
Pairwise Sequence Alignment

BMI/CS 576
www.biostat.wisc.edu/bmi576/

Mark Craven
craven@biostat.wisc.edu

Pairwise alignment:

task definition

Given

– a pair of sequences (DNA or protein)

– a method for scoring a candidate alignment

Do

– determine the correspondences between

substrings in the sequences such that the

similarity score is maximized

Protein alignment example

Olivera et al., PNAS 95:6419-6424, 1998

Alignment of the PhaK protein

from Pseudomonas putida and

OprD protein from

Pseudomonas aeruginos

The role of homology in alignment

• homology: similarity due to descent from a common

ancestor

• often we can infer homology from similarity

• thus we can sometimes infer structure/function from

sequence similarity

Homology example:

evolution of the globins

Homology

• homologous sequences can be divided into two groups

– orthologous sequences: sequences that differ

because they are found in different species (e.g.

human a-globin and mouse a-globin)

– paralogous sequences: sequences that differ

because of a gene duplication event (e.g. human a-

globin and human b-globin, various versions of both)

DNA sequence edits

• substitutions: ACGA AGGA

• insertions: ACGA ACCGGAGA

• deletions: ACGGAGA AGA

• transpositions: ACGGAGA AAGCGGA

• inversions: ACGGAGA ACTCCGA

Mismatches and gaps

• substitutions in homologous sequences result in

mismatches in an alignment

• insertions/deletions in homologous sequences result

in mismatches in an alignment

CA--GATTCGAAT

CGCCGATT---AT
gap mismatch

Alignment scales

• for short DNA sequences (gene scale) we will
generally only consider

– substitutions

– insertions/deletions

• for longer DNA sequences (genome scale) we will
consider additional events

– transpositions

– inversions

• in this course we will focus on the case of short
sequences

Insertions/deletions and

protein structure

loop structures:

insertions/deletions

here not so significant

• Why is it that two “similar” sequences may have large

insertions/deletions?

– some insertions and deletions may not

significantly affect the structure of a protein

Example alignment: globins

• figure at right shows prototypical

structure of globins

• figure below shows part of

alignment for 8 globins

Issues in sequence alignment

• the sequences we’re comparing typically differ in

length

• there may be only a relatively small region in the

sequences that matches

• we want to allow partial matches (i.e. some amino

acid pairs are more substitutable than others)

• variable length regions may have been

inserted/deleted from the common ancestral

sequence

Types of alignment

• global: find best match of both sequences in their

entirety

• local: find best subsequence match

• semi-global: find best match without penalizing gaps

on the ends of the alignment

Scoring an alignment:

what is needed?

• substitution matrix

– s(a,b) indicates score of aligning character a with

character b

• gap penalty function

– w(g) indicates cost of a gap of length g

Blosum 62 substitution matrix

Linear gap penalty function

• different gap penalty functions require somewhat different

dynamic programming algorithms

• the simplest case is when a linear gap function is used

w (g) g d

 where d is a constant

• we’ll start by considering this case

Scoring an alignment

• the score of an alignment is the sum of the scores for

pairs of aligned characters plus the scores for gaps

• example: given the following alignment

 VAHV---D--DMPNALSALSDLHAHKL

 AIQLQVTGVVVTDATLKNLGSVHVSKG

• we would score it by

s(V,A) + s(A,I) + s(H,Q) + s(V,L) – 3d + s(D,G) – 2d

…

The space of global alignments

• some possible global alignments for ELV and VIS

ELV

VIS

-ELV

VIS-

--ELV

VIS--

ELV-

-VIS

ELV--

--VIS

E-LV

VIS-

EL-V

-VIS

• Can we find the highest scoring alignment by enumerating

all possible alignments and picking the best?

Number of possible alignments

• given sequences of length m and n

• assume we don’t count as distinct and

• we can have as few as 0 and as many as min{m,
n} aligned pairs

• therefore the number of possible alignments is
given by

n

k

k 0

min m ,n

m

k

n m

n

C-

-G

-C

G-

Number of possible alignments

• there are

nn

n

n

n
n

2

2

2

)!(

)!2(2

 possible global alignments for 2 sequences of length n

• e.g. two sequences of length 100 have possible

alignments

• but we can use dynamic programming to find an optimal

alignment efficiently

77
10

Pairwise alignment via

dynamic programming

• first algorithm by Needleman & Wunsch,

Journal of Molecular Biology, 1970

• dynamic programming: solve an instance of a

problem by taking advantage of computed solutions

for smaller subparts of the problem

• determine best alignment of two sequences by

determining best alignment of all prefixes of the

sequences

Dynamic programming idea
• consider last step in computing alignment of
AAAC with AGC

