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Pairwise alignment: 

task definition 

Given 

– a pair of sequences (DNA or protein) 

– a method for scoring a candidate alignment 

 

Do 

– determine the correspondences between 

substrings in the sequences such that the 

similarity score is maximized 



Protein alignment example 

Olivera et al., PNAS 95:6419-6424, 1998 

Alignment of the PhaK protein 

from Pseudomonas putida and 

OprD protein from 

Pseudomonas aeruginos 

The role of homology in alignment 

• homology: similarity due to descent from a common 

ancestor 

 

• often we can infer homology from similarity 

 

• thus we can sometimes infer structure/function from 

sequence similarity 



Homology example:  

evolution of the globins 

Homology 

• homologous sequences can be divided into two groups 

 

– orthologous sequences: sequences that differ 

because they are found in different species  (e.g. 

human a-globin and mouse a-globin)  

 

– paralogous sequences: sequences that differ 

because of a gene duplication event (e.g. human a-

globin and human b-globin, various versions of both ) 



DNA sequence edits 

• substitutions:  ACGA          AGGA 

 

• insertions:  ACGA          ACCGGAGA 

 

• deletions:  ACGGAGA          AGA 

 

• transpositions:  ACGGAGA          AAGCGGA 

 

• inversions:  ACGGAGA          ACTCCGA 

Mismatches and gaps 

• substitutions in homologous sequences result in 

mismatches in an alignment 

 

• insertions/deletions in homologous sequences result 

in mismatches in an alignment 

 

CA--GATTCGAAT 

CGCCGATT---AT 
gap mismatch 



Alignment scales 

• for short DNA sequences (gene scale) we will 
generally only consider 

– substitutions 

– insertions/deletions 

 

• for longer DNA sequences (genome scale) we will 
consider additional events 

– transpositions 

– inversions 

 

• in this course we will focus on the case of short 
sequences 

Insertions/deletions and  

protein structure 

loop structures:  

insertions/deletions 

here not so significant 

• Why is it that two “similar” sequences may have large 

insertions/deletions? 

– some insertions and deletions may not 

significantly affect the structure of a protein 

 

 



Example alignment: globins 

• figure at right shows prototypical 

structure of globins 

 

• figure below shows part of 

alignment for 8 globins 

Issues in sequence alignment 

• the sequences we’re comparing typically differ in 

length 

 

• there may be only a relatively small region in the 

sequences that matches 

 

• we want to allow partial matches (i.e. some amino 

acid pairs are more substitutable than others) 

 

• variable length regions may have been 

inserted/deleted from the common ancestral 

sequence 



Types of alignment 

• global: find best match of both sequences in their 

entirety 

 

• local: find best subsequence match 

 

• semi-global: find best match without penalizing gaps 

on the ends of the alignment 

Scoring an alignment:  

what is needed? 

• substitution matrix 

– s(a,b) indicates score of aligning character a with 

character b 

 

• gap penalty function 

– w(g) indicates cost of a gap of length g 



Blosum 62 substitution matrix 

Linear gap penalty function 

• different gap penalty functions require somewhat different 

dynamic programming algorithms 

 

• the simplest case is when a linear gap function is used 



w ( g )   g  d

 where d is a constant 

 

• we’ll start by considering this case 



Scoring an alignment 

• the score of an alignment is the sum of the scores for 

pairs of aligned characters plus the scores for gaps 

 

• example: given the following alignment 

 

 VAHV---D--DMPNALSALSDLHAHKL 

 AIQLQVTGVVVTDATLKNLGSVHVSKG 

 

• we would score it by                                                          

s(V,A) + s(A,I) + s(H,Q) + s(V,L) – 3d + s(D,G) – 2d 

… 

  

The space of global alignments 

• some possible global alignments for ELV and VIS 

ELV 

VIS 

-ELV 

VIS- 

--ELV 

VIS-- 

ELV- 

-VIS 

ELV-- 

--VIS 

E-LV 

VIS- 

EL-V 

-VIS 

• Can we find the highest scoring alignment by enumerating 

all possible alignments and picking the best? 



