her state of mind is an uncertain state. Let us

distinguish her mood:

− good . . . wife is feeling good.

− average . . . wife average mooded.

− bad . . . wife bad mooded.

� For each of the 9 possible situation (3 possible decisions × 3 possible states) the hassle is

quantified by a loss function l(d, s):

l(s, d) d = nothing d = pizza d = g.T.c.

s = good 0 2 4

s = average 5 3 5

s = bad 10 9 6



Example (cont’d)

� Husband tries to estimate wife’s state of mind through an experiment. He tells her he acci-

dentally overtaped their wedding video and observes her reaction

� Anticipates 4 possible reactions:

− mild . . . all right, we keep our memories.

− irritated . . . how many times do I have to tell you....

− upset . . . Why did I marry this guy?

− alarming . . . silence

� The reaction is a measurable attribute (“feature”) of the state of mind.

� From experience, the husband knows how individual reactions are probable in each state of

mind; this is captured by the joint distribution P (x, s).

P (x, s) x = x = x = x =

mild irritated upset alarming

s = good 0.35 0.28 0.07 0.00

s = average 0.04 0.10 0.04 0.02

s = bad 0.00 0.02 0.05 0.03



Decision strategy

� Decision strategy: a rule selecting a decision for any given value of the measured at-

tribute(s).

� i.e. function d = δ(x).

� Example of husband’s possible strategies:

δ(x) x = mild x = irritated x = upset x = alarming

δ1(x) = nothing nothing pizza g.T.c.

δ2(x) = nothing pizza g.T.c. g.T.c.

δ3(x) = g.T.c. g.T.c. g.T.c. g.T.c.

δ4(x) = nothing nothing nothing nothing

� Overall, 34 = 81 possible strategies (3 possible decisions for each of the 4 possible attribute

values).

� How to define which strategy is best? How to sort them by quality?

� Define the risk of a strategy as a mean loss value.

r(δ) =
∑
x

∑
s

l(s, δ(x))P (x, s)



Calculating r(δ)

� Bayes criterion: From two strategies, one with a lower mean risk is better.

P (x, s) x = x = x = x =

mild irritated upset alarming

s = good 0.35 0.28 0.07 0.00

s = average 0.04 0.10 0.04 0.02

s = bad 0.00 0.02 0.05 0.03

δ(x) x = mild x = irritated x = upset x = alarming

δ1(x) = nothing nothing pizza g.T.c.

δ2(x) = nothing pizza g.T.c. g.T.c.

δ3(x) = g.T.c. g.T.c. g.T.c. g.T.c.

δ4(x) = nothing nothing nothing nothing

l(s, d) d = nothing d = pizza d = g.T.c.

s = good 0 2 4

s = average 5 3 5

s = bad 10 9 6



Bayes optimal strategy

� The Bayes optimal strategy: one minimizing mean risk. That is

δ∗ = argmin
δ
r(δ)

� From P (x, s) = P (s|x)P (x) (Bayes rule), we have

r(δ) =
∑
x

∑
s

l(s, δ(x))P (x, s) =
∑
s

∑
x

l(s, δ(x))P (s|x)P (x)

=
∑
x

P (x)
∑
s

l(s, δ(x))P (s|x)︸ ︷︷ ︸
Conditional risk

� The optimal strategy is obtained by minimizing the conditional risk separately for each x:

δ∗(x) = argmin
d

∑
s

l(s, d)P (s|x)



Statistical decision making: wrapping up

� Given:

− A set of possible states: S
− A set of possible decisions: D
− A loss function l : D × S → <
− The range X of the attribute

− Distribution P (x, s), x ∈ X , s ∈ S.

� Define:

− Strategy: function δ : X → D
− Risk of strategy δ : r(δ) =

∑
x

∑
s l(s, δ(x))P (x, s)

� Bayes problem:

− Goal: find the optimal strategy δ∗ = argminδ∈∆ r(δ)

− Solution: δ∗(x) = argmind
∑

s l(s, d)P (s|x)



A special case - Bayes classification

� Bayes classification is a special case of statistical decision theory:

− Attribute vector ~x = (x1, x2, . . . ): pixels # 1, 2, . . . .

− State set S = decision set D = {0, 1, . . . 9}.
− State = actual class, Decision = recognized class.

− Loss function:

l(s, d) =

{
0, d = s

1, d 6= s

Mathematical derivation:

δ∗(~x) = argmin
d

∑
s

l(s, d)︸ ︷︷ ︸
0 if d=s

P (s|~x) = argmin
d

∑
s 6=d

P (s|~x) = argmin
d
[1−P (d|~x)] = argmax

d
P (d|~x)

− We used equation ∑
s 6=d

P (s|~x) + P (d|~x) = 1

� Mean risk = mean classification error.