• three possible options; in each we’ll choose a

different pairing for end of alignment, and add this to

best alignment of previous characters

AAA

C AG

C AAAC

C AG

-

AAA

- AGC

C consider best

alignment of

these prefixes

score of

aligning

this pair
+

Dynamic programming idea

• given an n-character sequence x, and an m-character

sequence y

• construct an (n+1) (m+1) matrix F

• F (i, j) = score of the best alignment of x[1…i] with y[1…j]

A

A

C A G

A

C

score of best alignment of

AAA to AG

DP algorithm for global alignment with

linear gap penalty

• one way to specify the DP is in terms of its

recurrence relation:

F (i, j) max

F (i 1, j 1) s(x
i
, y

j
)

F (i 1, j) d

F (i, j 1) d

Initializing matrix: global alignment with

linear gap penalty

A -d

A -2d

C A G

A -3d

C -4d

0 -3d -d -2d

DP algorithm sketch:

global alignment

• initialize first row and column of matrix

• fill in rest of matrix from top to bottom, left to right

• for each F (i, j), save pointer(s) to cell(s) that

resulted in best score

• F (m, n) holds the optimal alignment score; trace

pointers back from F (m, n) to F (0, 0) to recover

alignment

Global alignment example

• suppose we choose the following scoring scheme:

 +1

 -1

 d (penalty for aligning with a gap) = 2

),(
ii
yxs

ii
yx when

ii
yx when

Global alignment example

A -2

A -4

C A G

A -6

C -8

0 -6 -2 -4

1 -3 -1

0 -2

-2 -1

-5 -4 -1

-1

-3

x:

y:

A

-

A

G

A

A

C

C

one optimal alignment

DP comments

• works for either DNA or protein sequences, although

the substitution matrices used differ

• finds an optimal alignment

• the exact algorithm (and computational complexity)

depends on gap penalty function (we’ll come back to

this issue)

Equally optimal alignments

• many optimal alignments may exist for a given pair of

sequences

• can use preference ordering over paths when doing

traceback

highroad lowroad 1

2

3 1

2

3

• highroad and lowroad alignments show the two most

different optimal alignments

Highroad & lowroad alignments

A -2

A -4

C A G

A -6

C -8

0 -6 -2 -4

1 -1 -3

-1 0 -2

-3 -2 -1

-5 -4 -1

x:

y:

A

G

A

A

A

-

C

C

lowroad alignment

x:

y:

A

-

A

G

A

A

C

C

highroad alignment

Computational complexity

• initialization: O(m), O(n) where sequence lengths are

m, n

• filling in rest of matrix: O(mn)

• traceback: O(m + n)

• hence, if sequences have nearly same length, the

computational complexity is

)(
2
nO

Local alignment

• so far we have discussed global alignment, where we

are looking for best match between sequences from

one end to the other

• often we want a local alignment, the best match

between subsequences of x and y

Example local alignment

• aligning my name against the sequence for

dTDP-4-dehydrorhamnose reductase from the

bacterium opitutus terrae

…LSGAYHLAASGHTSWHGFASAIIDLMPLDARKCRAVEAIT…
MARKCRAVEN

Local alignment motivation

• useful for comparing protein sequences that share a

common motif (conserved pattern) or domain

(independently folded unit) but differ elsewhere

• useful for comparing DNA sequences that share a

similar motif but differ elsewhere

• useful for comparing protein sequences against

genomic DNA sequences (long stretches of

uncharacterized sequence)

• more sensitive when comparing highly diverged

sequences

Local alignment DP algorithm

• original formulation: Smith & Waterman, Journal of

Molecular Biology, 1981

• interpretation of array values is somewhat different:

F (i, j) = score of the best alignment of a suffix of

x[1…i] and a suffix of y[1…j]

Local alignment DP algorithm

F (i, j) max

F (i 1, j 1) s(x
i
, y

j
)

F (i 1, j) d

F (i, j 1) d

0

• the recurrence relation is slightly different than for

global algorithm

Local alignment DP algorithm

• initialization: first row and first column initialized with 0’s

• traceback:

– find maximum value of F(i, j); can be anywhere in

matrix

– stop when we get to a cell with value 0

Local alignment example

0

0

0 0 0 0

0 0 0 0

0

T

T

A

A

G

0

0

0

0

0

0 0

G

0

A

0

A

0

A

1

0

1

1 2

3

1

1

x:

y:

G

G

A

A

A

A

1

More on gap penalty functions

• a gap of length k is more probable than k gaps of
length 1

– a gap may be due to a single mutational event that
inserted/deleted a stretch of characters

– separated gaps are probably due to distinct
mutational events

• a linear gap penalty function treats these cases the
same

• it is more common to use gap penalty functions
involving two terms

– a penalty d associated with opening a gap

– a smaller penalty e for extending the gap

Gap penalty functions

linear

affine

w (g) g d

w (g)
 d (g 1)e , g 1

0, g 0

Dynamic programming for the

affine gap penalty case

• to do in time, need 3 matrices instead of 1

),(jiM

),(jiI
x

),(jiI
y

best score given that y[j] is

aligned to a gap

best score given that x[i] is

aligned to a gap

best score given that x[i] is

aligned to y[j]

