Search (complementary slides)

Tomas Svoboda, BE5B33KUI 2017-03-13

Slide material from CS 188: Artificial Intelligence at UCB by Dan Klein, and Pieter Abbeel, used with permision

BE5B33KUI - admin

- Deadline for the 02_search postponed to March 20 (night after the next computer lab)
- The lecture program will change slightly due to the delayed start

Graphs and Trees

State Space Graphs

- State space graphs mathematical representation of a search problem
- Every state only once
- Do we need the whole graph? (in a memory)

Search Trees

- A "what-if" tree of plans and outcomes
- · Parents, children
- Nodes of the tree contain states, but much more

State Space Graphs vs. Search Trees

Each NODE in in the search tree is an entire PATH in the problem graph.

We construct both on demand – and we construct as little as possible.

State Graphs vs. Search Trees

A 4-state graph

How big is the search tree?

Breadth-First Search (BFS)

Breadth-First Search

Strategy: expand a shallowest node first

Implementation: Fringe

is a FIFO queue

BFS properties

- Time?
- Space?
- Complete?
- Optimal?

Depth-First Search (DFS)

Depth-First Search

Strategy: expand a deepest node first

Implementation: Fringe is a LIFO stack

DFS properties

BFS vs DFS

Iterative Deepening Search

- Run a DFS with depth limit 1
- If no solution
- Run a DFS with depth limit 2

•

Is it not too wasteful? Even compared to the BFS?

Cost-sensitive search

What about using the BFS?

Uniform Cost Search (UCS)

Strategy: expand a cheapest node first:

Fringe is a priority queue (priority: cumulative cost)

UCS properties

- ullet C* solution cost
- ullet ϵ arc minimum cost

- Time
- Space
- Complete?
- Optimal?

The One Queue

- All algorithms the same ...
- except the fringe strategies