Complex sequential decisions II

Tomas Svoboda, BE5B33KUI 2017-04-10

Slide material partly from CS 188: Artificial Intelligence at UCB by Dan Klein, and Pieter Abbeel, used with permision

Uncertain movement in a grid world

- If there is a wall agent bounces and stays in place
- Rewards each time step:
 - Small "living" reward each step (can be negative)
 - Big rewards at the end
- Goal: maximize sum of (discounted) rewards

MDP recap:

Model
$$T(s, a, s') \equiv P(s'|s, a) = \text{probability that } a \text{ in } s \text{ leads to } s'$$

Reward function
$$R(s)$$
 (or $R(s,a)$, $R(s,a,s')$)
$$= \begin{cases} -0.04 & \text{(small penalty) for nonterminal states} \\ \pm 1 & \text{for terminal states} \end{cases}$$

MDP quantities:

Policy: map (dictionary) of states to actions

Utility: sum of discounted rewards

Utility of a state: expected future utility from that state

State utilities, putting Rewards into the sums

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a) U(s')$$

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a)(R(s) + \gamma U(s'))$$

Q-state, chance state

- The value (utility) of a state s:
 - V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 - Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:
 - $\pi^*(s)$ = optimal action from state s

Value of states

$$V^*(s) = \max_{a \in A(s)} Q^*(s, a)$$

$$\begin{split} Q^*(s, a) &= \sum_{s'} T(s, a, s') \big[R(s, a, s') + \gamma V^*(s') \big] \\ V^*(s) &= \max_{a \in A(s)} \sum_{s'} T(s, a, s') \big[R(s, a, s') + \gamma V^*(s') \big] \end{split}$$

0.81	0.87	0.92	1.0
0.76		0.66	-1.0
0.71	0.66	0.61	0.39

Value iteration

Bellman equations characterize the optimal values

$$V^*(s) = \max_{a \in A(s)} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

Value iteration *computes* it

$$V_{i+1}(s) \leftarrow \max_{a \in A(s)} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_i(s')]$$

What is the complexity (for one iteration)?

Recap

- 1. Estimate state values (utilities)
- 2. Extract policy

Policy extraction

0 1 2 3

$$\pi^*(s) = \operatorname*{arg\,max}_{a \in A(s)} \sum_{s'} T(s,a,s') \big[R(s,a,s') + \gamma V^*(s') \big]$$

0

$$\pi^*(s) = \operatorname*{arg\,max}_{a \in A(s)} Q^*(s, a)$$

0

Fixed policies

Do the optimal action

Do what π says to do

Utilities for a Fixed policy

one-step look ahead / Bellmann equation

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

Policy Evaluation

$$V_0^{\pi}(s) = 0$$

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

Other options for policy evaluation?

Policy iteration

- Step 1: Policy evaluation: calculate utilities for some fixed policy
- Step 2: Policy improvement: update policy using onestep look-ahead with the utilities computer in Step1
- Repeat steps until policy converges

Policy iteration

Policy evaluation. Iterate until converge

$$V_{i+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_i^{\pi_i}(s') \right]$$

Policy improvement. One-step look-ahead

$$\pi_{i+1}(s) = \operatorname*{arg\,max}_{a \in A(s)} \sum_{s'} T(s,a,s') \big[R(s,a,s') + \gamma V^{\pi_i}(s') \big]$$

Comparison

- Both Value iteration and Policy iteration compute optimal values
- Value iteration
 - every iteration update values (and thus also policy)
- in Policy iteration
 - update utilities with fixed policy (fast)
 - a new policy is chosen (like a value iteration pass)
 - new policy better
- Both are dynamic programs for solving MDPs