
David Šišlák
david.sislak@fel.cvut.cz

Effec%ve	So*ware	

Lecture	11:	JVM	-	Object	Alloca5on,	Bloom	Filters,	References,	Effec5ve	Caching	

7th	May	2017	 ESW	–	Lecture	11	 2	

Fast	Object	Alloca%on	

»  based	on	bump-the-pointer	technique	
•  track	previously	allocated	object	
•  fit	new	object	into	remainder	of	genera5on	end	

»  thread-local	alloca%on	buffers	(TLABs)	
•  each	thread	has	small	exclusive	area	(few	%	of	Eden	in	total)	aligned	NUMA	
•  remove	concurrency	boWleneck	

•  no	synchroniza5on	among	threads	(remove	slower	atomics)	
•  remove	false	sharing	(cache	line	used	just	by	one	CPU	core)	

•  exclusive	alloca5on	takes	about	few	na've	instruc'ons	
•  infrequent	full	TLABs	implies	synchroniza5on	(based	on	lock	inc)	
•  thread-based	adap5ve	resizing	of	TLAB	

•  not	working	well	for	thread	pools	with	varying	alloca5on	pressure	
»  tuning	op5ons	

•  -XX:+UseTLAB	;	-XX:AllocatePrefetchStyle=1;	-XX:+PrintTLAB	
•  -XX:AllocateInstancePrefetchLines=1	;	-XX:AllocatePrefetchLines=3	
•  -XX:+ResizeTLAB	;	-XX:TLABSize=10k	;	-XX:MinTLABSize=2k	

7th	May	2017	 ESW	–	Lecture	11	 3	

Fast	Object	Alloca%on	-	Example	

C2	compiler,	standard	OOP,	size	96	Bytes:	

read TLAB allocation pointer

bump the pointer
fits into TLAB check
store TLAB allocation pointer

fill object header

8B - mark word

4B / 8B – Klass ref.

… object data

prepare for object nulling
RDI object data; ECX=10 qwords

null instance

prefetch 3 cache lines ahead

Note: all examples are in JVM 8 64-bit,
Intel Haswell CPU, AT&T syntax

7th	May	2017	 ESW	–	Lecture	11	 4	

Flight	Recording	to	Analyze	TLAB		

example	with	million	of	alloca5ons	of	Structure	

7th	May	2017	 ESW	–	Lecture	11	 5	

Flight	Recording	to	Analyze	TLAB		

example	with	million	of	alloca5ons	of	Structure;	compressed	OOP	used	

7th	May	2017	 ESW	–	Lecture	11	 ?	6	

Example	–	Dynamic	Memory	Analysis	

		

7th	May	2017	 ESW	–	Lecture	11	 7	

Example	–	Dynamic	Memory	Analysis	

		
	
	
alloca5ons	when	called	with	40	elements	(27	without	digits):	

7th	May	2017	 ESW	–	Lecture	11	 8	

Example	–	Op%mized		–	Dynamic	Memory	Analysis		

		
	
	
	
	
	
	
	
	
	
		

7th	May	2017	 ESW	–	Lecture	11	 9	

Example	–	Op%mized		–	Dynamic	Memory	Analysis		

		
	
	
	
	
	
	
	
	
	
alloca5ons	when	called	with	40	elements	(27	without	digits):	

7th	May	2017	 ESW	–	Lecture	11	 10	

Know	Your	Applica%on	Behavior		

»  simple	code	could	be	very	inefficient	–	know	what	you	are	using	
»  a	lot	of	small	short-lived	objects	s5ll	slow	down	your	applica5on	

•  alloca5ons	in	TLAB	are	quite	fast	but	not	as	fast	as	no	alloca5on	
–  check	escape	analysis	or	change	your	code	

•  objects	in	TLAB	fulfill	cache	data	locality	and	are	NUMA	aligned	
•  no	false	sharing	between	cores	(data	in	cache	line	are	just	used	by	

one	CPU	core)	
•  increase	pressure	on	young	genera5on	and	thus	minor	GC	

–  other	objects	are	promoted	earlier	to	old	genera5on	
–  increase	number	of	major	GC	

»  a	lot	of	long-lived	objects	slow	your	applica5on	even	more	
•  each	5me	all	live	objects	have	to	be	traversed	
•  compac5ng	GC	have	to	copy	objects	

