Pairwise Sequence Alignment

BMI/CS 576
www.biostat.wisc.edu/bmi576/
Mark Craven
craven@biostat.wisc.edu

Pairwise alignment: task definition

Given

- a pair of sequences (DNA or protein)
- a method for scoring a candidate alignment

Do

- determine the correspondences between substrings in the sequences such that the similarity score is maximized

Protein alignment example

OprD	MKVMKWSAIALAVSAGSTQFAVADAFVS---DQAEAKGFIEDSSLDLLLR	47	
Phak	MSGK-------TTTMNRTHFUSAACLATLALPVPAMADFIGDSHARLELR	43	
	*.*** *.**.** ***		
OprD	NYYFNRDGKSGSGDRV---DWTQGFLTTYESGFTQGTVGFGVDAFGYLGL	94	
Phak	NHYINRDFRQSNAPQAKAEEWGQGETAKLESGETEGPVGFGVDAMGQLGI	93	
	..******** .. *****,********.***.		
OprD	KLDGTSDKTGTGNLPVMNDGK-PRDDYSRAGGAVKVRISKTMLKWGEMQP	143	
PhaK	KLDSSRDRRNTGLLPFGPNSHEPVDDYSELGLTGKIRVSKSTLRLGTLQP	143	Alignment of the PhaK protein
OprD	TAPVFAAGGSRLEPQTATGFQLQSSEFEGLDLEAGHFTEGKEPTTVKSRG	193	from Pseudomonas putida and
Phak	ILPVVVYNDTRLLASTEQGGGLLTSQDVDGLTFNAGRLTKANLRDS-SGRD	192	OprD protein from
CprD	ELYATYAGETAKSADEIGGGRYAITDNLSASLYGAELEDI YRQYYLNSNYT	243	Pseudomonas aeruginos
Phak	DI--GYGAASSDHLDEGGGSYAITPQTSVSYYYAKLEDIYRQQEVGLIDT	240	
OprD	IPLASDQSLGFDFNIYRTNDEGKAKAGDISNTTWSLAAAYTLD--AHTET	291	
Phak		288	
OprD	LAYQKVHGDQPFDYIGFGRNGSGAGGDSIFLANSVQYSDENGPGEKSWQA	341	
PhaK	ATWQQMSGDSAFPFVN-------GGDP-FTVNLVTYNTTFTRAGLDSWQV	329	
OprD	RYDLNLASYGVPGLTFMVRYINGKDIDGTKMSDNNVGYKNYGYGEDGKHH	391	
Phak	RYDYDEVAMGIPGLSFMTRYTDGRHAETATVSN------------GRER	366	
	*** ****.**.**..**.....*. ${ }^{*}$....		
OprD	ETNLEAKYVVQSGPAKDLSFRIRQAWHRANADQGEGDQNEFRLIVDYPLS	441	
Phak	ERDTDITYVIQSGPFFKDVSLRWRNVTFRSGNGLTNAVDEN-RLIIGYTLA	415	
OprD	IL 443		
Phak	LW 417		

The role of homology in alignment

- homology: similarity due to descent from a common ancestor
- often we can infer homology from similarity
- thus we can sometimes infer structure/function from sequence similarity

Homology example: evolution of the globins

Homology

- homologous sequences can be divided into two groups
- orthologous sequences: sequences that differ because they are found in different species (e.g. human α-globin and mouse α-globin)
- paralogous sequences: sequences that differ because of a gene duplication event (e.g. human α globin and human β-globin, various versions of both)

DNA sequence edits

- substitutions: ACGA \Rightarrow AGGA
- insertions: ACGA \rightarrow ACCGGAGA
- deletions: ACGGAGA \rightarrow AGA
- transpositions: ACGGAGA \rightarrow AAGCGGA
- inversions: ACGGAGA \rightarrow ACTCCGA

Mismatches and gaps

- substitutions in homologous sequences result in mismatches in an alignment
- insertions/deletions in homologous sequences result in mismatches in an alignment

$$
\begin{aligned}
& \text { CA--GATTCGAAT } \\
& \text { CGCCGATT---AT } \\
& \text { mismatch } \\
& \text { gap }
\end{aligned}
$$

Alignment scales

- for short DNA sequences (gene scale) we will generally only consider
- substitutions
- insertions/deletions
- for longer DNA sequences (genome scale) we will consider additional events
- transpositions
- inversions
- in this course we will focus on the case of short sequences

