
David Šišlák 
david.sislak@fel.cvut.cz 

 
 

Effec%ve	So*ware	

Lecture	5:	Data	races,	synchroniza4on,	atomic	opera4ons,	non-blocking	algorithms	



20th	March	2017	 ESW	–	Lecture	5	 ?	2	

Data	Races	–	Mul%-threaded	Environments	

»  what	can	be	the	results	for	C	and	D?	

Thread	1	 Thread	2	



20th	March	2017	 ESW	–	Lecture	5	 ?	3	

Data	Races	–	Mul%-threaded	Environments	

»  what	can	be	the	results	for	C	and	D?	
•  C=0,	D=0	
•  C=1,	D=0	
•  C=0,	D=2	
•  anything	else?	

Thread	1	 Thread	2	



20th	March	2017	 ESW	–	Lecture	5	 4	

		
	
	
	

instruc4ons	reordered	in	C2	compiler:	
	
	
	
	
	

»  the	same	reordering	happens	in	method2	resul4ng	into	fourth	output	
•  C=1,	D=2	

Data	Races	–	Disassembled	Method	and	Assembly	Code	

RSI is this 

8B - mark word 

4B / 8B – Klass ref. 

… object data 



20th	March	2017	 ESW	–	Lecture	5	 5	

Data	Races	–	CPU	Execu%on	Pipelining	

»  simplified	non-parallel	instruc4on	pipelining	in	each	core	

	



20th	March	2017	 ESW	–	Lecture	5	 6	

»  CPU	vs.	core	vs.	thread	

»  all	writes	to	main	memory	are	done	in	write-back	cache	mode	
•  standard	writes	requires	data	to	be	cached	(expensive	cache	miss)	
•  non-temporal	writes	(especialy	useful	for	large	block	writes)	
•  prefetch	instruc4ons	available	

Data	Races	–	CPU	Memory	Model	



20th	March	2017	 ESW	–	Lecture	5	 7	

Data	Races	–	CPU	Execu%on	Pipelining	–	Superscalar	Execu%on	

»  modern	CPUs	have	mul4ple	execu4on	units	in	each	core	(8	in	Intel	Haswell)	
•  units	have	various	capabili4es	(4x	integer	ALU,	2x	FPU	mul,	2x	mem	read,	…)	
•  mul4ple	μops	with	various		

latency	executed	in	parallel	
during	each	per	cycle	

»  independent	instruc4ons	can	be		
executed	out-of-order	or	in	parallel	
•  not	using	the	same	register	or		

address	
»  memory	reads	are	never	reordered	

•  parallel	independent	reads		
»  later	(independent)	reads	can	be	

reordered	and	executed	before		
writes	
•  serialized	writes	only	



20th	March	2017	 ESW	–	Lecture	5	 8	

Vola%le	Variable	–	Memory	Barrier	
making	A	and	B	vola4le:	

	
results	into	assembly	code:	

»  opera4ons	over	vola4le	are	not	reordered	in	C2	compiler	
»  no	need	for	read	barriers	–	not	reordered	during	execu4on	in	CPU	
»  lock	prefix	forbids	all	reordering	around	and	synchronize	previous	writes	

to	be	visible	by	all	others	CPUs	
»  lock	addl	$0x0,(%rsp)	is	fastest	memory	barrier	–	no	opera4on	inside	CPU	

8B - mark word 

4B / 8B – Klass ref. 

… object data 



20th	March	2017	 ESW	–	Lecture	5	 9	

Vola%le	Variable	

»  never	cached	thread-locally	–	all	access	directly	to	main	memory	
»  guarantees	atomic	read	and	write	opera4ons	(defines	memory	barrier)	
»  can	be	used	for	both	primi4ves	and	objects	(references)	
»  don’t	block	thread	execu4on	
»  BUT:	

•  vola4le	writes	are	much	slower	due	to	cache	flush	(~100x)	
•  vola4le	reads	(if	there	are	writes)	are	slower	(~25x,	#CPU/cores)	

–  due	to	invalidated	cache		
•  s4ll	faster	than	synchroniza4on/locks	

»  not	necessary	for:	
•  immutable	objects	
•  variable	accessed	by	only	one	thread	
•  where	variable	is	within	complex	synchronized	opera4on	



20th	March	2017	 ESW	–	Lecture	5	 ?	10	

Counter	Example	-	Vola%le	

»  will	it	work	as	expected	in	mul4-threaded	environment?	



