Search trees

AVL tree

Operations Find, Insert, Delete Rotations L, R, LR, RL

B-tree

Operations Find, Insert, Delete
Single phase and multi phase update strategies

AVL tree -- G.M. Adelson-Velskij \& E.M. Landis, 1962

AVL tree is a BST with additional properties which keep it acceptably balanced.

Operations
 Find, Insert, Delete also apply to AVL tree.

AVL rule:
There are two integers associated with each node:
Depth of the left and depth of the right subtree of the node. Note: Depth of an empty tree is $\mathbf{- 1}$.

The difference of the heights of the left and the right subtree may be only -1 or 0 or 1 in each node of the tree.

Inserting a node may disbalance the AVL tree

The subtrees height difference may be only -1, 0,1 .

Left subtree of node 51 is too deep,
Changed depths \square the tree is no more an AVL tree.

Rotation L in general, before and after

Before

Rotation L is a mirror image of rotation R, there is no other difference between the two.

AVL tree

Demonstration AVL tree for rotation LR

Inserting a node may disbalance the AVL tree
The subtrees height difference may be only $-1,0,1$.

Insert 38

Left subtree of node 51 is too deep, the tree is no more an AVL tree.

Rotation R would not help, the right subtree of node 34 would become relatively too deep compared to the new right subtree of the root.

Rotation LR yields a balanced tree

Rotate to obtain a balanced tree

Rules for aplying rotations L, R, LR, RL in Insert operation

Travel from the inserted node up to the root and update subtree depths in each node along the path.

If a node is disbalanced and you came to it along two consecutive edges

* in the up and right direction perform rotation R in this node,
* in the up and left direction perform rotation L in this node,
* first in the in the up and left and then in the up and right direction perform rotation LR in this node,
* first in the in the up and right and then in the up and left direction perform rotation RL in this node,

After one rotation in the Insert operation the AVL tree is balanced.
After one rotation in the Delete operation the AVL tree might still not be balanced, all nodes on the path to the root have to be checked.

Delete in AVL tree

Demonstration AVL tree for rotation after deletion

Delete 16

1. Remove node using the same method as in BST.
2. Travel from the place of deletion up to the root. Update subtree heights in each node, and if necessary apply the corresponding rotation.

Delete in AVL tree

Delete 16

Changed depths
\square

Delete in AVL tree

In the disbalanced node (51), check the root (84) of the subtree opposite to the one which you came from.
If the heights of subtrees of that root are equal apply a single rotation R or L. If the hight of the more distant subtree of that root is bigger than the height of the less distant one apply a single rotation R or L. In the remaining case apply a double rotation RL or LR. In this example, apply RL.

Delete in AVL tree

After rotation RL in nodes 84 and 51

Possibility of multiple rotations in operation Delete.
Example.
The AVL tree is originally balanced.

Delete the rightmost key.

Implementation ot the AVL tree operations

// homework...

Asymptotic complexities of Find, Insert, Delete in BST and AVL

	BST with n nodes		AVL tree with n nodes
Operation	Balanced	Maybe not balanced	Balanced
Find	$O(\log (n))$	$O(n)$	$O(\log (n))$
Insert	$\Theta(\log (n))$	$O(n)$	$\Theta(\log (n))$
Delete	$O(\log (n))$	$O(n)$	$\Theta(\log (n))$

B-tree -- Rudolf Bayer, Edward M. McCreight, 1972

All lengths of paths from the root to the leaves are equal.
B-tree is perfectly balanced.
Keys in the nodes are kept sorted.
Fixed $\mathrm{k}>1$ dictates the same size of all nodes.
Each node except for the root contains at least k and at most $2 k$ keys and if it is not a leaf it has at least $\mathbf{k}+\mathbf{1}$ and at most $\mathbf{2 k + 1}$ children.

The root can contain any number of keys from 1 to $2 k$.
If it is not simultaneously a leaf it has at least $\mathbf{2}$ and at most $\mathbf{2 k + 1}$ children.

B-tree -- Rudolf Bayer, Edward M. McCreight, 1972

Cormen et al. 1990: B-tree degree:
Nodes have lower and upper bounds on the number of keys they can contain. We express these bounds in terms of a fixed integer $t \geq 2$ called the minimum degree of the B-tree:
a. Every node other than the root must have at least $\mathrm{t}-1$ keys.

Every internal node other than the root thus has at least t children.
If the tree is nonempty, the root must have at least one key.
b. Every node may contain at most $2 \mathrm{t} \mathbf{- 1}$ keys.

Therefore, an internal node may have at most 2 t children.

\min keys $=1 \quad$ max keys $=3$ children $=2 \quad$ children $=4$

min keys = 4
max keys $=9$
children $=5$ children $=10$

B-tree -- Update strategies

1. Multi phase strategy: "Solve the problem when it appears".

First insert or delete the item and only then rearrange the tree if necessary. This may require additional traversing up to the root.
2. Single phase strategy: "Avoid the future problems". Travel from the root to the node/key which is to be inserted or deleted and during the travel rearrange the tree to prevent the additional traversing up to the root.

