SOFTWARE
ARCHITECTURES

TTTTTTTTTTTTTTTTTTT
CCCCCCCCCCCCCCCCCCCC

ARCHITECTURES

SW Architectures usually complex

Often we reduce the abstraction

Architectural Styles

« Layered style
Architectural Patterns
 Model View Controller

ARCHITECTURE
STYLES

Basic Characteristics
Quality attributes

ARCHITECTURE
STYLES

Data centric

« Databases

Call and return

« Part of this course
Implicit invocation

« Events

Independent components
 Peerto peer

Virtual Machines

Pipe and Filter - data flow

OVERVIEW

Domain and context model
Arch. styles

Reference architecture

— Small steps towards SW Architecture

Domain and
context model

\

Reference Software System
Architecture — > Architecture — " Architecture

/

Architectural style

IR S

ARCHITECTURE
STYLES

_ Repository (Blackboard)
Data centric

° Databases Direct -wn-&@ @*'mnpulnlinu
 Voice recognition

 Compilers " (shared

data)

LTI

Viemory
@w:m: Architectures

ARCHITECTURE
STYLES

Call and return

Main Program/Subroutine Pattern

OOD (Main controller]

Procedural

RPC
AOP
Layers

' mem

Subroutines Call/return

Sofrware Architectunes

}%® Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2014

ARCHITECTURE
STYLES

Call and return

OOD
Procedural
RPC

AOP
Layers

Manager ADT

Proc call

obj is a manager

op is an invocation

IR S

ARCHITECTURE
STYLES

Call and return
« OOD

Layered Pattern

Procedural
« RPC

« AOP
Layers

Composites of sers
various elements

@wilu: Architectures

ARCHITECTURE
STYLES

Call and return 9P OOP +AOP

« OOD

* Procedural

« RPC

- AOP

) Laye rs Source code of (?c?duécci‘ Aspects
methods methods

.Security . Method logic .Synchronization |:| Logging

}#% Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2014 10

ARCHITECTURE

STYLES

Call and return OOP OOP + AOP

+ 00D =& | g€ ge

» Procedural WA S\

Compiler" Weaver"

 AOP ==

e Layers 0 AW -
4 Exble Compiler"

Executable

ARCHITECTURE
STYLES

|mp||C|t invocation Communicating Processes

e Events

W@s Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2014

IR S

ARCHITECTURE
STYLES

Implicit invocation Event Systems

e Events

Implicit Invocation

ARCHITECTURE
STYLES

Independent components

Portal SOAP
Service Request
(e.g J2EE, NET)

g] »
11‘4_. ,'.

B2B
Interactions

Service Logic

retweark

cliert cliert

&ﬂ?}s Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2014

ARCHITECTURE
STYLES

Virtual machines

Hypervisor - (Hyper-V, Xen, ESX Server)

Hardware - (CPU, Memory, NIC, Disk)

w

‘?@’5 Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2014

User Program 1

Oerating System 1

Yirtual 370

User Program n

Operating System n

Yirtual 370

¥M370

Hardware

VIRTUAL MACHINE ARCHITECTURE (VM370)

15

ARCHITECTURE
STYLES

Pipes and Filters Patch Sequential

Data | ranstormation

l:=||:|1.

fape fape report
* | validate Sort Update [~ Report |[——

F' —

Classical data processing
Data Flow

Software Architectoies

“Wg Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2014

ARCHITECTURE
STYLES

Pj pes and Filters Kinds of Data Flow Systems

In general, data can
flow in arbitrary
patlerns

Here we are primarily
interested in nearly- linear
data flow systems,

or in very simple, highly
constrained cyclic
structures

@w:uu Architecinnes

“Ws Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2014

ARCHITECTURE STYLES

Data centric

. Data integration, Distribution, Control, Coordination

. Scalability, Low coupling, Centralization, Reuse, Modifiable,

Call and return

. Modifiable, Reusable, Inf. hiding, Structural decomposition, Separation of concerns
Implicit invocation

. Modifiable, Low coupling, Hard to comprehend,

Independent components

. Integration, Scalability, Reuse, Low coupling, Distribution, Reliability

Virtual Machines

. Simulation, Emulation, Portability!, Flexibility, Lowered Performance, Extended features
Pipe and Filter

. Modifiable, Reuse, Easy design, Simplicity, Low Coupling,

. Slow, No filter cooperation, Lot of parsing

SCALING
PERFORMANCE

Usual approach is to deploy app to a web server and provide
access through HTTP/S

* Client-server architecture

» Inside 3-layers and data repository

rEf-JLJE5t Server
Client 1 resPD“EE

!
p []
/Hfh‘\\ "y
¥

i

(Client 2
N / (Client 3)
— N Y,

SCALING
PERFORMANCE

Usual approach is to deploy app to a web server and provide
access through HTTP/S

* Client-server architecture

» Inside 3-layers and data repository

LEVEL 1 LEVEL 2
| LEVEL 3

Http Sfﬂdlﬂg SQL query
lequﬁf:, requests - — =

salL..

