
problem solving by
search
Tomas Svoboda

BE5B33KUI, 2017-02-27

tree-search

2

5

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
initialize the explored set to be empty
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier
only if not in the frontier or explored set

Figure 3.7 An informal description of the general tree-search and graph-search algorithms. The
parts of GRAPH-SEARCH marked in bold italic are the additions needed to handle repeated states.

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node← a node with STATE = problem .INITIAL-STATE, PATH-COST = 0
if problem .GOAL-TEST(node .STATE) then return SOLUTION(node)
frontier← a FIFO queue with node as the only element
explored← an empty set
loop do
if EMPTY?(frontier) then return failure
node← POP(frontier) /* chooses the shallowest node in frontier */
add node .STATE to explored
for each action in problem .ACTIONS(node .STATE) do

child← CHILD-NODE(problem ,node ,action)
if child .STATE is not in explored or frontier then
if problem .GOAL-TEST(child .STATE) then return SOLUTION(child)
frontier← INSERT(child , frontier)

Figure 3.11 Breadth-first search on a graph.

tree vs graph search

3

5

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
initialize the explored set to be empty
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier
only if not in the frontier or explored set

Figure 3.7 An informal description of the general tree-search and graph-search algorithms. The
parts of GRAPH-SEARCH marked in bold italic are the additions needed to handle repeated states.

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node← a node with STATE = problem .INITIAL-STATE, PATH-COST = 0
if problem .GOAL-TEST(node .STATE) then return SOLUTION(node)
frontier← a FIFO queue with node as the only element
explored← an empty set
loop do
if EMPTY?(frontier) then return failure
node← POP(frontier) /* chooses the shallowest node in frontier */
add node .STATE to explored
for each action in problem .ACTIONS(node .STATE) do

child← CHILD-NODE(problem ,node ,action)
if child .STATE is not in explored or frontier then
if problem .GOAL-TEST(child .STATE) then return SOLUTION(child)
frontier← INSERT(child , frontier)

Figure 3.11 Breadth-first search on a graph.

child-node

4

breadth-first-search

5

5

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
initialize the explored set to be empty
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier
only if not in the frontier or explored set

Figure 3.7 An informal description of the general tree-search and graph-search algorithms. The
parts of GRAPH-SEARCH marked in bold italic are the additions needed to handle repeated states.

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node← a node with STATE = problem .INITIAL-STATE, PATH-COST = 0
if problem .GOAL-TEST(node .STATE) then return SOLUTION(node)
frontier← a FIFO queue with node as the only element
explored← an empty set
loop do
if EMPTY?(frontier) then return failure
node← POP(frontier) /* chooses the shallowest node in frontier */
add node .STATE to explored
for each action in problem .ACTIONS(node .STATE) do

child← CHILD-NODE(problem ,node ,action)
if child .STATE is not in explored or frontier then
if problem .GOAL-TEST(child .STATE) then return SOLUTION(child)
frontier← INSERT(child , frontier)

Figure 3.11 Breadth-first search on a graph.

uniform-cost search

6

6 Chapter 3. Solving Problems by Searching

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node← a node with STATE = problem .INITIAL-STATE, PATH-COST = 0
frontier← a priority queue ordered by PATH-COST, with node as the only element
explored← an empty set
loop do
if EMPTY?(frontier) then return failure
node← POP(frontier) /* chooses the lowest-cost node in frontier */
if problem .GOAL-TEST(node .STATE) then return SOLUTION(node)
add node .STATE to explored

for each action in problem .ACTIONS(node .STATE) do
child← CHILD-NODE(problem ,node ,action)
if child .STATE is not in explored or frontier then

frontier← INSERT(child , frontier)
else if child .STATE is in frontier with higher PATH-COST then

replace that frontier node with child

Figure 3.13 Uniform-cost search on a graph. The algorithm is identical to the general graph search
algorithm in Figure ??, except for the use of a priority queue and the addition of an extra check in case
a shorter path to a frontier state is discovered. The data structure for frontier needs to support efficient
membership testing, so it should combine the capabilities of a priority queue and a hash table.