–  breaks	original	data	locality	
–  can	imply	false	sharing	between	cores	

7th	May	2017	 ESW	–	Lecture	11	 11	

Escape	Analysis	–	Not	All	Objects	Are	Allocated	

»  C2	compiler	perform	escape	analysis	of	new	object	a2er	inline	of	hot	methods	
»  each	new	object	alloca5on	is	classified	into	one	of	the	following	types:	

•  NoEscape	–	object	does	not	escape	method	in	which	it	is	created	
–  all	its	usages	are	inlined	
–  never	assigned	to	sta5c	or	object	field,	just	to	local	variables	
–  at	any	point	must	be	JIT-5me	determinable	and	not	depending	on	any	
unpredictable	control	flow	

–  if	the	object	is	an	array,	indexing	into	it	must	be	JIT-5me	constant	
•  ArgEscape	–	object	is	passed	as,	or	referenced	from,	an	argument	to	a	

method	but	does	not	escape	the	current	thread		
•  GlobalEscape	–	object	is	accessed	by	different	method	and	thread	

»  NoEscape	objects	are	not	allocated	at	all	but	JIT	does	scalar	replacement	
•  object	deconstructed	into	its	cons5tuent	fields	(stack	allocated)	
•  disappear	automa5cally	ajer	stack	frame	pop	(return	from	the	method)	
•  no	GC	impact	at	all	+	do	not	need	track	references	(write	comp.	barrier)	

»  ArgEscape	objects	are	allocated	on	the	heap	but	all	monitors	are	eliminated	

7th	May	2017	 ESW	–	Lecture	11	 12	

Escape	Analysis	Example	

	
	
	
	
	
	
	
	
	
	
	
	
	
		

7th	May	2017	 ESW	–	Lecture	11	 13	

Escape	Analysis	Example	

C2	compila5on	with	inline:	
	
	
	
	
	
	
	
	
	
	
	
	
		

no allocation at all, no synchronization
all done out of stack in registers only

7th	May	2017	 ESW	–	Lecture	11	 14	

Bloom	Filter	

»  bloom	filter	opera5ons	
•  add	a	new	object	to	the	set	
•  test	whether	a	given	object	is	a	member	of	the	set	
•  no	dele%on	is	possible	

»  strong	memory	reduc%on	(few	bits	per	element)	compared	to	other	
collec5ons	
•  compensated	by	small	false	posi%ve	rate	(usually	1%)	
•  guaranteed	no	false	nega%ve	
•  not	storing	object	itself	(where	all	standard	collec'ons	must	store	objects)	

»  always	constant	add	and	test/query	complexity	(even	for	collisions)	
»  very	useful	in	big	data	processing	and	other	applica5ons	

•  used	to	test	that	the	object	is	certainly	not	present	
•  e.g.	reduce	a	lot	of	I/O	opera5ons	reading	full	collec5ons	in	a	par5cular	file	

where	bloom	filters	are	kept	in	RAM	or	read	quickly	from	disk	

7th	May	2017	 ESW	–	Lecture	11	 15	

Bloom	Filter	

»  use	bit	array	with	a	m	bits		
»  use	k	independent	hash	func5ons	
»  add	opera5on	–	O(k)	

»  query	opera5on	

7th	May	2017	 ESW	–	Lecture	11	 16	

Bloom	Filter	

»  number	of	bits	in	the	filter	

»  number	of	hash	func5ons	

	

»  example	–	store	1	million	of	Strings	with	total	size	25	MB	
•  Set<String>	requires	>50	MB	retained	size	
•  Bloom	Filter	with	FP	rate	1%	requires	1.13	MB	and	7	hash	func5ons	

–  more	than	44	5mes	smaller	and	in	99%	cases	query	is	TP	

ceil
n ⋅ ln p()

ln 1
2ln 2()
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

round
ln 2() ⋅m

n
⎛

⎝
⎜

⎞

⎠
⎟

7th	May	2017	 ESW	–	Lecture	11	 17	

»  coun%ng	bloom	filter	
•  support	delete	and	count	es%mate	opera5on	

•  each	posi5on	in	filter	is	buckets	(e.g.	3	bits)	working	as	counter	
–  add	–	increment	
–  delete	–	decrement;	count	is	min	value	
–  query	–	test	non-zero		

•  bucket	overflow	problem	
–  no	more	increments	when	there	is	max	counter	value	
–  increasing	FN	errors	by	dele5ons	of	elements	

»  bitwise	bloom	filter	
•  mul5ple	coun5ng	(dynamically	added)	filters	to	address	issues	above	