Number of possible alignments 

• given sequences of length m and n 

 

• assume we don’t count as distinct           and 

 

• we can have as few as 0 and as many as min{m, 
n} aligned pairs 

 

• therefore the number of possible alignments is 
given by 
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Number of possible alignments 

• there are 
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 possible global alignments for 2 sequences of length n 

 

• e.g. two sequences of length 100 have              possible 

alignments 

 

• but we can use dynamic programming to find an optimal 

alignment efficiently 

77
10



Pairwise alignment via  

dynamic programming 

• first algorithm by Needleman & Wunsch,                                              

Journal of Molecular Biology, 1970 

 

• dynamic programming: solve an instance of a 

problem by taking advantage of computed solutions 

for smaller subparts of the problem 

 

• determine best alignment of two sequences by 

determining best alignment of all prefixes of the 

sequences 

Dynamic programming idea 
• consider last step in computing alignment of               
AAAC with AGC 

 

• three possible options; in each we’ll choose a 

different pairing for end of alignment, and add this to 

best alignment of previous characters 

 
AAA 

C AG 

C AAAC 

C AG 

- 

AAA 

- AGC 

C consider best 

alignment of  

these prefixes 

score of 

aligning 

this pair 
+ 



Dynamic programming idea 

• given an n-character sequence x, and an m-character 

sequence y 

 

• construct an (n+1)  (m+1) matrix F 

 

• F ( i, j ) = score of the best alignment of  x[1…i ] with  y[1…j ] 

A 

A 

C A G 

A 

C 

score of best alignment of 

AAA to AG 

DP algorithm for global alignment with 

linear gap penalty 

• one way to specify the DP is in terms of its 

recurrence relation: 



F ( i, j )  max

F ( i  1, j  1)  s( x
i
, y

j
)

F ( i  1, j )  d

F ( i, j  1)  d











Initializing matrix: global alignment with 

linear gap penalty 

A -d 

A -2d 

C A G 

A -3d 

C -4d 

0 -3d -d -2d 

DP algorithm sketch:  

global alignment 

• initialize first row and column of matrix 

 

• fill in rest of matrix from top to bottom, left to right 

 

• for each F ( i, j ), save pointer(s) to cell(s) that 

resulted in best score 

 

• F (m, n) holds the optimal alignment score; trace 

pointers back from F (m, n) to F (0, 0) to recover 

alignment 



Global alignment example 

• suppose we choose the following scoring scheme: 

  

 +1 

 -1 

 d (penalty for aligning with a gap) = 2 

),(
ii
yxs

ii
yx when  

ii
yx when  

Global alignment example 

A -2 

A -4 

C A G 

A -6 

C -8 

0 -6 -2 -4 

1 -3 -1 

0 -2 

-2 -1 

-5 -4 -1 

-1 

-3 

x: 

y: 

A 

- 

A 

G 

A 

A 

C 

C 

one optimal alignment 



DP comments 

• works for either DNA or protein sequences, although 

the substitution matrices used differ 

 

• finds an optimal alignment 

 

• the exact algorithm (and computational complexity) 

depends on gap penalty function (we’ll come back to 

this issue) 

Equally optimal alignments 

• many optimal alignments may exist for a given pair of 

sequences 

• can use preference ordering over paths when doing 

traceback 

highroad lowroad 1 

2 

3 1 

2 

3 

• highroad and lowroad alignments show the two most 

different optimal alignments 



Highroad & lowroad alignments 

A -2 

A -4 

C A G 

A -6 

C -8 

0 -6 -2 -4 

1 -1 -3 

-1 0 -2 

-3 -2 -1 

-5 -4 -1 

x: 

y: 

A 

G 

A 

A 

A 

- 

C 

C 

lowroad alignment 

x: 

y: 