- Sending -
replies Database
Client HPP“CE!HD” selver

sEverlr

SCALING

PERFORMANCE

ORM talks too
much when not
being careful

T Minimize
Minimize volume
LEVEL 1 L YOUME | pypp o
$ LEVELS
Http Sending
ﬁqﬂﬁﬁ, requests - — "
salL..
- Sending -
replies Database
Client Application sepver
Usually tepver
HTTP

(JS/CSS)

SQL query

DEPLOYMENT, MAINTENANCE

AND REPORTS
iDNES.cz

Munici ve Vrbéticich
== Ufady kontrolovaly

_DNES — malo. A nejen tam.

Utery 9. prosince 2014. Vratislav | Pfinlasit §

IDNES.cz Zpravy Kraje Sport Kultura Ekonomika Bydlenl Technet Ona Revue Auto = Dalsi Q
» . 8 H Predpovéd poéasi Sluzby
Brezina chystal podzemni lihovar,
DMES ZITRA AKTUALNI SRAZKY =
chtél v ném vyrabét prvotfidni lih - S —
; '&_ . Dopravni info Rajée.net
Elements | Metwork | Sources Timeline Profiles Resources Audits Console ’= B8 =
Fl
® & W = [|Preserve log [Disable cache
Name Status - Size Time) .
Path Method Text Type Initiator P Latancy ITlmehne
= | www.idnes.cz 200 32.9KB 164 ms
<> CET oK text/htm| | Other T 162 ms |
= uni.css?rr=043 T www.idnes.cz/:. .. 1.8 KE' 78ms '
=1 gidnes.czfcss/idn3 EHbiess Parser 3.1KE 75 ms I
= reklama.css?rr=043 GET rext www.idnes.cz/:. .. 1.6 KB 83ms
= gidnes.czfcss/fidn3 0K ext/css Parser 3.0KBE 79 ms I
= portal.css?rr=043 GET 200 text www.idnes.cz/:. .. 12.4KB 3B4 ms
=| gidnes.cz/css/idn3 oK SN parser 36.3KB 380ms |
= sph.css?rr=043 GET 200 taxt www.idnes.cz ;... 11.1KB 330ms
—| gidnes.cz/css/idn3 oK EXUCES | parser 37.9KE| 326ms| M
= uni.js?rr=066 Q##1 GET 200 applicat www.idnes.cz/: .. 42 4 KB 486 ms |
==| gidnes.cz/js funi 0K " | Parser 75.0KB 480 ms
-| 2010.js?rr=066 200 . www.idnes.cz):. .. 2.0KB 83 ms
JS GET applicat... 0
OK Parser 3.7KB 79 ms

191 requests | 1.5 MB transferred | 4.65 s (load: 4.01 5, DOMContentLoaded: 3.62 5)

“TCGNSOIE TSEarch EMUTATon ReEnderng

Wx Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2014

27 B

CLIENT-SERVER
ARCHITECTURE

Properties:

Centralization

Easy with security

Easy to locate

Easy to scale

Until we reach the limit
Server is the bottleneck

Performance influenced by the network conditions

And virtual distance between client and server

Server has given throughput

Given by HW, our Design, Efficiency, Caching, etc.

CLIENT-SERVER
ARCHITECTURE

Client

Server

CLIENT-SERVER
ARCHITECTURE

Server
throughput 300
clients at once

Client

}%® Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2014

CLIENT-SERVER
ARCHITECTURE

Through put 300

clients at once

.)
Client >
~20..300 peak | <

Capacity
8
-
g
|
Load grows! & . . e

Time (days)

(a) Provisioning for peak load

“Wg Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2014

CLIENT-SERVER
ARCHITECTURE

Through put 300

clients at once

.)
Client >

Server
~20..350 peak | <

J AN A N AN

Load grows! gl/ \/ \/ \oemand
—

Time (days)

(b) Underprovisioning 1

“Wg Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2014

CLIENT-SERVER
ARCHITECTURE

How to

iImprove?

