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Search trees

AVL tree
Operations Find, Insert, Delete
Rotations L, R, LR, RL

B-tree
Operations Find, Insert, Delete
Single phase and multi phase update strategies
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AVL tree   -- G.M. Adelson-Velskij & E.M. Landis, 1962

There are two integers associated
with each node:  
Depth of the left and depth of 
the right  subtree of the node.
Note: Depth of an empty tree is -1.
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AVL tree is a BST with additional properties
which keep it  acceptably balanced.

Operations 
Find, Insert, Delete
also apply to AVL tree.

-1-1

-1

The difference of the heights of 
the left and the right subtree
may be only  -1 or 0 or 1
in each node of the tree.
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AVL rule:
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Changed depths
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Left subtree of node 51 is too deep, 
the tree is no more an AVL tree.  

Inserting a node may disbalance the AVL tree  

Insert 30 
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The subtrees height difference
may be only -1, 0, 1.
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Insert 30 
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The tree was balanced 
by single R rotation 

Rotation R  yields a balanced tree  
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Unaffected
subtrees

Insert 30 
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51  Rotation R in node 51  

Direction of rotation 
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Rotate to obtain a balanced tree  
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xx+2

xx+1
A
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C

-1 -1

Rotation R in general
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Before

After
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Unaffected
subtrees

Disbalancing
node

Disbalance 
detected

Z
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Rotation L is a mirror image of 
rotation R, there is no other 
difference  between the two.

Before

After
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Rotation L in general, before and after 

Unaffected
subtrees
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AVL tree

Demonstration AVL tree for rotation LR
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Inserting a node may disbalance the AVL tree  

Insert 38

Rotation R would not help, the right
subtree of node 34 would become
relatively too deep compared
to the new right subtree of the root.  

0
36

-1-1

Changed depths
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The subtrees height difference
may be only -1, 0, 1.

Left subtree of node 51 
is too deep, the tree 
is no more an AVL tree.  

38
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Insert 38 

Balanced tree
after double 
rotation LR.

Rotation LR  yields a balanced tree  
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Rotation LR  
in nodes 34 and 51  
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Insert 38 

L

R
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Rotate to obtain a balanced tree  

Unaffected
subtrees

Direction 
of rotations 
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x-1x
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Rotation LR in general

Before

After

Z

Unaffected
subtrees

D

Disbalancing  node

Disbalance 
detected
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G

Rotation RL in general

Before

After

Rotation RL is a mirror image of 
rotation LR, there is no other 
difference  between the two.

Unaffected
subtrees

Disbalancing
node
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Travel from the inserted node up to the root
and update subtree depths in each node along the path.

If a node is disbalanced and you came to it along two consecutive edges

*   in the up and right direction
perform rotation R in this node,

*   in the up and left direction
perform rotation L in this node,

*   first in the in the up and left and then in the up and right direction
perform rotation LR in this node,

*   first in the in the up and right and then in the up and left direction
perform rotation RL in this node,

After one rotation in the Insert operation  the AVL tree is balanced.

After one rotation in the Delete operation the AVL tree might still
not be balanced, all nodes on the path to the root have to be checked.

Rules for aplying rotations L, R, LR, RL in Insert operation

A4B33ALG  2011 / 06 
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Delete in AVL tree 
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0 -1

-1 0

1 2

1 0

93

84

70

55

51

16

28
-1 -1

1. Remove node using the same method as in BST. 

2. Travel from the place of deletion up to the root.
Update subtree heights in each node, and if necessary
apply the corresponding rotation. 

-1-1
Delete 16
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Demonstration AVL tree for rotation after deletion
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Delete in AVL tree 
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Delete 16
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-1-1Changed depths
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1

Delete in AVL tree 
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0

Changed depths

In the disbalanced node (51), check the root (84) of the subtree opposite
to the one which you came from.
If the heights of subtrees of that root are equal apply a single rotation R or L. 
If the hight of the more distant subtree of that root is bigger than the height 
of the less distant one apply a single rotation R or L.
In the remaining case apply a double rotation RL or LR.
In this example, apply RL. 

