
B4M36ESW: Efficient software
Lecture 2: Benchmarking

Michal Sojka
sojkam1@fel.cvut.cz

February 27, 2017

Benchmark

Wikipedia defines benchmark as:
1 the act of running a computer program, a set of programs, or other

operations, in order to assess the relative performance of an
object, normally by running a number of standard tests and trials
against it.

2 a benchmarking program

Object examples:
Hardware
Compiler
Algorithm
. . .

Types of benchmarks:
Micro-benchmarks (synthetic)
Application benchmarks

2 / 43

How to measure software performance?

What to measure?
Execution time
Memory consumption
Energy

How to measure?
Not as easy as it sounds
See the rest of the lecture

3 / 43

How to measure software performance?

What to measure?
Execution time
Memory consumption
Energy

How to measure?
Not as easy as it sounds
See the rest of the lecture

4 / 43

Measuring energy

Connect power meter to your computer/board
Use hardware-provided interfaces for power/energy
measurement/control

Intel RAPL (Running Average Power Limit)

Allows to monitor and/or limit power consumption of individual
components
Package domain, memory domain (DRAM)
Interface via MSRs
See Intel Software Developer’s Manual: System Programming Guide

5 / 43

Measuring energy

Connect power meter to your computer/board
Use hardware-provided interfaces for power/energy
measurement/control

Intel RAPL (Running Average Power Limit)

Allows to monitor and/or limit power consumption of individual
components
Package domain, memory domain (DRAM)
Interface via MSRs
See Intel Software Developer’s Manual: System Programming Guide

6 / 43

Measuring memory consumption

Program memory (code, static data, heap, stack)
Stack is allocated for each thread

Operating system memory
Allocated by OS kernel on behalf of the program
network buffers, disk and file system caches, system objects (timers,
semaphores, . . .)

Shared libraries

7 / 43

Measuring execution time

Outline

1 Measuring execution time
Repeating iterations
Repeating executions
Repeating compilation
Multi-level repetition

2 Measuring speedup

8 / 43

Measuring execution time

Measuring execution time
Timestamping

Use system calls
Linux: gettimeofday, clock_gettime(CLOCK_MONITONIC)
Overhead – hundreds of cycles
Optimization: Virtual syscall

Use hardware directly (timestamp counter)

static inline uint64_t rdtsc()
{

uint64_t ret;
asm volatile ("rdtsc" : "=A"(ret));
return ret;

}

9 / 43

Measuring execution time

Measuring execution time
Timestamping

Use system calls
Linux: gettimeofday, clock_gettime(CLOCK_MONITONIC)
Overhead – hundreds of cycles
Optimization: Virtual syscall

Use hardware directly (timestamp counter)

static inline uint64_t rdtsc()
{

uint64_t ret;
asm volatile ("rdtsc" : "=A"(ret));
return ret;

}

10 / 43

Measuring execution time

Measuring execution time

Execution time exhibits variations
Influenced by many factors

Hardware, input data, compiler, memory layout, measuring overhead,
rest of the system, network load, . . . you name it
Same factors can be controlled, others cannot

Repeatability of measurements
How to design benchmark experiments properly?
How to measure speedup?

11 / 43

Measuring execution time

Example

12 / 43

Measuring execution time

The Challenge of Reasonable Repetition

Variations
Measurements must be repeated
We want to eliminate the influence of random (non-deterministic)
factors
Statistics
Controlled variables (e.g. compiler flags, hardware, algorithm

changes) – we are interested how they impact the results

Random variables (e.g. hardware interrupts, OS scheduler) – we are
interested in statistical properties of our results in face of
these variables

Uncontrolled variables – mostly fixed, but can cause bias of the results

Experiment
(Benchmark)