Insertions/deletions and protein structure

- Why is it that two "similar" sequences may have large insertions/deletions?
- some insertions and deletions may not significantly affect the structure of a protein

loop structures:
insertions/deletions
here not so significant

Example alignment: globins

- figure at right shows prototypical structure of globins
- figure below shows part of alignment for 8 globins

Issues in sequence alignment

- the sequences we're comparing typically differ in length
- there may be only a relatively small region in the sequences that matches
- we want to allow partial matches (i.e. some amino acid pairs are more substitutable than others)
- variable length regions may have been inserted/deleted from the common ancestral sequence

Types of alignment

- global: find best match of both sequences in their entirety
- local: find best subsequence match
- semi-global: find best match without penalizing gaps on the ends of the alignment

Scoring an alignment: what is needed?

- substitution matrix
$-s(a, b)$ indicates score of aligning character a with character b
- gap penalty function
- $w(g)$ indicates cost of a gap of length g

Blosum 62 substitution matrix

Linear gap penalty function

- different gap penalty functions require somewhat different dynamic programming algorithms
- the simplest case is when a linear gap function is used

$$
w(g)=-g \times d
$$

where d is a constant

- we'll start by considering this case

Scoring an alignment

- the score of an alignment is the sum of the scores for pairs of aligned characters plus the scores for gaps
- example: given the following alignment

VAHV---D--DMPNALSALSDLHAHKL
 AIQLQVTGVVVTDATLKNLGSVHVSKG

- we would score it by

$$
\mathrm{s}(\mathrm{~V}, \mathrm{~A})+\mathrm{s}(\mathrm{~A}, \mathrm{I})+\mathrm{s}(\mathrm{H}, \mathrm{Q})+\mathrm{s}(\mathrm{~V}, \mathrm{~L})-3 d+\mathrm{s}(\mathrm{D}, \mathrm{G})-2 \mathrm{~d}
$$

The space of global alignments

- some possible global alignments for ELV and VIS

ELV	-ELV	--ELV	ELV-
VIS	VIS-	VIS--	-VIS

E-LV	ELV--	EL-V
VIS-	$--V I S$	$-V I S$

- Can we find the highest scoring alignment by enumerating all possible alignments and picking the best?

Number of possible alignments

- given sequences of length m and n
- assume we don't count as distinct $\begin{aligned} & \text { C- } \\ & -\mathrm{G}\end{aligned}$ and $\begin{gathered}-\mathrm{C} \\ \mathrm{G}-\end{gathered}$
- we can have as few as 0 and as many as $\min \{m$, $n\}$ aligned pairs
- therefore the number of possible alignments is given by

$$
\sum_{k=0}^{\min \{m, n\}}\left(\begin{array}{l}
n
\end{array}\right)\binom{m}{k}\binom{n}{k}=\binom{n+m}{n}
$$

Number of possible alignments

- there are

$$
\binom{2 n}{n}=\frac{(2 n)!}{(n!)^{2}} \approx \frac{2^{2 n}}{\sqrt{\pi n}}
$$

possible global alignments for 2 sequences of length n

- e.g. two sequences of length 100 have $\approx 10{ }^{77}$ possible alignments
- but we can use dynamic programming to find an optimal alignment efficiently

Pairwise alignment via dynamic programming

- first algorithm by Needleman \& Wunsch, Journal of Molecular Biology, 1970
- dynamic programming: solve an instance of a problem by taking advantage of computed solutions for smaller subparts of the problem
- determine best alignment of two sequences by determining best alignment of all prefixes of the sequences

Dynamic programming idea

- consider last step in computing alignment of AAAC with AGC
- three possible options; in each we'll choose a different pairing for end of alignment, and add this to best alignment of previous characters

Dynamic programming idea

- given an n-character sequence x, and an m-character sequence y
- construct an $(n+1) \times(m+1)$ matrix F
- $F(i, j)=$ score of the best alignment of $x[1 \ldots i]$ with $y[1 \ldots j]$

DP algorithm for global alignment with linear gap penalty

- one way to specify the DP is in terms of its recurrence relation:

$$
F(i, j)=\max \left\{\begin{array}{l}
F(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
F(i-1, j)-d \\
F(i, j-1)-d
\end{array}\right.
$$