20th	March	2017	 ESW	–	Lecture	5	 11	

Counter	Example	-	Vola%le	

»  will	it	work	as	expected	in	mul4-threaded	environment?	
NO	

»  vola4le	
•  not	suitable	for	read-update-write	opera%ons	
•  useful	for	one-thread	write	(e.g.	termina4on	flag)	

–  must	be	used	if	flag	is	set	by	different	thread	otherwise	C2	
compiler	could	create	infinite	loop	without	tes4ng	

RSI is this 

increment assembly code: 

8B - mark word 
4B / 8B – Klass ref. 
… object data 



20th	March	2017	 ESW	–	Lecture	5	 ?	12	

Vola%le	Arrays	

»  Is	put	opera4on	to	array	member	vola4le?	
	



20th	March	2017	 ESW	–	Lecture	5	 13	

Vola%le	Arrays	

»  Is	put	opera4on	to	array	member	vola4le?	
NO	–	see	assembly	code,	there	is	no	cache	synchroniza4on	with	lock		

ArrayOutOfBoundsException 

8B - mark word 

4B / 8B – Klass ref. 

… object data 

8B - mark word 

4B / 8B – Klass ref. 

sequence of values 

4B – array length 



20th	March	2017	 ESW	–	Lecture	5	 14	

Vola%le	Arrays	-	Solu%on	

	

»  just	array	reference	is	vola4le	
»  added	unnecessary	array	reference	update	adds	assembly	code	

»  lock	prefix	forbids	all	reordering	around	and	synchronize	previous	writes	
to	be	visible	by	all	others	CPUs	

»  not	suitable	for	read-update-write	opera%ons	

8B - mark word 

4B / 8B – Klass ref. 

… object data 



20th	March	2017	 ESW	–	Lecture	5	 15	

Counter	Example	–	Synchronized	and	ReentrantLock	

»  no	issue	with	read-update-write	opera4ons	
»  synchronized	

•  method	vs.	block	
•  object	instance	vs.	class	instance	(sta4c	methods)	

! 



20th	March	2017	 ESW	–	Lecture	5	 16	

JVM	-	Synchronize	Implementa%on	

Mark	word	(64-bit	JVM):	
	
	
	
	
	
»  prototype	mark	word	in	Klass	
»  lock	records	in	stack	(on	pre-compiled	loca4ons	for	compiled	code)	

•  8B	-	displacement	of	original	object	mark	word	–	recursive	lock	has	0	
•  4B	/	8B	-	compressedOOP/OPP	to	locked	object		

»  thin	locking	–	using	CAS	instruc4on	on	lock/unlock	to	modify	mark	word	
•  use	spin-locking	(10	cycles	with	vola4le	read	+	NOPs)	before	fat	locking	

»  fat	locking	–	monitor	object	on	heap	(created	by	infla4ng,	defla4ng)	
•  contended	lock	or	call	of	wait/no%fy	
•  monitor:	original	mark	word,	OS	lock,	condi4ons,	set	of	threads;	support	

parking	

8B - mark word 

4B / 8B – Klass ref. 

… object data 



20th	March	2017	 ESW	–	Lecture	5	 17	

JVM	-	Synchronize	Implementa%on	

Mark	word	(64-bit	JVM):	
	
	
	
	
	
»  biasing	locking	–	fast	locking/unlocking	by	single	thread	without	any	CAS	

•  biasable	–	enabled	4	seconds	aner	JVM	start	(startup-up,	learning)	
•  different	thread	and	valid	epoch	->	instance	re-biasing	OR	thin/fat	locking	
•  global	safe	poin%ng	needed	–	biasable,	re-biasing,	bias	revoca4on	
•  bulk	opera4ons	amor4zing	cost	for	safe	poin4ng	(all	instance	types)	

>20	re-biasing	->	bulk	re-biasing	(increment	epoch	in	prototype,	scan	locks)	
>40	re-biasing	->	bulk	revoca%on	(change	in	prototype)	

•  mark	word	normaliza%on	during	GC	–	preserve	hashed,	locked,	un-biasable	
•  iden%ty	hash	or	fat	lock	disable	instance	biasing	locking	

8B - mark word 

4B / 8B – Klass ref. 