()

Client >
~20..350 peak | <

Server

» Caching

* Performance analysis — profiling

* Native/Custom SQL queries for reports
» Better Hardware, more CPU/Mem

IR S

CLIENT-SERVER
ARCHITECTURE

How to

iImprove?

.)
Client >

Server
~20..350 peak | <

* What if it Is not enough?
* Indirection?

W@s Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2014

CLIENT-SERVER
ARCHITECTURE

How to

iImprove?

(")
Client
rver
20..350 peak)\\A Serve

 [ndirection? ‘//'

Dispatcher

W@s Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2014

CLIENT-DISPATCHER-SERVER
ARCHITECTURE

How to

iImprove?

(")
Client
rver
20..350 peak)\\A Serve

 [ndirection? ‘//'

Dispatcher

W@s Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2014

CLIENT-DISPATCHER-SERVER
ARCHITECTURE

How to

iImprove?

(" .)
Client Server 1
20..350 peak | \

 [ndirection? ‘//'

Dispatcher

< Server 2

“Ws Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2014 32

CLIENT-DISPATCHER-SERVER

ARCHITECTURE
How to
improve?
@ Client D
Ien
20..350 peak | \\. Server 1
 Indirection? ‘//'

Dispatcher

—_

\ Ser..

*a‘ﬁ% Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2014

—— Server 2

33

CLIENT-DISPATCHER-SERVER
ARCHITECTURE

1}

3)

Pick a worker to forward reguest
Random

Round robin

Least busy

Sticky session [/ cookies
By request parameters

2} Wait for its response

Forward the response to dient

—

% 5
. Dispatcher]

s T T e T e

:
D

o O O O O e

— Em o Em Ew Ew E B B E EES T

CLIENT-DISPATCHER-SERVER
ARCHITECTURE

Most likely we cannot expect to multiply the
throughput of the single server

« Balancing overhead
« \We can balance different resources

- Static vs. Dynamic
« (Geo-location balancing

* Content-Delivery-Network (CDN)
- Static content (Akamai)

IR S

CONTENT DELIVERY
NETWORK (CDN)

Example

L)

CONTENT DELIVERY
NETWORK (CDN)

Example

' Servers
o
& Visitors

CONTENT DELIVERY
NETWORK

Example

' Servers
o
& Visitors

CONTENT DELIVERY
NETWORK

Example

' Servers
o
& Visitors

CONTENT DELIVERY
NETWORK

Example

' Servers
o
& Visitors

CONTENT DELIVERY
NETWORK

Example

' Servers
o
& Visitors

SCALING
PERFORMANCE

Database might be the bottleneck

Database replication

LEVEL 1 LEVEL 2
| LEVEL 3
Http 5end|ng SQL query
FTC[HEE, requests > >
SEL:...
- Sending -
replies Database
(:l[.frj'[j APP“CE}HDH se Vel
selver

SCALING
PERFORMANCE

Database might be the bottleneck

Datagrid

SCALING
PERFORMANCE

JBoss view on Datagrid

Lo~

WEB INTERMEDIATE APPLICATION DATABASE
APPLICATION LAYERS SERVER
USERS =

E.G. INTERNET oo
E) redhat s JBoss

JWre]

SCALING
PERFORMANCE

JBoss view on Datagrid | @

WEB INTERMEDIATE APPLICATION DATABASE
APPLICATION LAYERS SERVER
USERS =

E.G. INTERNET .o°
&) redhat * JBoss

45

SCALING
PERFORMANCE

JBoss view on Datagrid

—

= =l
WEB INTERMEDIATE APPLICATION / DATA DATABASE
APPLICATION LAYERS SERVER _ GRID //'
USERS - e

E.G. INTERNET S)
) redhat & JBoss

46

SERVICE-ORIENTED
ARCHITECTURE (SOA)

So far we considered that server-side app
offers data, knowledge and presentation

Service does not provide presentation
Well accepted format
Standard : JSON, SOAP, XML..