Controlled
variables

Random
variables

Uncontrolled
variables

Results

13 / 43

Measuring execution time

The Challenge of Reasonable Repetition

Variations
Measurements must be repeated
We want to eliminate the influence of random (non-deterministic)
factors
Statistics
Controlled variables (e.g. compiler flags, hardware, algorithm

changes) – we are interested how they impact the results
Random variables (e.g. hardware interrupts, OS scheduler) – we are

interested in statistical properties of our results in face of
these variables

Uncontrolled variables – mostly fixed, but can cause bias of the results

Experiment
(Benchmark)

Controlled
variables

Random
variables

Uncontrolled
variables

Results

14 / 43

Measuring execution time

The Challenge of Reasonable Repetition

Variations
Measurements must be repeated
We want to eliminate the influence of random (non-deterministic)
factors
Statistics
Controlled variables (e.g. compiler flags, hardware, algorithm

changes) – we are interested how they impact the results
Random variables (e.g. hardware interrupts, OS scheduler) – we are

interested in statistical properties of our results in face of
these variables

Uncontrolled variables – mostly fixed, but can cause bias of the results

Experiment
(Benchmark)

Controlled
variables

Random
variables

Uncontrolled
variables

Results

15 / 43

Measuring execution time

Benchmark goal

Estimate (a confidence interval for) the mean of execution time of a
given benchmark on one or more platforms.
The mean is the property of the probability distribution of the random
execution times
We can only estimate the mean value from the measurements
Confidence interval is important

CI of 95% ⇒ in 95% of cases, the true mean will be within the interval.

16 / 43

Measuring execution time

Levels of repetition

Results variance occurs typically at multiple levels, e.g.:
(re)compilation
execution
iteration inside a program

Sound benchmarking methodology should evaluate all the levels with
random variations

How many times to repeat the experiment at each level?
As little times as possible to not waste time
As many times as possible to get reasonable confidence in results

How to summarize the results?

17 / 43

Measuring execution time

Levels of repetition

Results variance occurs typically at multiple levels, e.g.:
(re)compilation
execution
iteration inside a program

Sound benchmarking methodology should evaluate all the levels with
random variations
How many times to repeat the experiment at each level?

As little times as possible to not waste time
As many times as possible to get reasonable confidence in results

How to summarize the results?

18 / 43

Measuring execution time

Summarizing benchmark results

Significance testing
Is it likely that two systems have different performance?
This technique has significant problems, especially when used with
results of computer benchmarks.
ministat tool (FreeBSD)

Visual tests
Do the two confidence intervals overlap?
+--+
| + |
| x ++ |
| x x ++ |
| xxxx ++ xx x ++ +|
||________M_________A__________________| |
| |______M__________A_________________| |
+--+

↑ ministat shows standard deviation, not confidence intervals!
No ⇒ different performance is likely
Yes ⇒ more statistics needed
Hard to estimate speedup and its confidence interval

19 / 43

Measuring execution time

Summarizing benchmark results

Significance testing
Is it likely that two systems have different performance?
This technique has significant problems, especially when used with
results of computer benchmarks.
ministat tool (FreeBSD)

Visual tests
Do the two confidence intervals overlap?
+--+
| + |
| x ++ |
| x x ++ |
| xxxx ++ xx x ++ +|
||________M_________A__________________| |
| |______M__________A_________________| |
+--+

↑ ministat shows standard deviation, not confidence intervals!
No ⇒ different performance is likely
Yes ⇒ more statistics needed
Hard to estimate speedup and its confidence interval

20 / 43

Measuring execution time

Summarizing benchmark results

Significance testing
Is it likely that two systems have different performance?
This technique has significant problems, especially when used with
results of computer benchmarks.
ministat tool (FreeBSD)

Visual tests
Do the two confidence intervals overlap?
+--+
| + |
| x ++ |
| x x ++ |
| xxxx ++ xx x ++ +|
||________M_________A__________________| |
| |______M__________A_________________| |
+--+

↑ ministat shows standard deviation, not confidence intervals!
No ⇒ different performance is likely
Yes ⇒ more statistics needed
Hard to estimate speedup and its confidence interval

21 / 43

Measuring execution time

Recommendation

Analysis of results should be statistically rigorous
and in particular should quantify any variation.
Report performance changes with effect size

confidence intervals.