… object data 



20th	March	2017	 ESW	–	Lecture	5	 18	

JVM	-	Synchronize	Implementa%on	

	
	
	
	
	
	
	
	
	
»  assembly	code	op4mized	for	

biasing	and	thin	locking	

»  biased	locking	startup	op4ons:	
						-XX:-UseBiasedLocking	
						-XX:BiasedLockingStartupDelay=0	

check yourself 



20th	March	2017	 ESW	–	Lecture	5	 19	

Reentrant	Locks	

»  extended	opera4ons	in	comparison	to	synchronized:	
•  lock(),	unlock()	
•  lockInterrup4bly()		throws	InterruptedExcep4on	
•  boolean	tryLock()		
•  boolean	tryLock(long	4meout,	TimeUnit	unit)	throws	

InterruptedExcep4on	
»  fairness		

•  new	ReentrantLock(boolean	fair),	by	default	unfair	
•  synchronized	is	unfair		
•  unfair	ReentrantLocks	are	slightly	faster	than	synchronized	

–  but	another	instance	in	HEAP	
•  fair	locks	are	slower	(~100x)	



20th	March	2017	 ESW	–	Lecture	5	 20	

Counter	Example	–	AtomicInteger	

AtomicInteger	implementa4on:	

non-blocking 
pattern 



20th	March	2017	 ESW	–	Lecture	5	 21	

Counter	Example	–	AtomicInteger	–	Assembly	Code	

C2	compiler	assembly	code	for	AtomicCounter::getAndIncrement:	

»  while	cycle	op4mized	and	replaced	with	single	instruc%on	
»  lock	prefix	forbids	all	reordering	around	and	synchronize	previous	writes	to	be	

visible	by	all	others	CPUs	
»  lock	prefix	ensures	that	core	has	exclusive	ownership	of	the	appropriate	cache	

line	for	the	dura4on	of	the	opera4on	
•  cache	coherency	using	MESIF	(Haswell)	with	fall-back	to	mem	bus	lock	

»  AtomicInteger-based	counter	is	fastest	of	all	for	mul%-threaded	

RSI is this 

null pointer check with exception 



20th	March	2017	 ESW	–	Lecture	5	 22	

Atomic	Opera%ons	

»  32-bit	CPUs	support	64-bit	CAS	opera4ons	
•  cmpxchg	src_operand,	dst_operand	–	implicit	lock	prefix	

»  64-bit	CPUs	support	128-bit	CAS	opera4ons	
•  cmpxchg16b	–	works	with	RDX:RAX	and	RCX:RBX	register	pairs	

»  JAVA	uses	only	64-bit	version	in	java.u4l.concurrent.atomic	
•  AtomicBoolean	
•  AtomicInteger	
•  AtomicLong	
•  AtomicReference	
•  AtomicIntegerArray	
•  AtomicLongArray	
•  AtomicReferenceArray	



20th	March	2017	 ESW	–	Lecture	5	 23	

Atomic	Field	Updaters	

»  suitable	with	large	number	of	object	of	the	given	type	–	it	saves	memory	
•  don’t	require	single	instance	to	have	an	extra	object	embedded	

»  refer	variable	“normally”	without	gever	and	severs	



20th	March	2017	 ESW	–	Lecture	5	 24	

Atomic	Field	Updaters	

»  but	beware	of	less	efficient	opera4ons	over	atomic	field	updaters	
»  AtomicIntegerFieldUpdater:	

»  exis4ng	field	updaters:	
•  AtomicIntegerFieldUpdater	
•  AtomicLongFieldUpdater	
•  AtomicReferenceFieldUpdater	

»  no	array	field	updater	exists	



20th	March	2017	 ESW	–	Lecture	5	 25	

Atomic	Complex	Types	

»  AtomicMarkableReference	
•  object	reference	along	with	a	mark	bit	

»  AtomicStampedReference	
•  object	reference	along	with	an	integer	“stamp”	

»  notes:	
•  useful	for	ABA	problem	

‒  A	->	B	and	B	->	A,	how	can	I	know	that	A	has	been	changed	since	
the	last	observa4on?	

