Complex sequential
decisions ||

Tomas Svoboda, BE5B33KUI
2017-04-10

Slide material partly from CS 188: Artificial Intelligence at UCB
by Dan Klein, and Pieter Abbeel, used with permision

Uncertain movement in a
grid world

- If there is a wall - agent bounces

- Rewards each time step:

and stays in place

- Small “living” reward each
step (can be negative)

- Big rewards at the end

- Goal: maximize sum of

(discounted) rewards

-0.04 | -0.04 | -0.04

MDP recap:

States s € S, actionsa € A 10.04 | 0.04 | -0.04

Model T'(s,a,s’) = P(s'|s,a) = probability that a in s leads to s’

Reward function R(s) (or R(s,a), R(s,a,s’))
- —0.04 (small penalty) for nonterminal states
= for terminal states

— A

MDP quantities:

Policy: map (dictionary) of states to actions

Utility: sum of discounted rewards

Utility of a state: expected future utility from that state

State utilities, putting
Rewards into the sums

Q-state, chance state

" The value (utility) of a state s:

V*(s) = expected utility starting in s and
acting optimally

" The value (utility) of a g-state (s,a):

Q"(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

=" The optimal policy:
7 (s) = optimal action from state s

Sis a
state

(s,a)is a
g-state

(s,a,s')is a
transition

Value of states

M
M

Value iteration

Bellman equations characterize the optimal values

— max ZT s,a,s")|R(s,a, 5/)+7V*(5,)}

What is the complexity (for one iteration)?

-0.04 | -0.04 | -0.04

1. Estimate state values (utilities)

2. Extract policy

Policy 0
extraction 1

0.81

0

0.87

0.92

0.66

0.61

0z

1

2

3

" (s) = arg maxZT(s, a,s')|R(s,a,s") +yV*(s)

a€A(s)

™ (s) = argmax Q" (s, a)
a€A(Ss)

Fixed policies

Do the optimal action

Do what 5t says to do

11

Utilities for a
Fixed policy

one-step look ahead / Bellmann equation

=D T(s.m(s),) [Rls, m(s),5") + 7V ()]

12

Policy Evaluation

Vii(s) =0
Vi (s) <) T(s,m(s),s") [R(s,m(s),s") + V]

Other options for policy evaluation?

13

Policy iteration

- Step 1: Policy evaluation: calculate utilities for some
fixed policy

- Step 2: Policy improvement: update policy using one-
step look-ahead with the utilities computer in Stepf

+ Repeat steps until policy converges

14

Policy iteration

Policy evaluation. lterate until converge

Vii(s) < Y T(s,mi(s), s) [R(s,mi(s), 8") + 4V (s)]
Policy improvement. One-step look-ahead

mi11(s) = arg maxZT s,a,s')|R(s,a,s") +~yV7i(s")
acA(Ss)

15

Comparison

- Both Value iteration and Policy iteration compute optimal values

- Value iteration

- every iteration update values (and thus also policy)

- In Policy iteration

- update utilities with fixed policy (fast)
- a new policy is chosen (like a value iteration pass)
* new policy better

- Both are dynamic programs for solving MDPs

16