)(
2
nO

Global alignment DP for the

affine gap penalty case

),()1,1(

),()1,1(

),()1,1(

max),(

ji
y

ji
x

ji

yxsjiI

yxsjiI

yxsjiM

jiM

I
x
(i, j) max

M (i 1, j) d

I
x
(i 1, j) e

I
y
(i, j) max

M (i, j 1) d

I
y
(i, j 1) e

Global alignment DP for the

affine gap penalty case

M (0, 0) 0

I
x
(i, 0) d (i 1)e for i 0

I
y
(0, j) d (j 1)e for j 0

other cells in top row and leftmost column

• initialization

• traceback

– start at largest of

– stop at

– note that pointers may traverse all three matrices

),(),,(),,(nmInmInmM
yx

M (0, 0)

Global alignment example
(affine gap penalty)

M : 0

Ix : -∞

Iy : -∞

-∞

-∞

-∞

-∞

-5

-∞

-∞

-7

-∞

-∞

-6

-∞

-∞

-8

-∞

-4

-∞

-∞

-5

-∞

-∞

-6

-∞

-4

1

-∞

-∞

-3

-3

-∞

-6

-4

-∞

-4

-4

-10

-4

-∞

-4

-7

-∞

-5

-8

-∞

-6

-5

-∞

-3

0

-9

-7

-2

-8

-4

-1

-6

-8

-5

-11

-5

-3

-9

-5

-6

-12

-6

-4

-10

-6

A C A C T

A

A

T

d = 4, e = 1

Global alignment example (continued)

M : 0

Ix : -∞

Iy : -∞

-∞

-∞

-4

-∞

-∞

-5

-∞

-∞

-7

-∞

-∞

-6

-∞

-∞

-8

1

-∞

-∞

-5

-∞

-3

-7

-∞

-5

-4

-∞

-4

-8

-∞

-6

-∞

-4

-∞

-3

-3

-∞

0

-9

-7

-5

-11

-5

-2

-8

-4

-6

-12

-6

-∞

-5

-∞

-6

-4

-∞

-4

-4

-10

-3

-9

-5

-1

-6

-8

-4

-10

-6

-∞

-6

-∞

A C A C T

A

A

T

ACACT

--AAT

ACACT

A--AT

ACACT

AA--T
three optimal alignments:

Why three matrices are needed

W F P

F

W

0 -5 -6 -7

-5 1 1 -4

-6 6 2 0

s(F, W) = 1 s(W, W) = 11

s(F, F) = 6 s(W, P) = -4

s(F, P) = -4

• consider aligning the sequences WFP and FW using d = 5, e = 1 and

the following values from the BLOSUM-62 substitution matrix:

• the matrix shows the highest-scoring partial alignment for each pair

of prefixes

-WFP

FW--
optimal alignment

best alignment of these prefixes;

to get optimal alignment,

need to also remember

WF

FW
-WF

FW-

Local alignment DP for the

affine gap penalty case

0

),()1,1(

),()1,1(

),()1,1(

max),(
ji

y

ji
x

ji

yxsjiI

yxsjiI

yxsjiM

jiM

I
x
(i, j) max

M (i 1, j) d

I
x
(i 1, j) e

I
y
(i, j) max

M (i, j 1) d

I
y
(i, j 1) e

Local alignment DP for the

affine gap penalty case

 , ofcolumn leftmost and row in top cells

0),0(

0)0,(

0)0,0(

yx
II

jM

iM

M

• initialization

• traceback

– start at largest

– stop at

),(jiM

0),(jiM

Gap penalty functions

• linear:

• affine:

• convex: as gap length increases, magnitude of

penalty for each additional character decreases

e.g.

w (g) g d

w (g)
 d (g 1)e , g 1

0, g 0

w (g) d log(g) e

Computational complexity and gap

penalty functions

linear:

)(
2
nO

)(
3
nO

)(
2
nO

affine:

general:

convex:)log(
2

nnO

 assuming two sequences of length n

Alignment (global) with general gap

penalty function

)(),(

)(),(

),()1,1(

max),(

kjkiF

kijkF

yxsjiF

jiF

ji

consider every previous

element in the row

consider every previous

element in the column

why the general case has time complexity O(n3)

k ranges over previous

coordinates

Pairwise alignment summary

• the number of possible alignments is exponential in

the length of sequences being aligned

• dynamic programming can find optimal-scoring

alignments in polynomial time

• the specifics of the DP depend on

– local vs. global alignment

– gap penalty function

• affine penalty functions are most commonly used

