Data Structures for Computer Graphics

Static Collision Detection

Slides courtesy of Ladislav Kavan

Problem Description

Input: two (or more) 3D objects
Task: find the intersections

3D objects A, B given by triangular meshes

- triangle soup (no topology)
- find all pairs of intersecting triangles (collisions)

Assume: object A has m triangles, B has n triangles

- worst case: $m \cdot n$ colliding triangle pairs
- e.g. when $A=B$ then formally $O\left(N^{2}\right)$ complexity
- no algorithm can be better than quadratic in the worst case

Applications of Collision Detection

- Robotics: motion planning for robot without collision
- Animation and simulation systems including game industry
- Scene consistency test (at frame rate up to 1 kHz)
- Interactive physically based modeling (action-reaction)
- CAD, mechanical engineering
- Parts assembly test (car industry etc.)
- Chemistry: molecular modeling, fitting sequences of molecules into tunnels

Collision Detection (CD)

Simple quadratic algorithm:
for each triangle $t_{A} \in A$ for each triangle $t_{B} \in B$ if $\left(t_{A}\right.$ intersects $\left.t_{B}\right)$ report $\left(t_{A}, t_{B}\right)$

- optimal in the worst-case
- not useful in practice
- common models \approx thousands triangles
- CD query must be fast ... 25+ FPS for animation
- even 2000 FPS needed for haptic devices!

Fortunately, the number of collisions is typically smaller than $m \cdot n$

Output-Sensitive Algorithms

An algorithm is output-sensitive if its execution time depends on the size of the result

- important speedup of CD
- typical situations: only few collisions
- e.g. objects far away - very fast answer
- sometimes only yes/no result
- non-empty/empty set of colliding triangles

Static CD: objects A, B fixed

- disregards motion (but not rigid body transformations)

Note: dynamic (continuous) CD considers motion

Bounding Volumes

Idea: quickly discard distant triangles
Example: enclose objects A, B by spheres S_{A}, S_{B}

- if (S_{A}, S_{B} disjoint) no collisions
- sphere-sphere intersection test: very fast
- if (S_{A}, S_{B} intersecting)
- A, B may be colliding
- A, B may be disjoint (false-positive)

Solution: build a bounding volumes hierarchy (BVH)

- most popular, but not the only possibility:
- space partitioning
- Voronoi diagrams

Bounding Volume Hierarchy

bounding volume - geometrically simple object enclosing the original geometry
hierarchy - a tree with different properties
$B V H$ - a tree with BVs in the nodes

- the BVs of the children enclose the same geometry as the parent
- the BV of the root encloses the whole model

Bounding volume

- quick collision test
- tight bounding (approximation)

BVH: Example

CD Based on a BVH of objects A and B

Input: roots r_{A}, r_{B} of BVHs of two objects
Output: all colliding triangles between A and B
CDTEST $\left(r_{A}, r_{B}\right)$

1. if ($B \vee\left(r_{A}\right), B V\left(r_{B}\right)$ disjoint) return empty set
2. if (r_{A} leaf \&\& r_{B} leaf) test all triangles of r_{A} against all triangles of r_{B} and return colliding ones
3. if (r_{A} leaf \&\& r_{B} not leaf) return
union of CDTEST $\left(x, r_{A}\right)$ for each child x of r_{B}
4. if (r_{B} leaf \&\& r_{A} not leaf) return
union of CDTEST $\left(x, r_{B}\right)$ for each child x of r_{A}
5. $r_{X}=$ the node with larger $B V ; r_{Y}=$ the other one
6. return union of CDTEST $\left(x, r_{Y}\right)$ for each child x of r_{X}

CD Based on a BVH: Yes/No Query

- terminate after first collision found
- it is faster

CDTEST2 $\left(r_{A}, r_{B}\right)$

1. if $\left(B V\left(r_{A}\right), B V\left(r_{B}\right)\right.$ disjoint) return $N O$
2. if (r_{A} leaf \&\& r_{B} leaf) test all triangles of r_{A} against all triangles of r_{B} and return YES/NO
3. if (r_{A} leaf $\& \& r_{B}$ not leaf) return YES for the first child x of r_{B} giving CDTEST2 $\left(x, r_{A}\right)=$ YES; NO if none
4. if (r_{B} leaf $\& \& r_{A}$ not leaf) return YES for the first child x of r_{A} giving CDTEST2 $\left(x, r_{B}\right)=$ YES; NO if none
5. $r_{X}=$ the node with larger $B V ; r_{Y}=$ the other one
6. return YES for the first child x of r_{X} giving CDTEST2 $\left(x, r_{Y}\right)=Y E S ;$ NO if none