Initializing matrix: global alignment with linear gap penalty

DP algorithm sketch:
 global alignment

- initialize first row and column of matrix
- fill in rest of matrix from top to bottom, left to right
- for each $F(i, j)$, save pointer(s) to cell(s) that resulted in best score
- $F(m, n)$ holds the optimal alignment score; trace pointers back from $F(m, n)$ to $F(0,0)$ to recover alignment

Global alignment example

- suppose we choose the following scoring scheme:

$$
\begin{aligned}
& s\left(x_{i}, y_{i}\right)= \\
& +1 \text { when } x_{i}=y_{i} \\
& \text {-1 when } x_{i} \neq y_{i}
\end{aligned}
$$

d (penalty for aligning with a gap) $=2$

Global alignment example

one optimal alignment

one optimal alignment					
$\mathrm{x}:$	A	A	A	C	
$y:$	A	G	-	C	

DP comments

- works for either DNA or protein sequences, although the substitution matrices used differ
- finds an optimal alignment
- the exact algorithm (and computational complexity) depends on gap penalty function (we'll come back to this issue)

Equally optimal alignments

- many optimal alignments may exist for a given pair of sequences
- can use preference ordering over paths when doing traceback

- highroad and lowroad alignments show the two most different optimal alignments

Highroad \& lowroad alignments

Computational complexity

- initialization: $O(m), O(n)$ where sequence lengths are m, n
- filling in rest of matrix: $O(m n)$
- traceback: $O(m+n)$
- hence, if sequences have nearly same length, the computational complexity is

$$
O\left(n^{2}\right)
$$

Local alignment

- so far we have discussed global alignment, where we are looking for best match between sequences from one end to the other
- often we want a local alignment, the best match between subsequences of x and y

Example local alignment

- aligning my name against the sequence for dTDP-4-dehydrorhamnose reductase from the bacterium opitutus terrae

Local alignment motivation

- useful for comparing protein sequences that share a common motif (conserved pattern) or domain (independently folded unit) but differ elsewhere
- useful for comparing DNA sequences that share a similar motif but differ elsewhere
- useful for comparing protein sequences against genomic DNA sequences (long stretches of uncharacterized sequence)
- more sensitive when comparing highly diverged sequences

Local alignment DP algorithm

- original formulation: Smith \& Waterman, Journal of Molecular Biology, 1981
- interpretation of array values is somewhat different: $F(i, j)=$ score of the best alignment of a suffix of $x[1 \ldots i]$ and a suffix of $y[1 \ldots j]$

Local alignment DP algorithm

- the recurrence relation is slightly different than for global algorithm

$$
F(i, j)=\max \left\{\begin{array}{l}
F(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
F(i-1, j)-d \\
F(i, j-1)-d \\
0
\end{array}\right.
$$

Local alignment DP algorithm

- initialization: first row and first column initialized with 0's
- traceback:
- find maximum value of $F(i, j)$; can be anywhere in matrix
- stop when we get to a cell with value 0

Local alignment example

			A		A	G	A
	0	0	0		0	0	0
T		0	0		0	0	0
T		0	0		0	0	0
A		0	1		1	0	
A		0	1		2	0	1
G		0	0		0	3	
		A		G			
		A	A	G			

More on gap penalty functions

- a gap of length k is more probable than k gaps of length 1
- a gap may be due to a single mutational event that inserted/deleted a stretch of characters
- separated gaps are probably due to distinct mutational events
- a linear gap penalty function treats these cases the same
- it is more common to use gap penalty functions involving two terms
- a penalty d associated with opening a gap
- a smaller penalty e for extending the gap

Gap penalty functions

linear

$$
w(g)=-g \times d
$$

affine

$$
w(g)=\left\{\begin{array}{l}
-d-(g-1) e, \quad g \geq 1 \\
0, \quad g=0
\end{array}\right.
$$

Dynamic programming for the affine gap penalty case

- to do in $O\left(n^{2}\right)$ time, need 3 matrices instead of 1

$$
\begin{array}{ll}
M(i, j) & \begin{array}{l}
\text { best score given that } x[i] \text { is } \\
\text { aligned to } y[j]
\end{array}
\end{array}
$$

$I_{x}(i, j) \quad \begin{aligned} & \text { best score given that } x[i] \text { is } \\ & \text { aligned to a gap }\end{aligned}$
$I_{y}(i, j) \quad \begin{aligned} & \text { best score given that } y[j] \text { is } \\ & \text { aligned to a gap }\end{aligned}$