22 / 43

Measuring execution time » Repeating iterations

Repeating iterations

We are interested in steady state performance
Initialization phase

First few iterations typically include the initialization overheads
Warming up caches, teaching branch predictor, memory allocations

Independent state
Ideally, measurements should be independent, identically distributed
(i.i.d.)
Independent: measurement does not depend on any a previous
measurement
Independent ⇒ initialized

23 / 43

Measuring execution time » Repeating iterations

When a benchmark reaches independent state?

Manual inspection of graphs from measured data
1 run-sequence plot ⇒ easy identification of initialization phase ⇒ strip

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300 350 400 450 500

'seq'

2 Independence assessment – plot the following plots on original and
randomly reordered sequence

lag plot (for several lags – e.g. 1–4)
auto-correlation function

3 Any visible pattern suggests the measurements are not independent

24 / 43

Measuring execution time » Repeating iterations

When a benchmark reaches independent state?

Manual inspection of graphs from measured data
1 run-sequence plot ⇒ easy identification of initialization phase ⇒ strip

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300 350 400 450 500

'seq'

2 Independence assessment – plot the following plots on original and
randomly reordered sequence

lag plot (for several lags – e.g. 1–4)
auto-correlation function

3 Any visible pattern suggests the measurements are not independent

25 / 43

Measuring execution time » Repeating iterations

LAG

Dependency of a measured values on the previously measured value.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

2.
5

3.
0

LAG 1 of Time [s]

Ti
m

e
[s

]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●

●●

●

●

●

1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

2.
5

3.
0

LAG 1 of Time [s]

Ti
m

e
[s

]

26 / 43

Measuring execution time » Repeating iterations

Auto-correlation function

0 5 10 15 20

−0
.5

0.
0

0.
5

1.
0

LAG

C
or

re
la

tio
n

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LAG
C

or
re

la
tio

n

dependent independent

27 / 43

Measuring execution time » Repeating iterations

Recommendations

Use this manual procedure just once to find how many iterations each
benchmark, VM and platform combination requires to reach an
independent state.

If a benchmark does not reach an independent state in a reasonable time,
take the same iteration from each run.

28 / 43

Measuring execution time » Repeating executions

Repeating executions

What if different executions exhibit higher variance than iterations?

Determine initialized and independent state as before.

29 / 43

Measuring execution time » Repeating compilation

Repeating compilation

Sometimes even a compiler can influences the benchmark results.
Code layout generated by the compiler: original vs. randomized

Why code layout makes a difference?
If you cannot control the factor, make it random.

30 / 43

Measuring execution time » Multi-level repetition

Multi-level repetition

We have to repeat the experiments to narrow confidence interval
If the variance occurs at higher levels (execution, compilation), we
need to repeat at least at that level.
Repeating at lower level may be cheaper (no execution overhead,
compilation overhead, etc.)

Time can be saved by repeating at lower levels.

How to find required number of repetitions at each level to reach
given confidence interval?
Can be formulated mathematically.

31 / 43

Measuring execution time » Multi-level repetition

Notation

Levels
Lowest level (iteration) = 1
Highest level (e.g. compilation) = n

Initial experiment
bold letters
r1, c1

Real experiment
normal letters
r1, c1

32 / 43

Measuring execution time » Multi-level repetition

Initial experiment

Goal is to find the required number of iterations at each level.
Select number of repetitions (exclusive of warm-up) r1, r2, . . . to be
arbitrary but sufficient value, say 20.
Gather the cost of repetition at each level (time added exclusively by
that level, e.g. compile time)

c1 iteration duration
c2 time to gen an execution (time to independent state)
c3 compilation time

Measurement times: Yjn...j1 , j1 = 1 . . . r1, j2 = 1 . . . r2, . . .
Calculate arithmetic means for different levels:
Ȳjn•···•