L

R
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Delete in AVL tree 
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Changed depths
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Deleted 16

After rotation RL 
in nodes 84 and 51
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1 2

3 4

Possibility of  multiple rotations in operation Delete.

Balanced.

Example. 
The AVL tree
is originally 
balanced. 

Delete the 
rightmost key.
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... // homework...

Implementation  ot the AVL tree operations 

Asymptotic complexities of Find, Insert, Delete in BST and AVL 

Operation Balanced Maybe not
balanced

Balanced

Find (log(n)) (n) (log(n))

Insert (log(n)) (n) (log(n))

Delete (log(n)) (n) (log(n))

BST with n nodes AVL tree with n nodes

A4B33ALG  2011 / 06 
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B-tree -- Rudolf Bayer, Edward M. McCreight, 1972

All lengths of paths from the root to the leaves are equal.
B-tree is perfectly balanced. 

Keys in the nodes are kept sorted.
Fixed k > 1  dictates the same size of all nodes.

Each node except  for the root contains at least k and at most 2k keys
and if it is not a leaf  it has at least k+1 and at most 2k+1 children.  
The root can contain any number of keys from 1 to 2k.
If it is not simultaneously a leaf it has at least 2 and at most 2k+1
children.

X Y

Y < keyskeys < X X < keys < Y
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Cormen et al. 1990:     B-tree  degree:

Nodes have lower and upper bounds on the number of keys they can contain. 
We express these bounds in terms of a fixed integer t  2 called 
the minimum  degree of the B-tree:

a. Every node other than the root must have at least t1 keys. 
Every internal node other than the root thus has at least t children. 
If the tree is nonempty,  the root must have at least one key.

b. Every node may contain at most 2t1 keys. 
Therefore, an internal node may have at most 2t children. 

x

x

x xx

x
t = 2

x x

t = 5
x x x

x x x x x x x x x x x x x x x x x x x x x x ...

min keys = 1 max keys = 3 min keys = 4 max keys = 9
children  = 2 children  = 4 children  = 5 children   = 10

B-tree -- Rudolf Bayer, Edward M. McCreight, 1972
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1. Multi phase strategy:  “Solve the problem when it appears”.
First insert or delete the item and only then rearrange the tree if necessary. 
This may require additional traversing up to the root.

2. Single phase strategy:   “Avoid the future problems”.
Travel from the root to the node/key which is to be inserted or deleted
and during the travel rearrange the tree to prevent the additional 
traversing up to the root.

B-tree -- Update strategies 
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1 52 4 19 2220 25 27 36 42 604510 12 15 16 17

8 14

18

26 41

Find 17

B-tree -- Find

Search in the node is sequential (or binary or other...).

If the node is not a leaf and the key is not in the node
then the search continues in the appropriate child node.

If the node is a leaf and the key is not in the node
then the key is not in the tree.

A4B33ALG  2011 / 06 
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8 2617

2 4 10 1412 16 19 2522 4236 45

Insert 5 8 2617 41

52 4 19 2522 36 4241 45

B-tree -- Insert

Insert 20 
8 2617

19 2220 25 36 4241 45

10 1412 16

10 1412 16

41

B-tree
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52 4
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27

Insert 27 8 2617

2 4 5 19 2220 25 36 4241 4510 1412 16

Select median, 
create new node,
move to it the values
bigger than the median.

Sort outside the tree. 

Try to insert the median
into the parent node. 

27 4136 4542

27 36

41

42 45

8 2617 27

19 2220 25

41

27 36 42 45

Success.

B-tree -- Insert
A4B33ALG  2011 / 06 
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Insert 15 8 2617 41

2 4 5 19 2220 25 27 36 42 45

15

10 1412 16

10 1412 1615

8 2617 4114

?

10 12

14

15 16

B-tree -- Insert
A4B33ALG  2011 / 06 

Select median, 
create new node,
move to it the values
bigger than the median.

Sort outside the tree. 

Try to insert the median
into the parent node. 

