
Data Structures for Computer Graphics

Static Collision Detection

Slides courtesy of Ladislav Kavan

Lectured by Vlastimil Havran

Problem DescriptionProblem Description

Input: two (or more) 3D objects

Task: find the intersections

3D objects A, B given by triangular meshes

• triangle soup (no topology)

• find all pairs of intersecting triangles (collisions)

Assume: object A has m triangles, B has n triangles

• worst case: m⋅n colliding triangle pairs

– e.g. when A = B then formally O(N2) complexity

• no algorithm can be better than quadratic in the worst
case

Applications of Collision DetectionApplications of Collision Detection

• Robotics: motion planning for robot without collision

• Animation and simulation systems including game
industry

– Scene consistency test (at frame rate up to 1kHz)

– Interactive physically based modeling (action-reaction)

• CAD, mechanical engineering

– Parts assembly test (car industry etc.)

• Chemistry: molecular modeling, fitting sequences of
molecules into tunnels

Collision Detection (CD)Collision Detection (CD)

Simple quadratic algorithm:
for each triangle tA ∈ A

for each triangle tB ∈ B
if (tA intersects tB) report (tA, tB)

• optimal in the worst-case

• not useful in practice
– common models ≈ thousands triangles

– CD query must be fast ... 25+ FPS for animation

– even 2000 FPS needed for haptic devices!

Fortunately, the number of collisions is typically smaller than
m⋅n

Output-Sensitive AlgorithmsOutput-Sensitive Algorithms

An algorithm is output-sensitive if its execution time depends
on the size of the result

• important speedup of CD

– typical situations: only few collisions

• e.g. objects far away - very fast answer

• sometimes only yes/no result

– non-empty/empty set of colliding triangles

Static CD: objects A, B fixed

• disregards motion (but not rigid body transformations)

Note: dynamic (continuous) CD considers motion

Bounding VolumesBounding Volumes

Idea: quickly discard distant triangles

Example: enclose objects A, B by spheres SA, SB

• if (SA, SB disjoint) no collisions

• sphere-sphere intersection test: very fast

• if (SA, SB intersecting)

– A, B may be colliding

– A, B may be disjoint (false-positive)

Solution: build a bounding volumes hierarchy (BVH)

• most popular, but not the only possibility:

– space partitioning

– Voronoi diagrams

Bounding Volume HierarchyBounding Volume Hierarchy

bounding volume - geometrically simple object enclosing
the original geometry

hierarchy - a tree with different properties

BVH - a tree with BVs in the nodes

• the BVs of the children enclose the same geometry as the
parent
– the BV of the root encloses the whole model

Bounding volume

• quick collision test

• tight bounding (approximation)

BVH: ExampleBVH: Example

root BV

children BVs

CD Based on a BVH of objects A and BCD Based on a BVH of objects A and B

Input: roots rA, rB of BVHs of two objects
Output: all colliding triangles between A and B
CDTEST(rA, rB)

1. if (BV(rA), BV(rB) disjoint) return empty set

2. if (rA leaf && rB leaf) test all triangles of rA against all triangles
of rB and return colliding ones

3. if (rA leaf && rB not leaf) return
union of CDTEST(x, rA) for each child x of rB

4. if (rB leaf && rA not leaf) return
union of CDTEST(x, rB) for each child x of rA

5. rX = the node with larger BV; rY = the other one

6. return union of CDTEST(x, rY) for each child x of rX

CD Based on a BVH: Yes/No QueryCD Based on a BVH: Yes/No Query

• terminate after first collision found

• it is faster
CDTEST2(rA, rB)

1. if (BV(rA), BV(rB) disjoint) return NO

2. if (rA leaf && rB leaf) test all triangles of rA against all triangles
of rB and return YES/NO

3. if (rA leaf && rB not leaf) return YES for the first child
x of rB giving CDTEST2(x, rA) = YES; NO if none

4. if (rB leaf && rA not leaf) return YES for the first child
x of rA giving CDTEST2(x, rB) = YES; NO if none

5. rX = the node with larger BV; rY = the other one

6. return YES for the first child x of rX giving
CDTEST2(x, rY) = YES; NO if none

Choice of Bounding VolumesChoice of Bounding Volumes

Trade-off between

• fast intersection test of two BVs

• tight bounding

• Cost model again:

Total time = NV ⋅ CV + NP ⋅ CP + NU ⋅ CU + CB

• NV ... number of tested BV pairs

• CV ... cost of BV intersection test

• NP ... number of tested primitive (triangle) pairs

• CP ... cost of primitive (triangle) intersection test

• NU ... number of updated BV nodes

• CU ... cost of updating BV nodes

• CB ... cost of initial building data BVH

Bounding SphereBounding Sphere

• given by a center c∈A3 and r∈R

Very fast intersection test of spheres A, B:

if (〈cA-cB, cA-cB〉 > rA
2+rB

2) disjoint

else intersecting

• bad bounding tightness

• simple to update

– rotation invariant

– sufficient to translate the center

• computation:

– simple approximation

– smallest enclosing sphere: randomized algorithm (Bernd Gaertner,
Emo Welzl), O(N) complexity. Exact algorithm relatively slow,
approximate algorithm fast.