•  doesn’t	use	double-wide	CAS	(CAS2,	CASX)	->	much	slower	than	simple	
atomic	types	due	to	object	alloca%on	



20th	March	2017	 ESW	–	Lecture	5	 26	

Atomic	Complex	Types	–	Larger	Than	64-bits	

»  AtomicMarkableReference	
•  object	reference	along	with	a	mark	bit	

»  AtomicStampedReference	
•  object	reference	along	with	an	integer	“stamp”	



20th	March	2017	 ESW	–	Lecture	5	 27	

Non-blocking	Algorithms	

»  lock-free,	block-less	but	not	usually	wait-free	(note	while	loops)	
•  based	on	CMPXCHG	and	LOCKed	instruc4ons	

»  shared	resources	secured	by	locks:		
•  high-priority	thread	can	be	blocked	(e.g.	interrupt	handler)	
•  parallelism	reduced	by	coarse-grained	locking	(unfair	locks)	
•  fine-grained	locking	and	fair	locks	increases	overhead	
•  can	lead	to	deadlocks,	priority	inversion	(low-priority	thread	holds	a	

shared	resource	which	is	required	by	high-priority	thread)	

»  non-blocking	algorithms	proper%es:	
•  outperform	blocking	algorithms	because	most	of	CMPXCHG	succeeds	

on	the	first	try	
•  removes	cost	for	synchroniza4on,	thread	suspension,	context	

switching	

»  note:	wait-free	is	mandatory	mandatory	for	real-%me	systems	



20th	March	2017	 ESW	–	Lecture	5	 28	

Non-blocking	stack	(LIFO)	

»  Treiber’s	algorithm	(1986)	

sequnce of removal-addition  
if address is reused cause ABA 



20th	March	2017	 ESW	–	Lecture	5	 29	

Thread-safe	collec%ons	and	maps	

»  blocking	variants:	
•  sta4c<T>	Collec4on<T>	Collec4ons.synchronizedCollec4on(Collec4on<T>	c)	
•  sta4c<T>	List<T>	Collec4ons.synchronizedList(List<T>	list)	
•  sta4c<K,V>	Map<K,V>	Collec4ons.synchronizedMap(Map<K,V>	m)	
•  sta4c<T>	Set<T>	Collec4ons.synchronizedSet(Set<T>	s)	
•  also	for	SortedSet	and	SortedMap	

»  non-blocking	variants:	
•  ConcurrentLinkedQueue	(interface	Collec4on,	Queue):	

‒  E	peek(),	E	poll(),	add(E)	
•  ConcurrentHashMap	(interface	Map):	

‒  putIfAbsent(K	key,	V	value),	remove(Object	key,	Object	value)	
‒  replace(K	key,	V	oldValue,	V	newValue)	

•  ConcurrentSkipListMap	(interface	SortedMap),	ConcurrentSkipListSet	(interface	SortedSet)	



20th	March	2017	 ESW	–	Lecture	5	 30	

ConcurrentHashMap	

»  concurrent	readability	–	get,	iterator	
»  minimize	update	conten4on	

•  ini4al	concurrency	level	16	(can	be	changed)	-	#	upda4ng	threads	
–  ini4al	inser4on	into	empty	bin	uses	CMPXCHG	opera4on	
–  later	modifica4ons	are	based	on	bin-based	locks	

»  bin	conten4on	
•  lists	while	<8	
•  balanced	tree	to	reduce		

search	4mes	–	maintains	
next	for	itera4on	



20th	March	2017	 ESW	–	Lecture	5	 31	

ConcurrentHashMap	

»  table	resizing	(occupancy	exceed	load	factor)	
•  power	of	two	expansions	

–  same	index	or	power	of	two	index	
•  reusing	internal	Node	if	next	is	not	changed	–	majority	of	cases	
•  any	thread	can	help	resizing	instead	of	block	
•  Forward	nodes	to	no4fy	users	about	moved	