function DEPTH-LIMITED-SEARCH(problem , limit) returns a solution, or failure/cutoff
return RECURSIVE-DLS(MAKE-NODE(problem .INITIAL-STATE),problem , limit)

function RECURSIVE-DLS(node ,problem , limit) returns a solution, or failure/cutoff
if problem .GOAL-TEST(node .STATE) then return SOLUTION(node)
else if limit = 0 then return cutoff

else
cutoff occurred?← false
for each action in problem .ACTIONS(node .STATE) do

child← CHILD-NODE(problem ,node ,action)
result← RECURSIVE-DLS(child ,problem , limit − 1)
if result = cutoff then cutoff occurred?← true
else if result ̸= failure then return result

if cutoff occurred? then return cutoff else return failure

Figure 3.16 A recursive implementation of depth-limited tree search.

depth-limited search

7

6 Chapter 3. Solving Problems by Searching

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node← a node with STATE = problem .INITIAL-STATE, PATH-COST = 0
frontier← a priority queue ordered by PATH-COST, with node as the only element
explored← an empty set
loop do
if EMPTY?(frontier) then return failure
node← POP(frontier) /* chooses the lowest-cost node in frontier */
if problem .GOAL-TEST(node .STATE) then return SOLUTION(node)
add node .STATE to explored

for each action in problem .ACTIONS(node .STATE) do
child← CHILD-NODE(problem ,node ,action)
if child .STATE is not in explored or frontier then

frontier← INSERT(child , frontier)
else if child .STATE is in frontier with higher PATH-COST then

replace that frontier node with child

Figure 3.13 Uniform-cost search on a graph. The algorithm is identical to the general graph search
algorithm in Figure ??, except for the use of a priority queue and the addition of an extra check in case
a shorter path to a frontier state is discovered. The data structure for frontier needs to support efficient
membership testing, so it should combine the capabilities of a priority queue and a hash table.

function DEPTH-LIMITED-SEARCH(problem , limit) returns a solution, or failure/cutoff
return RECURSIVE-DLS(MAKE-NODE(problem .INITIAL-STATE),problem , limit)

function RECURSIVE-DLS(node ,problem , limit) returns a solution, or failure/cutoff
if problem .GOAL-TEST(node .STATE) then return SOLUTION(node)
else if limit = 0 then return cutoff

else
cutoff occurred?← false
for each action in problem .ACTIONS(node .STATE) do

child← CHILD-NODE(problem ,node ,action)
result← RECURSIVE-DLS(child ,problem , limit − 1)
if result = cutoff then cutoff occurred?← true
else if result ̸= failure then return result

if cutoff occurred? then return cutoff else return failure

Figure 3.16 A recursive implementation of depth-limited tree search.

iterative-deepening search

8

7

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure
for depth = 0 to∞ do

result←DEPTH-LIMITED-SEARCH(problem ,depth)
if result ̸= cutoff then return result

Figure 3.17 The iterative deepening search algorithm, which repeatedly applies depth-limited search
with increasing limits. It terminates when a solution is found or if the depth-limited search returns
failure, meaning that no solution exists.

function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution, or failure
return RBFS(problem , MAKE-NODE(problem .INITIAL-STATE),∞)

function RBFS(problem ,node , f limit) returns a solution, or failure and a new f -cost limit
if problem .GOAL-TEST(node .STATE) then return SOLUTION(node)
successors← []
for each action in problem .ACTIONS(node .STATE) do

add CHILD-NODE(problem ,node ,action) into successors

if successors is empty then return failure ,∞
for each s in successors do /* update f with value from previous search, if any */

s .f ←max(s.g + s.h, node .f))
loop do

best← the lowest f -value node in successors
if best .f > f limit then return failure, best .f
alternative← the second-lowest f -value among successors
result , best .f← RBFS(problem , best ,min(f limit, alternative))
if result ̸= failure then return result

Figure 3.24 The algorithm for recursive best-first search.