Success?
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Key ...Key 15 inserted into a leaf... 8 2617 41

2 4 5 19 2220 25 27 36 42 4510 12

8 1714 4126

8 14

Select median, create new node,
move to it the values bigger 
than the median together with 
the corresponding  references.

Sort values 

15 16

Cannot propagate the median into
the parent (there is no parent),
create a new root and store the
median there. 

14

... key 14 goes to parent node

The parent node is full – repeat the process analogously.

26 41

8 14

17

26 41

17

B-tree -- Insert
A4B33ALG  2011 / 06 
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2 4 5 19 2220 25 27 36 42 4510 12 15 16

8 14

17

26 41

Recapitulation - insert 15

B-tree -- Insert

Each lavel acquired one new node, a new root was created too,
the tree grows upwards and remains perfectly balanced.

A4B33ALG  2011 / 06 

8 2617 41

2 4 5 19 2220 25 27 36 42 4510 1412 16

Insert 15 

Unchanged nodes
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2 54 19 2220 25 27 36 42 604510 12 15 16

8 14

17

26 41Delete 4

B-tree -- Delete

2 5 19 2220 25 27 36 42 604510 12 15 16

8 14

17

26 41

Delete in a sufficiently 
full leaf.
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B-tree -- Delete

2 5 2220 25 27 36 42 604510 12 15 16

8 14

17

26 41

Delete in an internal node The deleted key is substituted
by the smallest bigger key,
like in a BST.

The smallest bigger key is always in the leaf in a B-tree.
If the leaf is sufficiently full the delete operation is complete.

Delete 17

2 5 20 2522 27 36 42 604510 12 15 16

8 14

19

26 41

19
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2 5 20 2522 27 36 42 604510 12 15 16

8 14

19

26 41

Delete in an 
insufficiently full leaf.

Delete 27

26 42

45 6036 41

36 4241 6045

The neighbour leaf
is sufficiently full.

Merge the keys of the two leaves
with the dividing key in the parent

into one sorted list.

Insert the median of the sorted list 
into the parent and distribute

the remainig keys into
the left and right children of the median.

26 41

42 604536

B-tree -- Delete
A4B33ALG  2011 / 06 
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2 5 20 2522 27 36 42 604510 12 15 16

8 14

19

26 4126 42

36 41 45 60

27 correctly deleted

B-tree -- Delete
A4B33ALG  2011 / 06 

Recapitulation - delete 27

2 5 20 2522 27 36 42 604510 12 15 16

8 14

19

26 41

Unchanged nodes
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Delete 12

8 14

10 14 15 16

None of the neighbours
is sufficiently full.

8 14

15 1610 12

2 5 20 2522 27 36 42 604510 12 15 16

8 14

19

26 4126 42

36 41 45 60

Merge the keys of the node and of one 
of the neighbours and the median 
in the parent into one sorted list.
Move all these keys to the original node,
delete the neighbour, remove the original
median and associated reference 
from the parent.

B-tree -- Delete
A4B33ALG  2011 / 06 

Delete in an 
insufficiently full node.
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Deleted 12
The parent violates

B-tree rules.

2 5 20 2522 27 3610 1514 16

8

19

26 4126 42

36 41

If the parent of the deleted node is not sufficiently full
apply the same deleting strategy to the parent and continue the process 
towards the root until the rules of B-tree are satisfied.  

8

19

26 4126 42
26 418 2619 42

42 604545 60

8 2619 42 26 41

B-tree -- Delete
A4B33ALG  2011 / 06 
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26 418 2619 42

2 5 20 2522 27 3610 1514 16 36 41 42 604545 60

Key 12 was deleted and the tree was reconstructed accordingly.

B-tree -- Delete
A4B33ALG  2011 / 06 

2 5 20 2522 27 36 42 604510 12 15 16

8 14

19

26 4126 42

36 41 45 60

Unchanged nodes

Recapitulation - delete  12
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G PM X

A DC E J K N O R TS U V Y Z

G PM X

B DC E J K N O R TS U V Y ZA

G PM T

B DC E J K N O R S U V Y ZA

X

Q

Insert B

Insert Q
Unaffected
nodes

Cormen et al. 1990, t = 3, minimum degree 3, max degree = 6,
minimum keys in node = 2, maximum keys in node = 5. 