33 / 43

Measuring execution time » Multi-level repetition

Variance estimators

After initial experiments, n unbiased variance estimators T2
1, . . . ,T

2
n is

calculated
They describe how much each level contributes independently to variability in
the results.
Start with calculating S2

i – biased estimator of the variance at each level
i , 1 ≤ i ≤ n:

S2
i =

1∏n
k=i+1 rk

1
ri − 1

rn∑
jn=1

· · ·
ri∑

ji=1

(
Ȳjn...ji•···• − Ȳjn...ji+1•···•

)2
Then obtain T 2

i :

T 2
1 = S2

1

∀i , 1 < i ≤ n,T 2
i = S2

i −
S2
i−1

ri−1

If T 2
i ≤ 0, this level induces little variation and repetitions can be skipped.

34 / 43

Measuring execution time » Multi-level repetition

Real Experiment: Confidence Interval

Optimum number of repetitions at different levels r1, . . . , rn−1 can be
calculated as:

∀i , 1 ≤ i < n, ri =

⌈√
ci+1

ci

T 2
i

T 2
i+1

⌉
Then recalculate: S2

n and Ȳjn•···• as before but with data from real
experiment.
Asymptotic confidence interval with confidence (1− α) is:

Ȳ ± t1−α
2 ,ν

√
S2
n

rn

where t1−α
2 ,ν

is (1− α
2)-quantile of the t-distribution with ν = rn − 1

degrees of freedom.

35 / 43

Measuring execution time » Multi-level repetition

Real Experiment: Confidence Interval

Optimum number of repetitions at different levels r1, . . . , rn−1 can be
calculated as:

∀i , 1 ≤ i < n, ri =

⌈√
ci+1

ci

T 2
i

T 2
i+1

⌉
Then recalculate: S2

n and Ȳjn•···• as before but with data from real
experiment.
Asymptotic confidence interval with confidence (1− α) is:

Ȳ ± t1−α
2 ,ν

√
S2
n

rn

where t1−α
2 ,ν

is (1− α
2)-quantile of the t-distribution with ν = rn − 1

degrees of freedom.

36 / 43

Measuring execution time » Multi-level repetition

Recommendation

For each benchmark/VM/platform, conduct a
dimensioning experiment to establish the optimal
repetition counts for each but the top level of the

real experiment. Re-dimension only if the
benchmark/VM/platform changes.

37 / 43

Measuring speedup

Outline

1 Measuring execution time
Repeating iterations
Repeating executions
Repeating compilation
Multi-level repetition

2 Measuring speedup

38 / 43

Measuring speedup

Measuring speedup

Speedup is a ratio of two execution times (random variables)
What is the speedup confidence interval?
How many times to repeat the speedup experiments?

39 / 43

Measuring speedup

Speedup confidence interval

Ȳ – old system execution time
Ȳ ′ – new system execution time
Speedup: Ȳ ′/Ȳ

Ȳ · Ȳ ′ ±
√

(Ȳ · Ȳ ′)2 − (Ȳ 2 − h2)(Ȳ ′2 − h′2)

Ȳ 2 − h2

h =

√
t2α
2 ,ν

S2
n

rn
h′ =

√
t2α
2 ,ν

S ′2n
rn

40 / 43

Measuring speedup

Repetition count

Relation of confidence interval of the speedup to confidence interval
on individual measurements:

e ≈ Ȳ ′

Ȳ

√
e2 + e ′2

e, e ′ half-width of the old resp. new confidence interval

41 / 43

Measuring speedup

Recommendation

Always provide effect size confidence intervals for
results. Either for single systems or for speedups.

42 / 43

Measuring speedup

References

Kalibera, Tomas and Jones, Richard E. (2013) Rigorous
Benchmarking in Reasonable Time. In: ACM SIGPLAN
International Symposium on Memory Management (ISMM 2013),
20–12 June, 2013, Seattle, Washington, USA.
http://kar.kent.ac.uk/33611/

43 / 43

http://kar.kent.ac.uk/33611/

	Measuring execution time
	Repeating iterations
	Repeating executions
	Repeating compilation
	Multi-level repetition

	Measuring speedup