Choice of Bounding Volumes

Trade-off between

- fast intersection test of two BVs
- tight bounding
- Cost model again:

$$
\text { Total time }=N_{V} \cdot C_{V}+N_{P} \cdot C_{P}+N_{U} \cdot C_{U}+C_{B}
$$

- $\mathrm{N}_{V} \ldots$ number of tested BV pairs
- $\mathrm{C}_{\mathrm{V}} \ldots$ cost of BV intersection test
- N_{P}... number of tested primitive (triangle) pairs
- $\mathrm{C}_{\mathrm{P}} \ldots$ cost of primitive (triangle) intersection test
- N_{U}... number of updated BV nodes
- $\mathrm{C}_{\mathrm{u}} \ldots$ cost of updating BV nodes
- $\mathrm{C}_{\mathrm{B}} \ldots$ cost of initial building data BVH

Bounding Sphere

- given by a center $\mathbf{c} \in \mathrm{A}^{3}$ and $r \in R$

Very fast intersection test of spheres A, B :
if $\left(\left\langle\mathbf{c}_{A}-\mathbf{c}_{\mathrm{B}}, \mathbf{c}_{\mathrm{A}}-\mathbf{c}_{\mathrm{B}}\right\rangle>\mathrm{r}_{\mathrm{A}}{ }^{2}+\mathrm{r}_{\mathrm{B}}{ }^{2}\right.$) disjoint else intersecting

- bad bounding tightness
- simple to update
- rotation invariant
- sufficient to translate the center
- computation:
- simple approximation
- smallest enclosing sphere: randomized algorithm (Bernd Gaertner, Emo Welzl), O(N) complexity. Exact algorithm relatively slow, approximate algorithm fast.

Axis-Aligned Bounding Box (AABB)

- a box with faces aligned with the world coordinate system
- other view: 3D interval
- $\left[x_{1}, x_{h}\right] \times\left[y_{l}, y_{h}\right] \times\left[z_{l}, z_{h}\right]$

Intersection test:
AABBs disjoint iff all intervals are disjoint
Intersection of intervals [a,b] and [c,d]:
if $(a<c)$ return ($c<b$)
else return ($d>a$)

- slightly better bounding
- computation: simple

Oriented Bounding Box (OBB)

- arbitrary (non-aligned) box
- given by a frame \& intervals
- good bounding tightness

Computation (approximate):

- construct convex hull of vertices

- compute mean (center of frame)
- covariance matrix M
- eigenvectors of M form a good OBB basis
- Details can be found in the thesis of Gotschalk, Collision Queries using Oriented Bounding Boxes, 2000, available at:
http://www.mechcore.net/files/docs/alg/gottschalk00collision.pdf

Intersection Test of OBBs

Idea: search for a separating axis
Choose an axis (direction vector) and project OBBs to this axis

- if (projected intervals disjoint) OBBs disjoint
- else OBBs may or may not be disjoint

Separating Axis Theorem (SAT): For OBB-OBB intersection it is sufficient to test following 15 axes

- the normals of faces $(3+3)$
- the cross products of edges (3×3)
- if none of the above axes separates, then the OBBs are disjoint

Discrete Orientation Polytope (DOP)

given a fixed set of $\mathrm{k} / 2$ directions ($\rightarrow \mathrm{k}$-DOP, k even)

- unit vectors $\mathbf{d}_{1}, \ldots, \mathbf{d}_{\mathrm{k} / 2}$
k-DOP: a polytope with face normals $d_{1}, \ldots, d_{k / 2}$, $-d_{1}, \ldots,-d_{k / 2}$
represented by $\mathrm{k} / 2$ intervals $\left[l_{1}, \mathrm{~h}_{1}\right], \ldots,\left[l_{\mathrm{k} / 2}, \mathrm{~h}_{\mathrm{k} 2}\right]$