B-tree -- Find

Search in the node is sequential (or binary or other...).
If the node is not a leaf and the key is not in the node then the search continues in the appropriate child node.

If the node is a leaf and the key is not in the node then the key is not in the tree.

B-tree -- Insert

B-tree

Insert 5

Insert 20

B-tree -- Insert

Insert 27

27

Sort outside the tree.

Select median, create new node, move to it the values bigger than the median.

Try to insert the median into the parent node.

Success.

B-tree -- Insert

The parent node is full - repeat the process analogously.

Sort values

Select median, create new node, move to it the values bigger than the median together with the corresponding references.

Cannot propagate the median into the parent (there is no parent), create a new root and store the median there.

B-tree -- Delete

Delete in an internal node

The deleted key is substituted by the smallest bigger key,

The smallest bigger key is always in the leaf in a B-tree. If the leaf is sufficiently full the delete operation is complete.

B-tree -- Delete

Recapitulation - delete 27

B-tree -- Delete

Delete in an insufficiently full node.

None of the neighbours is sufficiently full.

Merge the keys of the node and of one of the neighbours and the median in the parent into one sorted list. Move all these keys to the original node, delete the neighbour, remove the original median and associated reference from the parent.

If the parent of the deleted node is not sufficiently full apply the same deleting strategy to the parent and continue the process towards the root until the rules of B-tree are satisfied.

B-tree -- Delete

Recapitulation - delete 12

Key 12 was deleted and the tree was reconstructed accordingly.

B-tree -- Insert

Cormen et al. 1990, $\mathrm{t}=3$, minimum degree 3 , \max degree $=6$, minimum keys in node $=2$, maximum keys in node $=5$.

Insert B

B-tree -- Delete
Single phase strategy

1. If the key \mathbf{k} is in node \mathbf{X} and \mathbf{X} is a leaf, delete the key \mathbf{k} from \mathbf{X}.

Delete M

2. If the key \mathbf{k} is in node \mathbf{X} and \mathbf{X} is an internal node, do the following:

2a. If the child \mathbf{Y} that precedes \mathbf{k} in node \mathbf{X} has at least t keys, then find the predecessor $\mathbf{k}_{\mathbf{p}}$ of \mathbf{k} in the subtree rooted at \mathbf{Y}. Recursively delete $\mathbf{k}_{\mathbf{p}}$, and replace \mathbf{k} by \mathbf{k}_{p} in \mathbf{X}. (We can find \mathbf{k}_{p} and delete it in a single downward pass.)
2b. If \mathbf{Y} has fewer than t keys, then, symmetrically, examine the child \mathbf{Z} that follows \mathbf{k} in node \mathbf{X} and continue as in 2a.

B-tree -- Delete

Single phase strategy

2c. Otherwise, i.e. if both \mathbf{Y} and \mathbf{Z} have only $\mathrm{t}-1$ keys, merge \mathbf{k} and all of \mathbf{Z} into \mathbf{Y}, so that \mathbf{X} loses both \mathbf{k} and the pointer to \mathbf{Z}, and \mathbf{Y} now contains $2 \mathrm{t}-1$ keys. Then free \mathbf{Z} and recursively delete \mathbf{k} from \mathbf{Y}.

3. If the key \mathbf{k} is not present in internal node \mathbf{X}, determine the child $\mathbf{X} . \mathbf{c}$ of \mathbf{X}. X.c is a root of such subtree that contains \mathbf{k}, if \mathbf{k} is in the tree at all.

If X.c has only $t-1$ keys, execute step 3a or 3b as necessary to guarantee that we descend to a node containing at least t keys.
Then continue by recursing on the appropriate child of \mathbf{X}.

B-tree -- Delete

Single phase strategy

Delete D

3a. If X.c and both of X.c 's immediate siblings have $\mathrm{t}-1$ keys, merge X.c with one sibling, which involves moving a key from \mathbf{X} down into the new merged node to become the median key for that node.

B-tree -- Delete

Delete B

3b. If X.c has only $\mathrm{t}-1$ keys but has an immediate sibling with at least t keys, give X.c an extra key by moving a key from \mathbf{X} down into X.c, moving a key fromX.c 's immediate left or right sibling up into \mathbf{X}, and moving the appropriate child pointer from the sibling into X.c.

B-tree -- asymptotic complexities

Find Insert Delete
$O\left(b \cdot \log _{b} n\right)$
$\Theta\left(b \cdot \log _{b} n\right)$
$\Theta\left(b \cdot \log _{b} n\right)$
n is the number of keys in the tree, $\mathbf{b} \mathbf{b}$ is the branching factor, i.e. the order of the tree, i.e. the maximum number of children of a node.

Note: Be careful, some authors (e.g CLRS) define degree/order of Btree as [b/2], there is no unified precise common terminology.