A 

- 

A 

G 

A 

A 

C 

C 

highroad alignment 

Computational complexity 

• initialization: O(m), O(n) where sequence lengths are 

m, n 

• filling in rest of matrix: O(mn) 

• traceback: O(m + n) 

• hence, if sequences have nearly same length, the 

computational complexity is 

)(
2
nO



Local alignment 

• so far we have discussed global alignment, where we 

are looking for best match between sequences from 

one end to the other 

 

• often we want a local alignment, the best match 

between subsequences of x and y 

Example local alignment 

• aligning my name against the sequence for 

dTDP-4-dehydrorhamnose reductase from the 

bacterium opitutus terrae  

…LSGAYHLAASGHTSWHGFASAIIDLMPLDARKCRAVEAIT…  
MARKCRAVEN  



Local alignment motivation 

• useful for comparing protein sequences that share a 

common motif  (conserved pattern) or domain 

(independently folded unit) but differ elsewhere 

 

• useful for comparing DNA sequences that share a 

similar motif but differ elsewhere 

 

• useful for comparing protein sequences against 

genomic DNA sequences (long stretches of 

uncharacterized sequence) 

 

• more sensitive when comparing highly diverged 

sequences 

Local alignment DP algorithm 

• original formulation: Smith & Waterman, Journal of 

Molecular Biology, 1981 

 

• interpretation of array values is somewhat different:  

F ( i, j ) = score of the best alignment of a suffix of 

x[1…i ] and a suffix of  y[1…j ] 



Local alignment DP algorithm 



F ( i, j )  max

F ( i  1, j  1)  s( x
i
, y

j
)

F ( i  1, j )  d

F ( i, j  1)  d

0














• the recurrence relation is slightly different than for 

global algorithm 

Local alignment DP algorithm 

• initialization: first row and first column initialized with 0’s 

 

• traceback: 

– find maximum value of F(i, j); can be anywhere in 

matrix 

– stop when we get to a cell with value 0 



Local alignment example 

0 

0 

0 0 0 0 

0 0 0 0 

0 

T 

T 

A 

A 

G 

0 

0 

0 

0 

0 

0 0 

G 

0 

A 

0 

A 

0 

A 

1 

0 

1 

1 2 

3 

1 

1 

x: 

y: 

G 

G 

A 

A 

A 

A 

1 

More on gap penalty functions 

• a gap of length k is more probable than k gaps of 
length 1 

– a gap may be due to a single mutational event that 
inserted/deleted a stretch of characters 

– separated gaps are probably due to distinct 
mutational events 

 

• a linear gap penalty function treats these cases the 
same 

 

• it is more common to use gap penalty functions 
involving two terms 

– a penalty d associated with opening a gap 

– a smaller penalty e for extending the gap 



Gap penalty functions 

linear 

affine 



w ( g )   g  d

  



w ( g ) 
 d  ( g  1)e ,    g  1

0,    g  0





Dynamic programming for the  

affine gap penalty case 

• to do in              time, need 3 matrices instead of 1 

),( jiM

),( jiI
x

),( jiI
y

best score given that y[ j ] is 

aligned to a gap 

best score given that x[ i ] is 

aligned to a gap 

best score given that x[ i ] is 

aligned to y[ j ] 

)(
2
nO



Global alignment DP for the  

affine gap penalty case 
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Global alignment DP for the  

affine gap penalty case 

  



M (0, 0 )  0

I
x
( i,  0 )   d  ( i  1)e      for i  0

I
y
(0, j )   d  ( j  1)e      for j  0

other cells in top row and leftmost column  

• initialization 

 

• traceback 

– start at largest of 

– stop at 

– note that pointers may traverse all three matrices 

),(),,(),,( nmInmInmM
yx



M (0, 0 )



Global alignment example  
(affine gap penalty) 

M : 0 

Ix  : -∞ 

Iy  : -∞ 

 