Axis-Aligned Bounding Box (AABB)Axis-Aligned Bounding Box (AABB)

• a box with faces aligned with the world coordinate system

• other view: 3D interval

• [xl, xh] × [yl, yh] × [zl, zh]

Intersection test:

AABBs disjoint iff all intervals are disjoint

Intersection of intervals [a,b] and [c,d]:

if (a<c) return (c<b)

else return (d>a)

• slightly better bounding

• computation: simple

Oriented Bounding Box (OBB)Oriented Bounding Box (OBB)

• arbitrary (non-aligned) box

• given by a frame & intervals

• good bounding tightness

Computation (approximate):

• construct convex hull of vertices

• compute mean (center of frame)

• covariance matrix M

• eigenvectors of M form a good OBB basis

• Details can be found in the thesis of Gotschalk, Collision
Queries using Oriented Bounding Boxes, 2000, available at:

http://www.mechcore.net/files/docs/alg/gottschalk00collision.pdf

Intersection Test of OBBsIntersection Test of OBBs

Idea: search for a separating axis

Choose an axis (direction vector) and project OBBs to this
axis

• if (projected intervals disjoint) OBBs disjoint

• else OBBs may or may not be disjoint

Separating Axis Theorem (SAT): For OBB-OBB intersection
it is sufficient to test following 15 axes

• the normals of faces (3+3)

• the cross products of edges (3x3)

• if none of the above axes separates, then the OBBs are
disjoint

Discrete Orientation Polytope (DOP)Discrete Orientation Polytope (DOP)

given a fixed set of k/2 directions (→ k-DOP, k even)

• unit vectors d1, ..., dk/2
k-DOP: a polytope with face normals d1, ..., dk/2,
-d1, ..., -dk/2

represented by k/2 intervals [l1, h1], ..., [lk/2, hk/2]

DOP Construction (exact):

for i = 1 to k/2 do

{

li = min 〈v , di〉 for each vertex v

hi = max 〈v , di〉 for each vertex v

}

Common k-DOPsCommon k-DOPs

• k=6: AABBs (6-DOP is exactly AABB)

– directions (1,0,0), (0,1,0), (0,0,1)

• k=14: cut corners

– add directions (1,1,1), (1,-1,1), (-1,1,1), (1,1,-1) (normalized)

• k=18: cut edges

– add directions (1,1,0), (1,-1,0), (1,0,1), (1,0,-1), (0,1,1), (0,1,-1)
(normalized)

• k=26: cut corners & edges

Example (in 2D): 8-DOP

Intersection Test of DOPsIntersection Test of DOPs

Conservative test of two k-DOPs A and B:

for i = 1 to k/2 do

if (intervals [liA, hi
A] and [liB, hi

B] disjoint)

return DISJOINT

return POTENTIALLY_INTERSECTING

What may happen:

• all intervals intersecting & DOPs disjoint

– treat them as intersecting (proceed to children)

– does not violate the correctness of the CD algorithm

– conservative test

Convex Hull (CH)Convex Hull (CH)

• convex hull is the optimal convex BV in terms of tightness
(recall the definition)

– typically only convex BVs used: convex sets can be always
separated by a plane

• computation: easy in 2D, more difficult in 3D

Intersection test: slow

• CH may not simplify the geometry at all

k-DOP: approximation of CH

(better for higher k)

Comparison of BVsComparison of BVs

A A B B O B B 8 - D O P

• better tightness → more expensive
intersection test

• good compromise necessary

Building the BVHBuilding the BVH

Two basic approaches: bottom-up & top-down

Bottom-up (merging) construction:

• create BVs & (single-node) trees for individual triangles

• pick several neighboring trees n1, ..., nm and create a
common parent p

– m is the order of the tree

– the BV(p) must enclose all the triangles enclosed by nodes n1, ...,
nm (needs not enclose BV(n1), ..., BV(nm))

• repeat until single tree remains (the result)

Tricky bit: "pick several neighboring trees"

Top-down BVH constructionTop-down BVH construction

BuildTree(T)

• create a node n and BV enclosing the whole mesh T

• split the geometry T into m parts: M1, ..., Mm

• if (m==1) return n // no further splitting possible

• for i = 1 to m do
i-th child of n = BuildTree(Mi)

• return n

Tricky bit: splitting rule

• simple but efficient heuristic: build an AABB

• split in the middle of the longest side

Update of a BVHUpdate of a BVH

• consider a rigid-body motion of the object

Translation

• no problem for any BV

Rotation

• simple for spheres & OBBs

• k-DOPs (& AABBs):

– re-compute intervals for rotated vertices ... slow

– compute new k-DOP of rotated original k-DOP (or
convex hull) ... sub-optimal tightness

– more sophisticated methods exist

LiteratureLiterature

• Gino van den Bergen: Collision Detection in
interactive 3D environments, 2004

• Christer Ericson: Real Collision Detection,
Morgan Kaufmann 2005

• Additional reading text on course webpage:
F. Madera: An introduction to the Collision
Detection Algorithms, 2011.

• Lukáš Korba: Simulace řízení vozidla,
diplomová práce 2008, ČVUT FEL.