Global alignment DP for the affine gap penalty case

$$
\begin{aligned}
& M(i, j)=\max \left\{\begin{array}{l}
M(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
I_{x}(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
I_{y}(i-1, j-1)+s\left(x_{i}, y_{j}\right)
\end{array}\right. \\
& I_{x}(i, j)=\max \left\{\begin{array}{l}
M(i-1, j)-d \\
I_{x}(i-1, j)-e
\end{array}\right. \\
& I_{y}(i, j)=\max \left\{\begin{array}{l}
M(i, j-1)-d \\
I_{y}(i, j-1)-e
\end{array}\right.
\end{aligned}
$$

Global alignment DP for the affine gap penalty case

- initialization

$$
\begin{aligned}
& M(0,0)=0 \\
& I_{x}(i, 0)=-d-(i-1) e \\
& I_{y}(0, j)=-d-(j-1) e \\
& \text { for } \\
& \quad \text { for }
\end{aligned} \quad j>0
$$

other cells in top row and leftmost column $=-\infty$

- traceback
- start at largest of $M(m, n), I_{x}(m, n), I_{y}(m, n)$
- stop at $M(0,0)$
- note that pointers may traverse all three matrices

Global alignment example (affine gap penalty)

$d=4, e=1$

A

A

Global alignment example (continued)

ACACT	ACACT	ACACT
AA--T	A--AT	$--A A T$

Why three matrices are needed

- consider aligning the sequences WFP and FW using $d=5, e=1$ and the following values from the BLOSUM-62 substitution matrix:

$$
\begin{array}{ll}
\mathrm{S}(\mathrm{~F}, \mathrm{~W})=1 & \mathrm{~s}(\mathrm{~W}, \mathrm{~W})=11 \\
\mathrm{~S}(\mathrm{~F}, \mathrm{~F})=6 & \mathrm{~S}(\mathrm{~W}, \mathrm{P})=-4 \\
\mathrm{~S}(\mathrm{~F}, \mathrm{P})=-4 &
\end{array}
$$

- the matrix shows the highest-scoring partial alignment for each pair of prefixes

Local alignment DP for the affine gap penalty case

$$
\left.\begin{array}{l}
M(i, j)=\max \left\{\begin{array}{l}
M(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
I_{x}(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
I_{y}(i-1, j-1)+s\left(x_{i}, y_{j}\right)
\end{array}\right. \\
0
\end{array}\right\} \begin{aligned}
& I_{x}(i, j)=\max \left\{\begin{array}{l}
M(i-1, j)-d \\
I_{x}(i-1, j)-e
\end{array}\right. \\
& I_{y}(i, j)=\max \left\{\begin{array}{l}
M(i, j-1)-d \\
I_{y}(i, j-1)-e
\end{array}\right.
\end{aligned}
$$

Local alignment DP for the affine gap penalty case

- initialization
$M(0,0)=0$
$M(i, 0)=0$
$M(0, j)=0$
cells in top row and leftmost column of $I_{x}, I_{y}=-\infty$
- traceback
- start at largest $M(i, j)$
- stop at $M(i, j)=0$

Gap penalty functions

- linear:

$$
w(g)=-g \times d
$$

- affine:

$$
w(g)=\left\{\begin{array}{l}
-d-(g-1) e, \quad g \geq 1 \\
0, \quad g=0
\end{array}\right.
$$

- convex: as gap length increases, magnitude of penalty for each additional character decreases

$$
\text { e.g. } \quad w(g)=-d-\log (g) \times e
$$

Computational complexity and gap penalty functions

linear: $O\left(n^{2}\right)$
affine: $O\left(n^{2}\right)$
convex:
$O\left(n^{2} \log n\right)$
general:
$O\left(n^{3}\right)$

* assuming two sequences of length n

Alignment (global) with general gap penalty function

why the general case has time complexity $O\left(n^{3}\right)$

k ranges over previous coordinates
consider every previous element in the row

Pairwise alignment summary

- the number of possible alignments is exponential in the length of sequences being aligned
- dynamic programming can find optimal-scoring alignments in polynomial time
- the specifics of the DP depend on
- local vs. global alignment
- gap penalty function
- affine penalty functions are most commonly used