Extensions	of	Bloom	Filter	

7th	May	2017	 ESW	–	Lecture	11	 18	

Reference	Objects	

»  mortem	hooks	more	flexible	than	finaliza5on	
»  reference	types	(ordered	from	strongest	one):	

•  {strong	reference}	
•  soj	reference	–	op5onal	reference	queue	
•  weak	reference	–	op5onal	reference	queue	
•  {final	reference}	–	mandatory	reference	queue	
•  phantom	references	–	mandatory	reference	queue	

»  can	enqueue	the	reference	object	on	a	designated	reference	queue	when	
GC	finds	its	referent	to	be	less	reachable,	referent	is	released	

»  references	are	enqueued	only	if	you	have	strong	reference	to	REFERENCE		
»  GC	has	to	run	to	pass	

them	to	Reference	Handler	
to	enqueue	them	into	
reference	queue	

»  Reference	is	another	instance	on		
the	heap	–	48	Bytes	for	standard	OOP,	64-bit	JVM	

7th	May	2017	 ESW	–	Lecture	11	 19	

Reachability	of	Object	

		
	
	

»  strongly	reachable	–	from	GC	roots	without	any	Reference	object	
»  so*ly	reachable	–	not	strongly,	but	can	be	reached	via	soj	reference	
»  weakly	reachable	–	not	strongly,	not	sojly,	but	can	be	reached	via	weak	

reference;	clear	referent	link	and	become	eligible	for	finaliza5on	
»  eligible	for	finaliza%on	–	not	strongly,	not	sojly,	not	weakly	and	have	non-

trivial	finalize	method	
»  phantom	reachable	–	not	strongly,	not	sojly,	not	weakly,	already	finalized	or	

no	finalize	method,	but	can	be	reached	via	phantom	reference	
»  unreachable	–	none	of	above;	eligible	for	reclama5on	

7th	May	2017	 ESW	–	Lecture	11	 20	

Weak	Reference	

»  pre-finaliza5on	processing	
»  usage:	

•  do	not	retain	this	object	because	of	this	reference	
•  don't	own	target,	e.g.	listeners	
•  canonicalizing	map	–	e.g.	ObjectOutputStream	
•  implement	flexible	version	of	finaliza%on:	

‒  priori5ze	
‒  decide	when	to	run	finaliza5on	

»  get()	returns	
•  referent	if	not	cleared	
•  null,	otherwise	

»  referent	is	cleared	by	GC	(cleared	when	passed	to	Reference	Handler)	and	can	
be	reclaimed	

»  need	copy	referent	to	strong	reference	and	check	that	it	is	not	null	before	
using	it	

»  WeakHashMap<K,V>	-	uses	weak	keys;	cleanup	during	all	standard	opera5ons	

7th	May	2017	 ESW	–	Lecture	11	 22	

Weak	Reference	–	External	Resource	Clean-up	

»  clean-up	approach	for	ReferenceQueue<T>	
•  own	dedicated	thread	

•  clean-up	before	crea%on	of	new	objects	
–  limited	clean-up	processing	to	mi5gate	long	processing	
–  use	poll()	–	non-blocking	fetch	of	first	

7th	May	2017	 ESW	–	Lecture	11	 23	

Custom	Finalizer	Example		

		

7th	May	2017	 ESW	–	Lecture	11	 24	

Custom	Finalizer	Example		

		
	
	
	
	
	
	
	
	
	
	
»  usage	example,	beware	of	implicit	this	strong	reference	in	instance	context	

7th	May	2017	 ESW	–	Lecture	11	 25	

So*	Reference	

»  pre-finaliza5on	processing	
»  usage:	

•  would	like	to	keep	referent,	but	can	loose	it	
•  suitable	for	caches	–	create	strong	reference	to	data	to	keep	them	

–  objects	with	long	ini5aliza5on	
–  frequently	used	informa5on	

•  reclaim	only	if	there	is	“memory	pressure”	based	on	heap	usage	
	now	–	5mestamp	>	(SojRefLRUPolicyMSPerMB	*	amountOfFreeMemoryInMB)	

	-XX:SojRefLRUPolicyMSPerMB=N		(default	1000)	
•  all	are	cleared	before	OutOfMemoryError	

»  get()	returns:	
•  referent	if	not	cleared;	null,	otherwise	
•  updates	%mestamp	of	usage	(can	keep	recently	used	longer)	

»  referent	is	cleared	by	GC	(cleared	when	passed	to	Reference	Handler)	and	can	
be	reclaimed	

7th	May	2017	 ESW	–	Lecture	11	 26	

Efficient	Cache	Example	

	efficient	LRU	tracking	in	combina5on	with	memory	pressure	for	older	

Va
lu

eH
ol

de
r[]

“strong” refs.