-∞ 

-∞ 

-∞ 

-∞ 

-5 

-∞ 

-∞ 

-7 

-∞ 

-∞ 

-6 

-∞ 

-∞ 

-8 

-∞ 

-4 

-∞ 

-∞ 

-5 

-∞ 

 
-∞ 

-6 

-∞ 

 

-4 

1 

-∞ 

-∞ 

-3 

-3 

-∞ 

-6 

-4 

-∞ 

-4 

-4 

-10 

-4 

-∞ 

-4 

-7 

-∞ 

-5 

-8 

-∞ 

-6 

-5 

-∞ 

-3 

0 

-9 

-7 

-2 

-8 

-4 

-1 

-6 

-8 

-5 

-11 

-5 

-3 

-9 

-5 

-6 

-12 

-6 

-4 

-10 

-6 

A C A C T 

A 

A 

T 

d = 4, e = 1 

Global alignment example (continued)  

M : 0 

Ix  : -∞ 

Iy  : -∞ 

-∞ 

-∞ 

-4 

-∞ 

-∞ 

-5 

-∞ 

-∞ 

-7 

-∞ 

-∞ 

-6 

-∞ 

-∞ 

-8 

1 

-∞ 

-∞ 

-5 

-∞ 

-3 

-7 

-∞ 

-5 

-4 

-∞ 

-4 

-8 

-∞ 

-6 

-∞ 

-4 

-∞ 

-3 

-3 

-∞ 

0 

-9 

-7 

-5 

-11 

-5 

-2 

-8 

-4 

-6 

-12 

-6 

-∞ 

-5 

-∞ 

 
-6 

-4 

-∞ 

-4 

-4 

-10 

-3 

-9 

-5 

-1 

-6 

-8 

-4 

-10 

-6 

-∞ 

-6 

-∞ 

 

A C A C T 

A 

A 

T 

ACACT 

--AAT 

ACACT 

A--AT 

ACACT 

AA--T 
three optimal alignments: 



Why three matrices are needed  

W F P 

F 

W 

0 -5 -6 -7 

-5 1 1 -4 

-6 6 2 0 

s(F, W) = 1      s(W, W) = 11 

s(F, F) = 6       s(W, P) = -4 

s(F, P) = -4 

• consider aligning the sequences WFP and FW using d = 5, e = 1 and 

the following values from the BLOSUM-62 substitution matrix: 

• the matrix shows the highest-scoring partial alignment for each pair 

of prefixes 

-WFP 

FW-- 
optimal alignment 

best alignment of these prefixes; 

to get optimal alignment,  

need to also remember 

WF 

FW 
-WF 

FW- 

Local alignment DP for the  

affine gap penalty case 
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Local alignment DP for the  

affine gap penalty case 









 , ofcolumn leftmost  and row in top cells

0),0(

0)0,(

0)0,0(
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II

jM

iM

M

• initialization 

• traceback 

– start at largest 

– stop at 

),( jiM

0),( jiM

Gap penalty functions 

• linear: 

 

• affine: 

 

 

 

• convex: as gap length increases, magnitude of 

penalty for each additional character decreases 

 

e.g. 



w ( g )   g  d

  



w ( g ) 
 d  ( g  1)e ,    g  1

0,    g  0







w ( g )   d  log( g )  e



Computational complexity and gap 

penalty functions 

linear:  

)(
2
nO

)(
3
nO
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2
nO

affine:  

general:  

convex: )log(
2

nnO

  assuming two sequences of length n 

Alignment (global) with general gap 

penalty function 
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consider every previous 

element in the row 

consider every previous 

element in the column 

why the general case has time complexity O(n3) 

k ranges over previous 

coordinates 



Pairwise alignment summary 

• the number of possible alignments is exponential in 

the length of sequences being aligned 

• dynamic programming can find optimal-scoring 

alignments in polynomial time 

• the specifics of the DP depend on 

– local vs. global alignment 

– gap penalty function 

• affine penalty functions are most commonly used 