B-tree -- Insert Single phase strategy
A4B33ALG  2011 / 06 
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G PM T

B DC E J K N O R S U V Y ZA

X

Q

G M T

B DC E J K N O R S U V Y ZA

X

QL

G

P

M T

B D E J K N O R S U V Y ZA

X

QL

C

F

P

Insert F

Insert L

Unaffected
nodes

Single phase: Split the root, because it is full, and
then continue downwards inserting L

B-tree -- Insert Single phase strategy
A4B33ALG  2011 / 06 
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G

P

M T

B D E J K N O R S U V Y ZA

X

QL

C

F

G

P

M T

B D E J K N O R S U V Y ZA

X

QL

C

Delete F

1. If the key k is in node X and X is a leaf, delete the key k from X.

Unaffected
nodes

B-tree -- Delete Single phase strategy
A4B33ALG  2011 / 06 
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2. If the key k is in node X and X is an internal node, do the following:

J K

G

P

M T

B D E J K N O R S U V Y ZA

X

QL

C

G

P

L T

B D E N O R S U V Y ZA

X

Q

C

Delete M

2a. If the child Y that precedes k in node X has at least t keys, then find the
predecessor kp of k in the subtree rooted at Y. Recursively delete kp, and replace k
by kp in X. (We can find kp and delete it in a single downward pass.)
2b. If Y has fewer than t keys, then, symmetrically, examine the child Z that follows k
in node X and continue as in 2a.

B-tree -- Delete Single phase strategy
A4B33ALG  2011 / 06 
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J K

G

P

L T

B D E N O R S U V Y ZA

X

Q

C

J K

P

L T

B D E N O R S U V Y ZA

X

Q

C

Delete G

2c. Otherwise, i.e. if both Y and Z have only t1 keys, merge k and all of Z into 
Y, so that X loses both k and the pointer to Z, and Y now contains 2t1 keys.
Then free Z and recursively delete k from Y.

B-tree -- Delete Single phase strategy
A4B33ALG  2011 / 06 
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3. If the key k is not present in internal node X, determine the child X.c of X.
X.c is a root of such subtree that contains k, if k is in the tree at all. 
If X.c has only t1 keys, execute step 3a or 3b as necessary 
to guarantee that we descend to a node containing at least t keys. 
Then continue by recursing on the appropriate child of X.

J K

P

L T

B D E N O R S U V Y ZA

X

Q

C

Delete D

B-tree -- Delete Single phase strategy
A4B33ALG  2011 / 06 
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PL T XC

J KB E N O R S U V Y ZA Q

J K

P

L T

B D E N O R S U V Y ZA

X

Q

C

3a. If X.c and both of X.c ’s immediate siblings have t1 keys, merge X.c
with one sibling, which involves moving a key from X down into the new
merged node to become the median key for that node.

Delete D

PL T XC

J KB E N O R S U V Y ZA Q

Merge

Merged

D

B-tree -- Delete Single phase strategy
A4B33ALG  2011 / 06 
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PL T XE

J KC N O R S U V Y ZA Q

Delete B

3b. If X.c has only t1 keys but has an immediate sibling with at least t keys,
give X.c an extra key by moving a key from X down into X.c, moving a
key fromX.c ’s immediate left or right sibling up into X, and moving the
appropriate child pointer from the sibling into X.c.

PL T XC

J KB E N O R S U V Y ZA Q

B-tree -- Delete Single phase strategy
A4B33ALG  2011 / 06 
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Find O(b · logb n)
Insert (b · logb n) 
Delete (b · logb n) 

n is the number of keys in the tree, b b is the branching factor, i.e. the 
order of the tree, i.e. the maximum number of children of a node.

Note: Be careful, some authors (e.g CLRS)  define degree/order of B-
tree as [b/2], there is no unified precise common terminology.

B-tree -- asymptotic complexities