DOP Construction (exact):

$$
\text { for } \mathrm{i}=1 \text { to } \mathrm{k} / 2 \text { do }
$$

\{

$$
\begin{aligned}
& \mathbf{l}_{\mathrm{i}}=\min \left\langle\mathbf{v}, \mathbf{d}_{\mathbf{i}}\right\rangle \text { for each vertex } \mathbf{v} \\
& \mathbf{h}_{\mathrm{i}}=\max \left\langle\mathbf{v}, \mathbf{d}_{\mathbf{i}}\right\rangle \text { for each vertex } \mathbf{v}
\end{aligned}
$$

\}

Common k-DOPs

- $k=6$: AABBs (6-DOP is exactly AABB)
- directions ($1,0,0$), $(0,1,0),(0,0,1)$
- $\mathrm{k}=14$: cut corners
- add directions (1,1,1), (1,-1,1), (-1,1,1), (1,1,-1) (normalized)
- k=18: cut edges
- add directions (1,1,0), (1,-1,0), (1,0,1), (1,0,-1), (0,1,1), (0,1,-1) (normalized)
- $\mathrm{k}=26$: cut corners \& edges

Example (in 2D): 8-DOP

Intersection Test of DOPs

Conservative test of two k-DOPs A and B :
for $\mathrm{i}=1$ to $\mathrm{k} / 2$ do
if (intervals $\left[l_{i}^{A}, h_{i}^{A}\right]$ and $\left[l_{i}^{B}, h_{i}^{B}\right]$ disjoint) return DISJOINT
return POTENTIALLY_INTERSECTING

What may happen:

- all intervals intersecting \& DOPs disjoint
- treat them as intersecting (proceed to children)
- does not violate the correctness of the CD algorithm
- conservative test

Convex Hull (CH)

- convex hull is the optimal convex BV in terms of tightness (recall the definition)
- typically only convex BVs used: convex sets can be always separated by a plane
- computation: easy in 2D, more difficult in 3D

Intersection test: slow

- CH may not simplify the geometry at all
k-DOP: approximation of CH
(better for higher k)

Comparison of BVs

- better tightness \rightarrow more expensive intersection test
- good compromise necessary

Building the BVH

Two basic approaches: bottom-up \& top-down
Bottom-up (merging) construction:

- create BVs \& (single-node) trees for individual triangles
- pick several neighboring trees $\mathbf{n}_{1}, \ldots, \mathbf{n}_{\mathrm{m}}$ and create a common parent \mathbf{p}
- m is the order of the tree
- the $\mathrm{BV}(\mathbf{p})$ must enclose all the triangles enclosed by nodes \mathbf{n}_{1}, \ldots, \mathbf{n}_{m} (needs not enclose $\operatorname{BV}\left(\mathbf{n}_{1}\right), \ldots, B V\left(\mathbf{n}_{\mathrm{m}}\right)$)
- repeat until single tree remains (the result)

Tricky bit: "pick several neighboring trees"

Top-down BVH construction

BuildTree(T)

- create a node \mathbf{n} and $B V$ enclosing the whole mesh T
- split the geometry T into m parts: $\mathrm{M}_{1}, \ldots, \mathrm{M}_{\mathrm{m}}$
- if ($m==1$) return \mathbf{n} // no further splitting possible
- for $\mathrm{i}=1$ to m do i-th child of $\mathbf{n}=$ BuildTree $\left(\mathrm{M}_{\mathrm{i}}\right)$
- return \mathbf{n}

Tricky bit: splitting rule

- simple but efficient heuristic: build an AABB
- split in the middle of the longest side

Update of a BVH

- consider a rigid-body motion of the object

Translation

- no problem for any BV

Rotation

- simple for spheres \& OBBs
- k-DOPs (\& AABBs):
- re-compute intervals for rotated vertices ... slow
- compute new k-DOP of rotated original k-DOP (or convex hull) ... sub-optimal tightness
- more sophisticated methods exist

Literature

- Gino van den Bergen: Collision Detection in interactive 3D environments, 2004
- Christer Ericson: Real Collision Detection, Morgan Kaufmann 2005
- Additional reading text on course webpage: F. Madera: An introduction to the Collision Detection Algorithms, 2011.
- Lukáš Korba: Simulace řízení vozidla, diplomová práce 2008, ČVUT FEL.