7th	May	2017	 ESW	–	Lecture	11	 27	

Final	Reference	–	Object	with	Non-Trivial	Finalize		

»  finalize	hook	cannot	be	used	directly	(package	limited)	
»  instance	alloca5on	of	object	with	non-trivial	finalize	method	

•  slower	alloca5on	than	standard	objects	
•  run	5me	call	of	Finalizer.register	with	possible	global	safe	point	

–  not	inlined,	all	references	saved	in	stack	with	OopMap	
•  allocates	FinalReference	instance	and	do	synchronized	tracking	

»  referent	is	not	cleared	and	reclaimed	before	finaliza5on	
•  all	referenced	objects	cannot	be	reclaimed	as	well	

»  only	one	Finalizer	thread	for	all	Final	references	of	all	types	
•  call	finalize	method	and	clear	referent	

–  issue	when	finalize	creates	strong	reference	again	
–  no	priority	control	between	mul5ple	finalize	methods	
–  long	running	finalize	delays	all	other	finaliza5on	

•  daemon	thread	and	JVM	can	terminate	before	finaliza5on	of	all	
»  finalized	objects	can	be	reclaimed	during	subsequent	GC	cycle	

7th	May	2017	 ESW	–	Lecture	11	 28	

Phantom	Reference	

»  post-finaliza5on	processing,	pre-mortem	hook	
»  usage:	

•  no%fies	that	the	object	is	not	used	–	before	its	reclama5on	
•  used	to	guarantee	given	order	of	finaliza5on	of	objects	(not	possible	with	

Weak	references)	
•  A,	B	–	finalizable	objects	(e.g.	Weakly)	
•  A’,	B’	-	PhantomReferences	

»  get()	returns:	
•  null	always	
•  referent	can	be	read	using	reflec5on	

•  avoid	making	strong	reference	again	
»  have	to	specify	reference	queue	for	constructor	(can	be	cleared)	
»  referent	is	not	cleared	and	reclaimed	un5l	all	phantom	references	are	not	

become	unreachable	or	manually	cleared	using	method	clear()	
»  all	referenced	objects	cannot	be	reclaimed	as	well	

7th	May	2017	 ESW	–	Lecture	11	 30	

Reference	Object	

»  only	one	GC	cycle	needed	to	reclaim	referent	object	if	there	is	only	soj	
references	or	weak	references	to	the	same	object	

»  mul%ple	GC	cycles	needed	for	referent	objects	with	mul5ple	reference	
types	or	have	at	least	one	final	or	phantom	reference	

	

Time

Reference Handler thread enqueue respective Reference(s) to their
ReferenceQueue(s) if there are defined some

referent object
was weakly and/or
softly reachable

and/or has finalize
method

GC

SoftReferences
WeakReferences
FinalReferences

Finalizer thread
executed

non-trivial finalize

referent object
was phantomly

reachable GC

PhantomReferences

custom
thread
called
clear GC

object
reclaimed
if not in

the first GC (reclaimed)

7th	May	2017	 ESW	–	Lecture	11	 31	

Performance	Cost	for	References	

»  crea%on	cost	
•  alloca5on	instance	
•  synchroniza5on	with	tracking	of	Reference	(strong	references)	

»  garbage	collec%on	cost	(-XX:+PrintReferenceGC	–XX:+PrintGCDetails)	
•  tracking	live	not	follow	referents	
•  construct	list	of	live	References	each	GC	cycle	

–  discovered	field	in	Reference	
•  per-reference	traversal	overhead	regardless	referent	is	collected	or	not	

–  sojly,	weakly	+	finalizable,	phantomly	
•  Reference	Object	itself	are	subject	for	garbage	collec5on	

»  enqueue	cost	
•  reference	handler	enqueue	with	synchroniza5on	

»  reference	queue	processing	cost	
•  synchronized	queue	consump5on	

7th	May	2017	 ESW	–	Lecture	11	 32	

Reachability	of	Object	

		

7th	May	2017	 ESW	–	Lecture	11	 ?	33	

Reachability	of	Object	

		