SERVICE-ORIENTED
ARCHITECTURE

Motivation
Software Networking
trends
| Open
/ OoP systems
J | -
Component L Distributed
reusability . | processing
) |
/ ISR e E ‘“\ Web services
software J

}%® Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2014

SERVICE-ORIENTED
ARCHITECTURE

1960 - 1980 1990 - 2000 2010 - 2050
I I I f
*Organization Focus *Process Focus *Distributed Functions
*Mainframe Centric Client Server Data Centric
Internal Use Partial Connectivity *Universal Interoperability
*Unique Data *EDI File Transfer *Real-time Connectivity

“Ws Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2014 49

SERVICE

« Loose coupling
 Reusable

« Stateless

« Autonomous (independent)
 Discoverable

 Abstract

« Composable

 Platform independent

ANATOMY OF A SERVICE

Service ConSUV

T

Interface Proxy

_ y 4 _
Service Service
Interface ‘ Implementation

Composite
. Service

SERVICES COMMUNICATE WITH
MESSAGES

Providing reliability and security to messages
Sending messages across consumers and producers

Service Orchestration

F By - By i I

BASIC WEB SERVICES

| | Points to
UDDI ,__.a description
RGngtry : llllllllllllllllllll*
0.. Points to
_ *e, service .
Finds ’., s Describes
Service Yoo, " Service
0. v
SOAP
ﬁ

Invokes with
XML Messages

ENTERPRISE SERVICE BUS (ESB)

Customer ESB Producer
It is a software architecture model used for designing —é\ " @
and implementing the interaction and communication L """"" /
between mutually interacting software applications in
service-oriented architecture (SOA). A <o
RN >
p< P
* Model for distributed computing —
« Variant of client server software architecture model) / §E
« Promotes flexibility with regards to communication & é‘" -------- -
interaction between applications. I
* Primary use in enterprise application integration Tﬁ{{fﬁ.- s
(EAI) of heterogeneous and complex landscapes. i T E

ENTERPRISE SERVICE BUS

Client systems
and users

Application
Servars

Java messaging :
systems, IBM MQ Web Services

Legacy, mainframe,
Series, elc.

and minicomputer
installations

55

. Event Listeners and. o

Actions :

Provide Transport Mediation '
| | |
I P
+ Transports i
' '
E
!
I
| A
, ASCIl
XML
| Binary

. e e e e e = b

_[New™T] [Futre | [Partners

Pluggable Architecture

For Integrating Infrastructure Se vices

Infrastructure Services

_Management

From JBoss ESB Documentation

. - e - w—-- ——-

| Runs Within a Contairer or

+ Btandalone |
¥ ;
|+ | Business Service Components| -

SOA IS AN EVOLUTIONARY STEP

SOA
bt b = ¢

3-Tier Architecture

Homogenous Heterogeneous

- Langu‘ége Dependeth Language Independent
Centralized Application Tiers Massively Distibuted Services

" Coxde Centric Apﬁ;ocatidns Flexible Composite Applications
Request/Reply Driven Request/Reply, Pub/Sub, Events

HTML Pages AJAX Rich Internet Applications

SOA IS AN EVOLUTIONARY STEP

in distributed communications

point to point
“too centralized “too decentralized” “just right”
EA| Project-ware SOA

TO ENABLE BUSINESS PROCESS OPTIMIZATION
AND THE REAL TIME ENTERPRISE (RTE)

[| | |
[@)
k %l BPM Expressed in

| - 1 terms of Services
[AN Provided/Consumed

Senvie rom Mt Supler
§

Enterprise

L

SerV|ce to Customers

Smart Client
g Stores POS—S\\‘_>

Mobile ——» Q—

g 3 31 Party Agents—_»
g arty Agen /

e o Tecee

§
Internal Systems

GELF §-SERVE CHANNELS

1
>
& &
- SOA Pattern: Standardized Service
provided by multiple suppliers

s

SOA Patterns: Single, Multi-Channel
. Service for consistency

APPLICATION CENTRIC

Business scope

Narrow Consumers
Limited Business Processes

3

-

Finance
/ Application \

\\\\\:ixzfi/////

% ./ Application "\
Integration g 3@ bound to
icati A EAIl vendor
Ap/)pllcatlo |:> Architecture / & gu
| \ Redundancy
ribution

Overlapped resources
Overlapped providers

EAl ‘leverage’ application silos
with the drawback of data and
Business functionality is function redundancy.

duplicated in each

application that requires it.

SERVICE CENTRIC

Business scope

Multiple Service Consumers
Multiple Business Processes

Serwi

e Architecture

Shared

Services
Distribution

Multiple Discrete Resources
Multiple Service Providers

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Service virtualizes how that capability is
performed, and where and by whom the
SOA structures the business and its systems
as a set of capabilities that are offered

resources are provided, enabling multiple
providers and consumers to participate

as Services, organized into a Service

Architecture

together in shared business activities.

SERVICE CENTRIC APPROACHES

Open your business to extension and evolution!
Natural extension and reuse
Expedia API, Paypal, Amazon API, Airfare, Heureka..
Open your system to novel needs, requirements, interaction

Reuse by other vendors!

